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Abstract
This report presents the results of a friendly competition for formal verification of con-

tinuous and hybrid systems with piecewise constant dynamics. The friendly competition
took place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2019. In this third edition, six tools have been applied to solve five different
benchmark problems in the category for piecewise constant dynamics: BACH, Lyse, Hy-
COMP, PHAVer/SX, PHAVerLite, and VeriSiMPL. Compared to last year, a new tool has
participated (HyCOMP) and PHAVerLite has replaced PHAVer-lite. The result is a snap-
shot of the current landscape of tools and the types of benchmarks they are particularly
suited for. Due to the diversity of problems, we are not ranking tools, yet the presented
results probably provide the most complete assessment of tools for the safety verification
of continuous and hybrid systems with piecewise constant dynamics up to this date.

G. Frehse and M. Althoff (eds.), ARCH19 (EPiC Series in Computing, vol. 61), pp. 1–13
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1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with piecewise constant dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
at gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2019 friendly competition of the ARCH
workshop1 for verifying hybrid systems with piecewise constant bounds on the dynamics. In
each location (mode, piece of the hybrid state space), the dynamics are given by a differential
inclusion of the form

ẋ(t) ∈ U ,

where U is a convex subset of Rn. Tool developers run their tools summarized in Sec. 2 on
different benchmark problems presented in Sec. 3 and report the results obtained from their
own machines also in Sec. 3.

The results reported by each participant have not been checked by an independent authority
and are obtained on the machines of the tool developers. Thus, one has to factor in the
computational power of the used processors summarized in Sec. A as well as the efficiency of
the programming language of the tools. It is not the goal of the friendly competition to rank
the results, the goal is to present the landscape of existing solutions in a breadth that is not
possible by scientific publications in classical venues. Those would require the presentation of
novel techniques, while this report showcases the current state of the art.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anybody. All tools presented in this report use some form of reachability analysis. This,
however, is not a constraint set by the organizers of the friendly competition. We hope to
encourage further tool developers to showcase their results in future editions.

2 Participating Tools

The tools participating in the category Continuous and Hybrid Systems with Piecewise Constant
Dynamics are introduced below in alphabetical order.

BACH BACH [14, 13] is a bounded reachability checker for Linear Hybrid Automata (LHA)
model, Hybrid Systems with Piecewise Constant Dynamics (HPWC) in the term of ARCH
competition. The tool provides GUI for LHA modeling and also bounded reachability checkers
for both single automaton and automata network. Be different from classical bounded checkers
of LHA, which encodes the “complete” bounded state space of the system into a huge SMT

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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problem, BACH conducts the bounded checking in a “path-oriented” layered style. It finds
potential paths which can reach the target location on the graph structure first, then encodes
the feasibility of such path into a linear programming problem and solve it afterwards. In
this way, as the number of paths in the discrete graph structure of an LHA under a given
bound is finite, all candidate paths can be enumerated and checked one by one to tackle the
bounded reachability analysis of LHA. Furthermore, the memory usage is well controlled as
it only encodes and solves one path at a time. Meanwhile, BACH provides an efficient way
to locate the infeasible path segment core when a path is reported as infeasible to guide the
backtracking in the graph structure traversing to achieve good performance [28]. Such infeasible
path segments can also be used to derive complete state arguments under certain conditions [29].

Lyse Lyse is a tool for the reachability analysis of convex hybrid automata, namely hybrid
automata with piecewise constant dynamics, whose constraints are possibly non-linear but re-
quired to be convex. In this class are HPWC whose flow is contrained in rectangles, polyhedra,
but also ellipses and parabolae. Linear hybrid automata are a special case. Lyse performs for-
ward reachability analysis by means of template-polyhedra, whose directions are incrementally
extracted from spurious counterexamples. The extraction is performed by a novel technique
that generates interpolants by means of convex programming [9].

HyCOMP HyCOMP [16] is a model checker for Hybrid Systems based on Satisfiability Mod-
ulo Theory (SMT) [6]. HyCOMP takes as input a hybrid system with either piecewise constant
dynamics or linear dynamics represented as a symbolic network of hybrid automata.

HyCOMP verifies safety properties for piecewise constant hybrid systems in two steps. First,
it encodes the hybrid system in an infinite-state discrete transition system expressed with
first order logic formulas (the formulas are usually interpreted in the theory of Linear Real
Arithmetic). The encoding is precise for safety properties: the property holds in the hybrid
system if and only if it holds in the discrete transition system. Second, it verifies the property
in the discrete transition system. The tool can use different algorithms like Bounded Model
Checking (BMC), K-Induction, and IC3 [12]. Such algorithms are implemented in the nuXmv
model checker [15] using the MathSAT SMT solver [19]. HyCOMP directly uses nuXmv as
a library. In the experiments HyCOMP uses the IC3-IA [17, 18] algorithm. IC3-IA tightly
integrates (implicit) predicate abstraction [27] with the IC3 algorithm [12]. IC3-IA performs a
Counter Example Guided Abstraction Refinement (CEGAR) loop using predicate abstraction to
abstract the system, IC3 to verify the abstraction, BMC to simulate abstract counterexamples,
and interpolation to find new predicates to refine the abstraction. However, IC3-IA never
computes the whole predicate abstraction explicitly, trying to avoid its exponential blow up
in the number of states. In the experiments we run both IC3-IA and BMC-IA (a version of
BMC also using implicit abstraction, as shown in [27]). We refer to the former configuration as
HyCOMP-IC3, and to the latter configuration as HyCOMP-BMC. We further run BMC only
on the unsafe instances of the benchmarks.

PHAVer/SX PHAVer [21] is a formal verification tool for computing reachability and equiv-
alence (simulation relation) of hybrid systems. It can handle the class of Linear Hybrid Au-
tomata (LHA), whose continuous dynamics is characterized by piecewise constant bounds on
the derivatives and whose discrete jumps can be a convex linear predicate over the variables
before and after the jump. PHAVer uses standard operations on polyhedra for the reachability
computation over an infinite time horizon (similar to those used in HyTech), and the algorithm
for computing simulation relations is a straightforward extension of these. Using unbounded
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integer arithmetic, the computations are exact and formally sound. While termination of LHA
is undecidable, PHAVer provides formally sound, precise overapproximation and widening oper-
ators that can force termination at the cost of reduced precision. These operators also simplify
the computed continuous sets and dynamics of the system, and may result in a considerable
speed-up without much loss in precision. Since 2011, PHAVer is continued as a plugin to the
tool platform SpaceEx. This plugin is the tool actually used for the competition: for clarity, in
the following we refer to it under the name PHAVer/SX.

PHAVerLite PHAVerLite is a variant of the stand-alone verification tool PHAVer, sharing
the same capabilities and formal soundness guarantees. It is worth stressing that PHAVerLite,
being a stand-alone tool, differs from the PHAVer-lite SpaceEx plugin that participated in the
friendly competition in 2018. For instance, while PHAVer-lite was able to accept input specified
using the SpaceEx syntax for hybrid automata, at present PHAVerLite can only accept input
specified using the PHAVer syntax. The main difference with respect to PHAVer is the adoption
of the new polyhedra library PPLite [8]: thanks to a novel representation and conversion
algorithm [7] for NNC (Not Necessarily Closed) polyhedra, PPLite is able to obtain significant
efficiency improvements with respect to the classical polyhedra implementation used in PHAVer
(which is based on the Parma Polyhedra Library [5]). The development of PHAVerLite was
motivated by the desire to go beyond the main change above and also revisit many of the key
design and implementation choices of the original PHAVer: this allowed to experiment with
novel algorithms or design tradeoffs, also exploiting some of the more recent advances in the
implementation of operators on the polyhedral domains. At present, PHAVerLite has only
been used to analyze systems characterized by piecewise constant dynamics; also note that a
few of the PHAVer functionalities (e.g., the computation of simulation relations) have been
deliberately removed.

VeriSiMPL This toolbox [1, 4] is used to generate finite abstractions and reachability of
max-plus-linear (MPL) systems. VeriSiMPL leverages the piecewise affine (PWA) dynamics
generated from an MPL system and some operations over difference-bound matrices (DBM)
[20]. Abstractions are characterized as finite-state labeled transition systems (LTS). The finite
LTS abstractions are shown to either simulate or to bisimulate the original MPL system [2]. The
resulting LTS are to be verified against given specifications expressed as formulae in linear tem-
poral logic (LTL) and computation tree logic (CTL). The toolbox intends to leverage the SPIN
and NuSMV model checkers. With regards to the reachability of MPL systems, VeriSiMPL is
able to compute the forward and backward reach sets of MPL systems exactly [3]. The initial
and final states are expressed as a union of finitely many DBM. The reachability algorithm uses
the PWA dynamics associated with an MPL system and some operations on DBM.

3 Verification of Benchmarks

3.1 Adaptive Cruise Controller

Model The adaptive cruise controller is a distributed system for assuring that safety distances
in a platoon of cars are satisfied [10]. It is inspired by a related benchmark in [24]. For n cars,
the number of discrete states is 2n and the number of continuous variables is n. Each variable xi

encodes the relative position of the i-th car, for i = 0, . . . , n− 1. The car i-th car is considered
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to be in front of the i + 1-th car. The relative velocity of each car has a drift |ẋi − ẋi+1| ≤ 1
when cruising and |ẋi − ẋi+1 − ε| ≤ 1 when recovering, where ε is the slow-down parameter.
The cars can stay in cruise mode as long as the distance to the preceding vehicle is greater 1.
The can go into recovery mode when the distance is smaller than 2.

ACCSnn The model with nn cars, ε = 2. This model is considered safe with respect to
specification UBSnn (no collisions).

ACCUnn The model with nn cars, ε = 0.9. This model is considered unsafe with respect to
specification UBSnn (collisions are possible).

Specification The distance between adjacent cars should be positive:

xldr − x > 0,

where x and xldr are the positions of the car and the car in front, respectively.

UBDnn For i = 0, . . . , n− 1: xi − xi+1 > 0.

Results The computation times of various tools are listed in Tab. 1.

Note about the HyCOMP’s results. HyCOMP proves that the property UBD01 is safe
for a model ACCSnn almost instantaneously because the property is inductive. The property
that no cars collide (∀i ∈ [0, n), xi − xi+1 > 0) holds in the initial state. In the initial states
no cars collide (base case). Then, assuming that no cars collide (by inductive hypothesis) we
see that there are no transitions in the system that make the system unsafe. If the system is
safe and an automaton changes location, then the system is still safe (the automata transition
do not change the value of the car’s position). The safety property cannot be false when an
automaton is in the cruise location (due to the location invariant), and in the recovery location
the difference of a car’s velocity with the following car’s velocity is non-negative (so, if the
position was positive before, it is the case by inductive hypothesis, it will be positive even after
some time elapses).

3.2 Distributed controller

Model The benchmark is an extension of the benchmarks presented in [23], to which multiple
sensors with multiple priorities have been added. It models the distributed controller for a
robot that reads and processes data from different sensors. A scheduler component determines
what sensor data must be read according to the priority of the sensor. The controller has 1
continuous and n discrete variables, the scheduler has n continuous and n discrete variables, and
each sensor has 1 continuous variable. The controller has 4 locations, the scheduler has 1 + n,
and each sensor has 4 locations. The product automaton has 4× (1 + n)× 4n locations, 2n+ 1
continuous variables and 2n discrete variables.2 Note that some tools, such as PHAVer/SX
and PHAVerLite, do not support discrete variables and may model the discrete variables as
continuous variables.

DISCnn The model with nn sensors. This model is considered safe with respect to specification
UBSnn.

2In previous editions of this report, it was erroneously claimed to be 4 × (1 + n) × 4 locations and n + 2
continuous variable.
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Table 1: Computation Times of the Adaptive Cruise Controller.

instance
ACCS05
UBD01

ACCU05
UBD01

ACCS06
UBD01

ACCU06
UBD01

ACCS07
UBD01

ACCU07
UBD01

ACCS08
UBD01

ACCU08
UBD01

safety safe unsafe safe unsafe safe unsafe safe unsafe

#vars. 5 5 6 6 7 7 8 8

#locs. 32 32 64 64 128 128 256 256

tool computation time in [s]

Lyse 1.08 ≈ 0 – – 573.35 0.233 – –

PHAVer/SX 9.4 13.7 461 13430 ∞ ∞ – –

PHAVerLite 0.10 0.06 0.55 0.27 4.26 1.39 47.10 7.15

HyCOMP-IC3 0.1 0.2 0.1 0.3 0.1 0.4 0.1 0.4

bounded-depth tools

HyCOMP-BMC – 0.2 – 0.2 – 0.2 – 0.2

Table 2: Computation Times of the Distributed Controller.

instance
DISC02
UBS02

DISC03
UBS03

DISC04
UBS04

DISC05
UBS05

safety safe safe safe safe

#vars. 9 13 17 21

#locs. 192 1024 5120 24976

tool computation time in [s]

PHAVer/SX 1.1 ∞ ∞ ∞
PHAVerLite 0.04 0.68 77.51 ∞
HyCOMP-IC3 0.1 0.3 0.7 0.9

bounded-depth tools3

BACH – – 0.1(B : 10) 0.2(B : 10)

Specification The system is considered safe if at no point in time all sensors send data
simultaneously.

UBSnn It is never the case that all nn sensors are in location send.

Results The computation times of various tools are listed in Tab. 2.

3The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
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3.3 Dutch Railway Network

We consider a finite-horizon safety problem over max-plus-linear (MPL) systems. More pre-
cisely, given a PWA system generated from an MPL system, a time horizon N , a set of initial
conditions X0 expressed as a difference-bound matrix (DBM) [20], an unsafe set S described
as a DBM, we wanted to know whether the system can reach the unsafe set within the given
time horizon.

Model In [26, p. 30], a subset of Dutch railway networks is modeled as a max-plus-linear
(MPL) system. That model has 14 state variables x1(k), . . . , x14(k) representing the k-th de-
parture time of trains. For a complete description, see [22]. The model instance is defined
formally as follows:

DRNW02 initial condition X0 = {x : 0 ≤ xi ≤ 5, for all i = 1, . . . , 14}
The model is easily embedded in a hybrid automaton with a single location, where the time
derivative of all variables is zero, and a self-loop transition that models the discrete dynamics
for each region.

Specification We have four specifications of interest:

BDR01 there exists a k = 0, . . . , 100 such that 50 ≤ x2(k)− x7(k) ≤ 60 (satisfied)

BDR02 there exists a k = 0, . . . , 100 such that 70 ≤ x2(k)− x7(k) ≤ 80 (satisfied)

BDR03 there exists a k = 0, . . . , 100 such that 90 ≤ x2(k)− x7(k) ≤ 100 (not satisfied)

BDR04 there exists a k = 0, . . . , 100 such that 10 ≤ x2(k)− x7(k) ≤ 20 (satisfied)

In the sense of a safety specification, the above specifications specify unsafe states. If the unsafe
are reachable, the corresponding specification BDR01,. . . ,BDR04 is satisfied.

Results The computation times of various tools are listed in Tab. 3.

Note PHAVer/SX and PHAVerLite Since the iteration count in PHAVer/SX and
PHAVerLite does not guarantee the actual search depth, we added a counter automaton that
models each value of k with a discrete location. The counter is limited to 100 transitions, after
which it deadlocks. The tool is then run until a fixed point is found, which guarantees that
all values up to k = 100 are explored. The flow predicate in the hybrid automaton model was
set to false, which means that there is no computation of time elapse in the reachability. We
therefore expect that the overhead of embedding the discrete-time model in a continuous-time
model is minimal. Note that PHAVer/SX computes the full reach set before checking whether
the unsafe states are reachable. This explains why all instances take the same time, regardless of
the specification. In contrast, PHAVerLite was configured to check for reachable unsafe states
during the fixpoint computation, thereby terminating slightly sooner on unsafe models. To
compare the performance of exact polyhedral computations with that of template polyhedra,
we also include the results of SpaceEx running the LGG scenario and box directions. This gives
the same variable ranges as PHAVer/SX, but it should be noted that the result is not formally
sound due to the double precision floating point used by LGG.

4In contrast to the other tools, the results of SpaceEx given here are numerically unsound due to the use of
double precision floating point arithmetic.

5The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
6We run BMC up to 100 steps showing that 90 ≤ x2(k) − x7(k) ≤ 100 is not satisfied at any k.

7



ARCH-COMP HPWC Results G. Frehse et al.

Table 3: Computation Times of the Dutch Railway Benchmark.

instance
DRNW02
BDR01

DRNW02
BDR02

DRNW02
BDR03

DRNW02
BDR04

safety unsafe unsafe safe unsafe

# vars. 14 14 14 14

# locs. 1 1 1 1

tool computation time in [s]

VeriSiMPL 0.057 0.030 6.081 0.033

PHAVer/SX 528.1 528.1 528.1 528.1

PHAVerLite 11.11 10.46 17.36 10.49

SpaceEx4 1.2 1.2 1.2 1.2

HyCOMP-IC3 57.91 0.15 4.76 0.55

bounded-depth tools5

BACH 1.99(B : 100) 0.09(B : 100) – 0.9(B : 100)

HYCOMP-BMC 1.0 0.1 8.96 0.2

3.4 Fischer’s Protocol

Model Fischer’s protocol is a time based protocol of mutual exclusion between processes,
originally from [25]. The flow constraints are given by 1

2 ≤ ẋ1 ≤ 3
2 , . . . ,

1
2 ≤ ẋm ≤ 3

2 , where
xi is the clock of the i-th process. The product automaton has (n + 1) × 4n locations and n
variables.

FISCSnn protocol with nn processes, considered safe with respect to specification UBDnn.

FISCUnn protocol with nn processes, considered unsafe with respect to specification UBDnn.

Specification The protocol is correct if no two processes are ever in the critical section at
the same time.

UBDnn There are no two processes such that both are in location cs (critical section) at the
same time.

Results The computation times of various tools are listed in Tab. 4.

Note on PHAVerLite As said before, PHAVerLite is sometimes configured to check for
reachable unsafe states during the fixpoint computation. However, the analysis always starts
by eagerly computing the full parallel composition of the automata components. This can
be seen as a waste of computational effort: for instance, the FISCU06-UBD01 benchmark is
analysed in 4.90 seconds, but only 0.16 seconds are actually spent for checking reachability.

8
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Table 4: Computation Times of the Fischer Benchmark.

instance
FISCS04
UBD01

FISCU04
UBD01

FISCS05
UBD01

FISCU05
UBD01

FISCS06
UBD01

FISCU06
UBD01

safety safe unsafe safe unsafe safe unsafe

# vars. 4 4 5 5 6 6

# locs. 1280 1280 6144 6144 28672 28672

tool computation time in [s]

Lyse 33.59 0.06 859.84 0.16 – –

PHAVer/SX 90.5 579 ∞ ∞ – –

PHAVerLite 0.22 0.13 1.40 0.81 11.42 4.90

HyCOMP-IC3 6.7 0.2 26.5 0.5 139.7 0.2

3.5 TTEthernet

Model The TTEthernet protocol is a protocol for the remote synchronization of possibly
drifted clocks distributed over multiple components, taken from [11]. The system consists of
two compression masters (CM) and k synchronisation masters (SM). Each CM has two clocks
cmi, each SM has one clock smi. Both CM and SM are modeled by a hybrid automaton with
4 locations each. The product automaton has 4 + k variables and 4k+2 locations.

TTESnn protocol with nn SM. This model is considered safe with respect to specification
UBDnn. The global time horizon is limited to 3000 ms.

Specification The difference between the clocks of the SM should not exceed a threshold of
2max drift .

UBDnn For all i, j, smi − smj ≤ 2max drift , where max drift = 0.001 ms.

Results The computation times of various tools are listed in Tab. 5.

4 Conclusions and Outlook

This report presents the results of the third edition of a friendly competition for the formal
verification of continuous and hybrid systems of the ARCH’19 workshop, in the category on
piecewise constant dynamics. The reports of other categories can be found in the proceedings
and on the ARCH website: cps-vo.org/group/ARCH. The code with which the results have
been obtained is publicly available at gitlab.com/goranf/ARCH-COMP.

In the spirit of a friendly competition, this report does not provide any ranking of tools.
We report a few casual observations. For the reported instances, PHAVer/SX computes the
exact set of reachable states and can therefore be regarded as a base line. PHAVerLite is
a variation of PHAVer that uses a different polyhedra library and includes some algorithmic
improvements that lead to a considerable speedup, here included configuration settings to use
approximated, cheaper operators that are anyway precise enough for the considered verification

7The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
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Table 5: Computation Times of the TTEthernet Benchmark.

instance
TTES05
UBS01

TTES07
UBS01

TTES09
UBS01

safety safe safe safe

# vars. 9 11 13

# locs. 15384 262144 4194304

tool computation time in [s]

PHAVer/SX 25.2 113 –

PHAVerLite 0.33 1.76 12.91

HyCOMP-IC3 0.4 0.7 1.1

bounded-depth tools7

BACH 0.15(B : 11) 0.2(B : 11) –

tasks. Lyse uses abstraction refinement, which leads to considerable performance gains in many
instances. VeriSiMPL was developed for a very specific subclass of problems, in which shows
very good performance. This year, HyCOMP has joined the competition. HyCOMP (when
using the IC3-IA algorithm) finds an inductive invariant sufficient to prove the safety property,
instead of computing the system’s reachable states (further using predicate abstraction to tackle
the system’s complexity). The experimental results on the competition’s instances show that
finding an inductive invariant is often more effective than computing the set of reachable states,
as PHAVerLite and PHAVer/SX. The bounded model checker BACH was included for rough
comparison and to create a link to the ARCH-COMP category on bounded model checking
(HBMC). For the reported depths, BACH performed very well.
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A Implementation Languages and Used Machines

A.1 BACH

• Implementation language: C++

• Processor: Intel(R) Core(TM)2 Quad CPU Q9500 @ 2.83GHz x 4

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 3636 (full), 1203 (single thread)

A.2 HyCOMP

• Implementation language: C, C++

• Processor: Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz

• Memory: 16 GB

• Average CPU Mark on www.cpubenchmark.net: 11003 (full), 2221 (single thread)

A.3 Lyse

• Implementation language: C++

• Processor: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz x 2

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 3818 (full), 1521 (single thread)
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A.4 PHAVer/SX

• Implementation language: C++

• Processor: Intel Core i7-4850HQ CPU @ 2.30GHz x 4

• Memory: 15.9 GB

• Average CPU Mark on www.cpubenchmark.net: 9057 (full), 1966 (single thread)

A.5 PHAVerLite

• Implementation language: C++

• Processor: Intel Core i7-3632QM CPU @ 2.20GHz x 4

• Memory: 15.5 GB

• Average CPU Mark on www.cpubenchmark.net: 6939 (full), 1566 (single thread)

A.6 VeriSiMPL

• Implementation language: MATLAB

• Processor: Intel Core i7-4720HQ CPU @ 2.6GHz x 4

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 8010 (full), 1912 (single thread)
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