
EPiC Series in Computing

Volume 100, 2024, Pages 181–197

Proceedings of 25th Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning

Hybrid Intersection Types for PCF

Pablo Barenbaum1‡, Delia Kesner2, and Mariana Milicich2§

1 Universidad Nacional de Quilmes (CONICET), and Instituto de Ciencias de la Computación, UBA
Argentina

2 Université Paris Cité, CNRS, IRIF
France

Abstract

Intersection type systems have been independently applied to different evaluation strate-
gies, such as call-by-name (CBN) and call-by-value (CBV). These type systems have been
then generalized to different subsuming paradigms being able, in particular, to encode
CBN and CBV in a unique unifying framework. However, there are no intersection type
systems that explicitly enable CBN and CBV to cohabit together, without making use of
an encoding into a common target framework.

This work proposes an intersection type system for a specific notion of evaluation for
PCF, called PCFH. Evaluation in PCFH actually has a hybrid nature, in the sense that
CBN and CBV operational behaviors cohabit together. Indeed, PCFH combines a CBV-
like behavior for function application with a CBN-like behavior for recursion. This hybrid
nature is reflected in the type system, which turns out to be sound and complete with
respect to PCFH: not only typability implies normalization, but also the converse holds.
Moreover, the type system is quantitative, in the sense that the size of typing derivations
provides upper bounds for the length of the reduction sequences to normal form. This first
type system is then refined to a tight one, offering exact information regarding the length
of normalization sequences. This is the first time that a sound and complete quantitative
type system has been designed for a hybrid computational model.

1 Introduction

Evaluation strategies govern how computation proceeds in programming languages. Two promi-
nent strategies are call-by-name (CBN) and call-by-value (CBV) [24]. In CBN, arguments are
not evaluated before being consumed by functions, while in CBV, arguments must be fully
evaluated to values before function application can proceed.

These two ways to perform evaluation have their own advantages and drawbacks. CBV
evaluation can sometimes be less costly than CBN, since CBV evaluates arguments only once,
while CBN may have to evaluate many copies of a single argument. Conversely, sometimes

‡ Partially funded by project grants PUNQ 418/22 and PICT-2023-602.

§ This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 945332.

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 181–197

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

CBN evaluation can be less costly than CBV, as CBN does not evaluate an unused argument
while CBV always evaluates arguments, even if their value is not needed. For instance, if the
function g is constantly 0 and Ω is a looping program, then g(Ω) produces 0 as a result in CBN
while CBV evaluation does not terminate.

The main motivation of this work is to enhance our understanding of the quantitative se-
mantics of programming language constructs such as inductive data types and recursion. The
quantitative semantics of minimalistic languages such as the λ-calculus are relatively well-
understood in both the CBN and CBV settings (see [9, 13]), but inductive data types and
recursion cannot be expressed directly, and must instead rely on some sort of encoding. In
this work, we study PCFH, an extension of the λ-calculus that incorporates natural numbers,
conditional expressions, and recursion through a fixed-point operator without resorting to an
encoding.

Non-idempotent intersection types. Intersection types (IT), pioneered by Coppo and
Dezani [10], extend simple types with a new intersection type constructor (∩), in such a way
that a term is assigned the type τ ∩σ if and only if it is assigned both types τ and σ. Originally,
intersection is commutative, associative and, in particular, idempotent, i.e. τ and τ ∩ τ are
equivalent. An intersection τ1 ∩ . . . ∩ τn can thus be specified by a set {τ1, . . . , τn}. IT were
motivated by semantical concerns. A key property is that typability is preserved by conversion
(reduction and expansion), in contrast with simple types, in which typability is preserved by
reduction but not expansion. This technical property allows to study normalization from a type
theoretical point of view. In intersection types, a term is typable if and only if it is normalizing,
while in simple types, typable terms are normalizing but the converse does not hold.

A more recent line of research is that of non-idempotent IT [18, 9], in which τ ∩ τ is not
equivalent to τ . Here, an intersection τ1 ∩ . . . ∩ τn may be specified by a multiset [τ1, . . . , τn].
These systems draw inspiration from Linear Logic (LL) [19], as in fact, non-idempotent in-
tersection corresponds to LL’s multiplicative conjunction (⊗) [9]. Just like in the idempotent
case, non-idempotent IT characterize normalization by means of typability [9]. Moreover, non-
idempotent types have some advantages over idempotent ones; one key benefit is their ability
to capture quantitative information about the dynamic behavior of programs. For example,
in non-idempotent IT one can not only prove that a term t is normalizing if and only if it is
typable, but also obtain an upper bound for the length of the evaluation sequence of t to normal
form. Since these systems are inspired by linear logic and resource consumption [18], they are
called quantitative type systems. Several works have explored non-idempotent intersection type
systems in the context of CBN [11, 8] and CBV [13, 3, 21]. In these systems, the quantitative
information can usually be recorded using counters that decorate typing judgments. For exam-
ple, a typical judgment may be of the form Γ ⊢n t : τ , meaning that t normalizes to a normal
form of type τ , and that the number of reduction steps required to reduce t to normal form is
bounded by the value of the counter n ∈ N.

Quantitative properties provided by non-idempotent intersection type systems can be refined
using a syntactic property, tightness, achieved by using only minimal type derivations [2].
Tightness allows to extract from typing derivations not only upper bounds but rather exact
quantitative information. Indeed, in tight derivations, a concluding judgment is still of the
form Γ ⊢n t : τ , but now the counter n ∈ N indicates that exactly n reduction steps are required
to reduce t to normal form.

PCF and PCFH. Programming Computable Functions (PCF) [25] is a functional program-
ming language designed to serve as a foundational computational model. It extends the simply-

182

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

typed λ-calculus with natural numbers, conditional expressions, and general recursion (through
a fixed-point operator). PCF is simultaneously minimalistic, expressive, and rigorous, mak-
ing it an ideal vehicle to study programming language semantics. Historically, it has been
used to study the correspondence between operational and denotational semantics, i.e., the full
abstraction problem [25, 23, 1, 17].

In this work, we study a variant of PCF called PCFH, in which function application and
evaluation of conditional expressions follow a CBV discipline. Besides that, the rule to unfold
a fixed-point is the standard one, namely:

fixx. t → t{x := fixx. t}

A noteworthy remark is that the semantics of recursion is akin to CBN rather than to CBV
since the fixed-point can make copies of itself, which is not a value yet. Given this “mixed”
operational behavior, we say that evaluation in PCFH is hybrid. The fact that evaluation is
hybrid is challenging from the point of view of quantitative semantics [21, 6] because it requires
synthesizing characteristics of CBN and CBV in a single system.

A note on nomenclature. Languages closely related to PCFH are sometimes said to be “call-
by-value” [12]. As explained above, evaluation in PCFH is actually hybrid because unfolding a
fixed-point may produce copies of itself, substituting a variable by an expression that is not a
value yet. We write PCFH to highlight the fact that evaluation is hybrid, as indicated by the
subscript “H”.

Related work. There is a vast amount of literature on PCF. In particular, various notions
of evaluation have been proposed for PCF; for instance, [20] provides insights on differences
and similarities between CBV semantics and CBN semantics. A probabilistic version of PCF
is presented in [17], which follows a CBN discipline but is still hybrid in that it exhibits a CBV
behavior for its conditional operator.

Furthermore, some works explore semantical aspects of PCF that are connected to our own.
In [14], Ehrhard studies an interpretation of a Call-by-Push-Value (CBPV) λ-calculus with
disjoint unions and fixed-points (encompassing PCF) in LL, and it derives an intersection type
system from the Scott model of LL. The unfolding of a fixed-point operator can duplicate itself
by copying a value that represents its suspended computation. Technically, this is achieved
by relying on the of-course (!) modality of LL. The resulting type system is in the style of
Coppo–Dezani, with idempotent intersections, and thus not quantitative.

Recent work in [15] derives an intersection type system for a differential extension of PCF
from a relational semantics. It is shown that typability in this system implies normalization
by means of a reducibility argument, but the quantitative aspect is not studied. In contrast,
we prove soundness and completeness by elementary means, and we characterize quantitative
upper bounds and exact bounds via our non-idempotent type system.

There are other languages in the literature that allow the encoding of CBN/CBV behavior,
such as Levy’s call-by-push-value (CBPV) [22] and Ehrhard and Guerrieri’s Bang Calculus [16].
They attempt to unify CBN and CBV in a single framework, but they are not hybrid as they
only duplicate values. Recent works [21, 6] propose quantitative type systems for adequate
variants of the Bang Calculus. These works study upper bounds and exact bounds. However,
they are not able to express recursion and integers directly, but only through encodings.

Contributions. As a main contribution, we propose a quantitative model for the hybrid
calculus PCFH, based on a non-idempotent intersection type system. The type system is proved

183

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

to be sound and complete with respect to the operational semantics: it characterizes normalizing
terms and provides upper bounds for the length of reductions to normal form. A peculiar
feature of this system is that it distinguishes between those variables bound by λ-abstractions
from those bound by fixed-point operators. The former may be substituted by values while the
latter may be substituted by arbitrary expressions. Type assignment rules work differently for
these two kinds of variables because a value is assigned one type each time it will be used (as
in CBV), while an arbitrary expression may be copied to produce many values (as in CBN).

As a second contribution, we refine the type system to obtain a tight version, which provides
exact bounds for reduction lengths to normal form, instead of upper bounds.

To the best of our knowledge, this is the first quantitative type interpretation that is ade-
quate for a hybrid system.

Structure of the paper. Section 2 covers the syntax and operational semantics of PCFH.
Section 3 introduces a quantitative type system for PCFH. Finally, the paper concludes by
summarizing our work and outlining potential directions for future work.

Proofs. Some proofs in the paper have been ommited, but they can be found in the extended
version [5].

2 The PCFH calculus

This section introduces the syntax of PCFH, together with its associated operational semantics,
which follows a hybrid evaluation. We characterize the set of normal forms induced by the
operational semantics through a grammar (Proposition 2). Moreover, as the evaluation strategy
is not necessarily deterministic, we show that it enjoys the Diamond Property (Proposition 3),
which implies in particular that all evaluation sequences to normal form have the same length,
thus justifying the use of the proposed strategy to study quantitative behaviors.

Given a denumerable set of variables (x, y, z, . . .), we define terms (t, s, u, . . .), values
(v,w, . . .), and natural values (k, l, . . .) using the following grammar:

t ::= x | λx. t | t t | 0 | S(t) | if(t, t, x. t) | fixx. t

v ::= λx. t | k k ::= 0 | S(k)
Terms include variables x, abstractions λx. t, applications t s, a fixed-point opera-
tor fixx. t, as well as syntax for natural numbers: zero 0, the successor constructor S(t),
and a conditional operator if(t, s, x. u). Free and bound occurrences of variables are defined
as expected, considering that the free occurrences of x in u are bound in if(t, s, x. u) and in
fixx. u. Terms are considered up to α-renaming of bound variables. We write t{x := s} for the
capture-avoiding substitution of the free occurrences of x by s in t.

The operational semantics of PCFH is given by a reduction relation →ρ indexed by a rule
name ρ ∈ {B, I0, IS, F}, and it is defined by the following set of rules:

r-beta
(λx. t)v →B t{x := v}

r-if0
if(0, t, x. s) →I0 t

r-ifS
if(S(k), t, x. s) →IS s{x := k}

r-fix
fixx. t →F t{x := fixx. t}

t →ρ t′

r-appL
t s →ρ t′ s

s →ρ s′

r-appR
t s →ρ t s′

184

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

t →ρ t′

r-succ
S(t) →ρ S(t′)

t →ρ t′

r-if
if(t, s, x. u) →ρ if(t′, s, x. u)

The resulting evaluation strategy is closed (no reduction of terms with free variables) and weak
(no evaluation under abstractions).

Several variants of PCF can be found in the literature. In this presentation, function appli-
cation follows a CBV discipline because the argument of an application must be evaluated until
it becomes a value, so that the rule r-beta can be applied. The conditional operator follows a
CBV discipline as well, as the guard must be fully evaluated to a value so that one of the rules
r-if0 or r-ifS can be applied. The conditional if(t, s, x. u) returns s if t is zero, and u if t is
non-zero, binding x to its predecessor. A consequence of this is that the predecessor function
can be defined using the conditional operator; e.g. if(S(k),0, x. x) →IS k, a variant which can
be found in [17].

To illustrate this strategy, let us evaluate the term if(S(0), id, x. λy. x)S(S(0)) in one step,
where id := λz. z:

r-ifS
if(S(0), id, x. λy. x) →IS (λy. x){x := 0}

r-appL
if(S(0), id, x. λy. x)S(S(0)) →IS (λy.0)S(S(0))

After one more reduction step, by rule r-beta, we obtain (λy.0)S(S(0)) →B 0.
Let us write t → s if t →ρ s for some rule name ρ. A term t is →-reducible if there exists

s such that t → s; and t is →-irreducible if t is not →-reducible. For the example above, 0 is
→-irreducible, while if(S(0), id, x. λy. x)S(S(0)) is →-reducible.

Terms that cannot be further →-reduced are also called normal forms. In the following,
we characterize the normal forms of the proposed strategy by means of an inductive definition.
Normal forms are of different kinds or natures. For instance, λx. x x is a normal form of
abstraction nature, while S(0) is a normal form of natural number nature. The preceding
normal forms are intuitively “meaningful”, and they are said to be proper ; these normal forms
are those that can be successfully typed in a quantitative type system, as we discuss in the next
section. In contrast, there are intuitively “meaningless” normal forms such as S(λx. t), or 0 t,
or if(λx. t, s, y. u). These are said to be stuck. Stuck normal forms do not have any meaning,
so they cannot be typed in a quantitative type system. We return to this point in the next
section.

Formally, we first distinguish between different natures which will be used to index the sets
of normal forms. Thus, we establish the sets of proper natures, ν ∈ {abs, nat} and fallible
natures, ε ∈ {abs, nat, stuck}.

We write NFε to denote the set of normal forms indexed by a fallible nature ε, which is
defined by the following rules:

nf-abs
λx. t ∈ NFabs

t ∈ NFε s ∈ NFε′ ε ̸= abs
nf-app

t s ∈ NFstuck

nf-zero
0 ∈ NFnat

t ∈ NFnat
nf-succ-nat

S(t) ∈ NFnat

t ∈ NFε ε ̸= nat
nf-succ-stuck

S(t) ∈ NFstuck

t ∈ NFε ε ̸= nat
nf-if

if(t, s, x. u) ∈ NFstuck

For instance, λy. id id ∈ NFabs because of rule nf-abs, while (λy. y 0) id is not in normal form
since its left subterm is in normal form but with the proper nature abs.

The results below show that this inductively defined notion of normal form characterizes
exactly the set of irreducible terms. This syntactic characterization is a key ingredient to show

185

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

that the quantitative type system studied in Section 3 is sound and complete. We start with a
simple observation regarding the expected form of normal forms based on their assigned proper
natures:

Lemma 1. Let t ∈ NFε. Then:

1. ε = abs if and only if t is of the form λx. s,

2. ε = nat if and only if t is of the form k.

The characterization of normal forms then follows using the previous lemma:

Proposition 2 (Characterization of normal forms). For any closed term t the following are
equivalent:

1. There exists a fallible nature ε such that t ∈ NFε.

2. t is →-irreducible.

Evaluation of applications is non-deterministic, e.g. consider ((λx.S(x))0) (if(0, id, y. y id)).
This term reduces in one step to S(0) (if(0, id, y. y id)) by rules r-appL and r-beta, and it
also reduces in one step to ((λx.S(x))0) id by rule r-if0. Thus, we need to ensure that
evaluating terms leads to unique normal forms, despite some form of non-determinism during
the computation. To achieve this, we prove the Diamond Property for the relation →, saying
that if a term reduces in one step to two different terms t1 and t2, then both terms converge in
one step to the same common reduct. This is a strong form of confluence, which in particular
ensures that all reductions to normal form have the same length:

Proposition 3 (Diamond property). If t →ρ1
t1 and t →ρ2

t2 where t1 ̸= t2 then there exists
t′ such that t1 →ρ2 t′ and t2 →ρ1 t′.

Let us take the term of the example above to illustrate this property:

((λx.S(x))0) (if(0, id, y. y id))
B
//

I0

��

S(0) (if(0, id, y. y id))

I0

��
((λx.S(x))0) id

B
// S(0) id

Moreover S(0) id ∈ NFstuck by rule nf-app.

3 A Quantitative Type System for PCFH

In this section, we introduce system H (for hybrid), a non-idempotent intersection type system
for PCFH. A type derivation for a term in system H provides upper bounds for its normalization
sequences. Moreover, by considering only tight typing derivations, we obtain exact bounds.
System H aligns with other formulations of non-idempotent intersection type systems and
satisfies fundamental properties such as Subject Reduction (Lemma 11) and Subject Expansion
(Lemma 14). Remarkably, this system captures the combined essence of the two underlying
evaluation strategies found in PCFH, which are CBV and CBN.

The remainder of the section unfolds as follows: Section 3.1 defines the set of types and
typing rules governing H. Section 3.2 delves into the proof of soundness and completeness of

186

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

H with respect to the evaluation strategy PCFH. For this, we show two quantitative results:
Theorem 17 provides upper bounds for normalization sequences for any kind of type derivations,
while Theorem 18 provides exact bounds for normalization sequences for those type derivations
that are tight.

3.1 The Type System H
Recall that values in PCFH are either abstractions or natural values of the form S(S(. . .S(0))).
A value in PCFH may be used zero, one, or many times. For example, the underlined identity
function in (λf. f (f 0)) id is used twice in a reduction to normal form since it is bound to the
variable f that appears twice, and the underlined zero in (λx. if(x,0, y. y))0 is used exactly once
in a reduction to normal form because it is bound to a single occurrence of x tested for zero
equality.

A noteworthy characteristic of non-idempotent intersection type systems is their ability to
capture the several roles a single expression may play in different contexts, so in these type
systems terms do not necessarily have a unique type. Indeed, in system H, values are given
a multitype of the form T = [τ1, . . . , τn]

ν , which consists of a multiset of types [τ1, . . . , τn]
decorated with a nature ν, and corresponding to the (non-idempotent) intersection τ1∩ . . .∩τn.
Each τi corresponds to one use of the value. System H captures the hybrid behavior of PCFH

by splitting the typing information into two parts, called the typing context and the family
context. The typing context contains typing information for variables bound by abstractions
and conditional operators. These variables behave like in CBV, in the sense that they can only
be substituted by values, and thus they are assigned a multitype. The family context contains
typing information for variables bound by fixed-point operators. These variables behave like in
CBN, as they can be substituted by unevaluated expressions. Since an unevaluated expression
may be copied many times and each copy produces a value, these variables are assigned a
multiset of multitypes F = {{T1, . . . , Tn}}, called a multitype family.

We note [. . .] for the multisets of types and {{. . .}} for the multisets of multitypes. This is just
for visual clarity and to emphasize the different roles they play in the type system. However,
both notations denote multisets, and both behave like non-idempotent intersections.

Formally, types of H are given by the following grammar:

(Types) τ ::= A | N
(abs-Types) A ::= T ? → T
(nat-Types) N,M, . . . ::= 0 | S(N)

(Optional Multitypes) T ? ::= ⊥ | T
(Multitypes) T ,S,U ,R, . . . ::= A | N

(abs-Multitypes) A,B ::= [Ai]
abs
i∈I

(nat-Multitypes) N ,M,P, . . . ::= [Ni]
nat
i∈I

(Multitype Families) F ::= {{Ti}}i∈I

A ν-multitype is a multiset of ν-types decorated with a nature ν. E.g., [0, 0,S([]nat)] is a
multiset of nat-types, and [0, 0,S([]nat)]nat is a nat-multitype. The decoration is important to
distinguish []nat from []abs, so that a clear distinction is made between variables that are bound
to natural numbers from those that are bound to abstractions.

Note that a multitype is either a nat-multitype or an abs-multitype. A ν-multitype is
said to be of nature ν. Two multitypes are compatible if they are of the same nature.
For example, [0]nat is compatible with [S([]nat)]nat but not with [T ? → T]abs. This notion
is extended to optional multitypes by declaring that T ? and S? are compatible if either of

187

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

them is ⊥ or if they are compatible multitypes. The sum of compatible multitypes is defined
by [A1, . . . ,An]

abs + [An+1, . . . ,An+m]abs = [A1, . . . ,An+m]abs and, similarly, [N1, . . . ,Nn]
nat +

[Nn+1, . . . ,Nn+m]nat = [N1, . . . ,Nn+m]nat. This operation is extended to compatible optional
multitypes in the following way: ⊥+⊥ = ⊥ and ⊥+ T = T and T +⊥ = T . Note that ⊥ is
the neutral element of the sum.

A family context, written Φ,Ψ, . . ., is a function mapping variables to multitype families
such that Φ(x) ̸= {{ }} for finitely many variables x. The sum of family contexts is defined by
(Φ+Ψ)(x) = Φ(x)⊕Ψ(x), where ⊕ is the sum of multisets of multitypes, defined as the disjoint

union of multisets. The domain of a family context Φ is defined as dom(Φ)
def
= {x | Φ(x) ̸= {{ }}},

and ∅ denotes the empty family context, mapping every variable to {{ }}.
A typing context, written Γ,∆, . . ., is a function mapping variables to optional multitypes

such that Γ(x) ̸= ⊥ for finitely many variables x. Two typing contexts Γ,∆ are compatible if
Γ(x) and ∆(x) are compatible for every variable x. The sum of compatible typing contexts
is defined by (Γ + ∆)(x) = Γ(x) + ∆(x). The domain of a typing context Γ is defined as

dom(Γ)
def
= {x | Γ(x) ̸= ⊥}, and ∅ denotes the empty typing context, mapping every variable

to [].
A binary relation of subsumption T ?

1 �T2 is defined by two cases, stating that ⊥� []ν and
T � T hold. Subsumption is used to introduce a controlled form of weakening in the system
(see Example 3.1 below).

A multi-counter m is a multiset of rule names, whose cardinality is denoted by #(m).
Typing judgments are of the form Φ; Γ ⊢m t : T , where Φ is a family context, Γ is a typing
context, t is a term and T is a multitype. Moreover, each judgment typing a term t is decorated
with a multi-counter m, which traces all the rewriting rules that are used to evaluate the term t
to normal form. This means in particular that #(m) reflects the length of evaluation sequences
to normal form. The decision to use counters that are multisets of rule names instead of natural
numbers is to store more precise information. Moreover, we use a multiset rather than a 4-uple
of distinct counters, as used for example in [21], to avoid unnecessarily inflating the notation.

As mentioned before, variables can receive two distinct assignments depending on whether
they occur in the family context or the typing context. When a variable is assigned a multitype
family in the family context, it will be involved in the evaluation of a fixed-point operator,
meaning that it is intended to be substituted by an unevaluated expression, like in CBN.
Instead, when a variable is assigned a multitype in the typing context, it is intended to be
substituted by a value, like in CBV. There is an invariant in H stating that family contexts and
typing contexts do not share variables, i.e. dom(Φ) ∩ dom(Γ) = ∅. When studying properties
for H we assume implicitly that this invariant holds.

Typing rules for the typing system are the following:

t-var1
∅;x : T ⊢[] x : T

t-var2
x : {{T }};∅ ⊢[] x : T

(Φi; Γi, x : T ?
i ⊢mi t : Si)i∈I

t-abs
+i∈IΦi; +i∈IΓi ⊢+i∈Imi λx. t : [T ?

i → Si]
abs
i∈I

Φ1; Γ1 ⊢m1 t : [T ? → S]abs T ? � T Φ2; Γ2 ⊢m2 s : T
t-app

Φ1 +Φ2; Γ1 + Γ2 ⊢[B]+m1+m2 t s : S

t-zero
∅;∅ ⊢[] 0 : [0]nati∈I

Φ;Γ ⊢m t : N N = +i∈INi
t-succ

Φ;Γ ⊢m S(t) : [S(Ni)]
nat
i∈I

188

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

Φ1; Γ1 ⊢m1 t : [0]nat Φ2; Γ2 ⊢m2 s : T
t-ifZero

Φ1 +Φ2; Γ1 + Γ2 ⊢[I0]+m1+m2 if(t, s, x. u) : T

Φ1; Γ1 ⊢m1 t : [S(N)]nat N ? �N Φ2; Γ2, x : N ? ⊢m2 u : T
t-ifSucc

Φ1 +Φ2; Γ1 + Γ2 ⊢[IS]+m1+m2 if(t, s, x. u) : T

Φ, x : {{Ti}}i∈I ; Γ ⊢m t : S (Φi; Γi ⊢mi fixx. t : Ti)i∈I
t-fix

Φ+i∈I Φi; Γ +i∈I Γi ⊢[F]+m+i∈Imi fixx. t : S

The set I in the typing rules above can be empty. For example, when I = ∅ in rule t-abs,
we obtain a judgment of the form ∅;∅ ⊢[] λx. t : []abs with no premises. As we discussed
at the beginning of this subsection, this result is because the abstraction is not used in the
program. When I = ∅ in rule t-fix, it means that there are zero uses of the recursive calls in
the program.

Moreover, I = ∅ in t-succ we may encounter a special case that is the following:

Φ; Γ ⊢m t : []nat

t-succ
Φ;Γ ⊢m S(t) : []nat

Φ;Γ ⊢m t : []nat

t-succ
Φ;Γ ⊢m S(t) : [S([]nat)]nat

Note that there may be several ways to split a nat-multitype N into a sum +i∈INi of nat-
multitypes Ni in rule t-succ. Therefore, this rule is non-deterministic when read from top to
bottom.

A (typing) derivation is a tree obtained by applying the rules above. We write π�Φ;Γ ⊢m

t : T when π is a derivation of the judgment Φ; Γ ⊢m t : T .

As anticipated in the introduction, the hybrid CBN/CBV operational nature of PCFH is
reflected in the quantitative type system. This is apparent by comparing the typing rules of
system H with the rules of quantitative type systems for CBN/CBV in the literature. To see
this formal resemblance more clearly, consider for example the CBN quantitative type system
N and the CBV quantitative type system V, both described in [21]. Rule t-var1 of H types
variables involved in CBV computations, aligning with rule varVc of V. Conversely, rule t-var2
types variables involved in CBN computations, corresponding to rule varc of N . The typing
rule for abstractions, t-abs, coincides with rule absVc of V. The multitype in the conclusion
of rule t-abs corresponds to the number of times an abstraction is used, as in quantitative
type systems for CBV [13], rather than to the number of times the abstraction duplicates its
argument, as in quantitative type systems for CBN [18, 9], reflecting the fact that function
applications in PCFH are evaluated like in CBV. Conversely, in rule t-fix the cardinality of
the multitype family {{Ti}}i∈I corresponds intuitively to the number of recursive calls, i.e. to the
number of times that the fixed-point operator duplicates itself, which is similar to the typing
rule of an application in CBN.

The goal of providing PCFH with such system is to characterize normalization of its eval-
uation strategy, so, as we briefly mentioned above, the purpose of multi-counters m in H is
to provide upper bounds for the number of evaluation steps to normal form by means of its
cardinality. However, we would also like system H to go beyond this, by giving exact bounds,
and for that, we make use of special derivations called tight. A multitype is tight if it is of
the form []ν . A derivation π � Φ;Γ ⊢m t : T is tight if Φ and Γ are both empty and if the
multitype T is tight.

189

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

For example, the following derivation types the term λx. x0:

t-var1
∅;x : [[]nat → []abs]abs ⊢[] x : [[]nat → []abs]abs

t-zero
∅;∅ ⊢[] 0 : []nat

t-app
∅;x : [[]abs → []nat]abs ⊢[B] x0 : [[]abs]abs

t-abs
∅;∅ ⊢[B] λx. x0 : [[[]nat → []abs]abs → []abs]abs

and the derivation is not tight since the resulting multitype for the term is not empty. Moreover,
the multi-counter is not an exact bound but rather an upper bound, given that this term is a
normal form.

On the other hand, we can also build a tight derivation for the same term, ending in
∅;∅ ⊢[] λx. x0 : []abs by rule t-abs with no premises. Furthermore, the multi-counter here
provides an exact bound.

Controlled weakening As mentioned in the introduction, due to their quantitative nature,
non-idempotent intersection type systems are resource-aware. In consonance with this, system
H is linear, hence every single type assumption is used only once. However, in two specific points
a controlled form of weakening is needed, namely in the t-app and t-ifSucc rules, reflected
in the premises that contain the subsumption relation T ? � T . This allows a variable to be
bound to a value which is then discarded without being used. Observe that the subsumption
relation � is used for controlling the CBV-like behavior. For example, in a term like (λx.0) t,
the argument t must be fully evaluated to a value before the application can proceed. Since
system H intends to characterize normalization, this means that t must be typed to ensure that
it is normalizing. If the type of t is T then, in principle, x should also be of type T . But by
linearity, 0 is only typable under the empty typing contexts. Assuming that t is a closed term
of type []nat, a type derivation can be given as follows:

t-zero
∅;∅, x : ⊥ ⊢[] 0 : []nat

t-abs
∅;∅ ⊢[] λx.0 : [⊥ → []nat]abs

⊥� []nat
...

∅;∅ ⊢m t : []nat

t-app
∅;∅ ⊢[B]+m (λx.0) t : []nat

Note that ⊥� []nat implies the hypothesis x : ⊥ appears on the typing judgment of 0, while it
forces the argument t on the right premise to be typable. Also, recall that ∅, x : ⊥ is equal to
∅.

Let us now give an example of a type derivation for fixed-point operators, so let t :=
(fix f. λn. if(n,0,m.S(S(f m))))S(0), where the left subterm is a function returning the double
of any natural number: e.g. t computes the double of S(S(0)). Let N := [S([0]nat)]nat, M :=
[0]nat, A := [N → []nat]abs and B := [M → []nat]abs.

A tight type derivation for t follows:

πrec1

t-zero
∅;∅ ⊢[] 0 : M

t-succ
∅;∅ ⊢[] S(0) : N

t-app
∅;∅ ⊢[B,F,IS,B,F,I0] (fix f. λn. if(n,0,m.S(S(f m))))S(0) : []nat

Note that the argument S(0) is typed with the singleton nat-multitype N . This reflects the
single use of S(0), as it corresponds to a single occurrence of n tested for zero equality. Moreover,

190

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

its subterm 0 is assigned the singleton nat-multitype M, since it is bound to a single occurrence
of n which is also tested for zero equality in the base case of the recursive function.

The typing derivation for the left subterm (the fixed-point operator) follows:

πrec1 :=

t-var1

∅;n : N ⊢[] n : N πcond
t-ifSucc

f : {{B}};n : N ⊢[IS,B] if(n,0,m.S(S(f m))) : []nat
t-abs

f : {{B}};∅ ⊢[IS,B] λn. if(n,0,m.S(S(f m))) : A

πrec2

t-fix
∅;∅ ⊢[F,IS,B,F,I0] fix f. λn. if(n,0,m.S(S(f m))) : A

on which the function λn. if(n,0,m.S(S(f m))) must be typed considering that n shall be bound
to S(0), so that n is of type N . Moreover, f is bound to the result of the recursive call, typed
in πrec2:

πrec2 :=

t-var1

∅;n : M ⊢[] n : M
t-zero

∅;∅ ⊢[] 0 : []nat
t-ifZero

∅;n : M ⊢[I0] if(n,0,m.S(S(f m))) : []nat
t-abs

∅;∅ ⊢[I0] λn. if(n,0,m.S(S(f m))) : B
t-fix

∅;∅ ⊢[F,I0] fix f. λn. if(n,0,m.S(S(f m))) : B

This derivation is the one in charge of typing the base case, hence λn. if(n,0,m.S(S(f m))) is
typed considering that n is bound to 0, so that n is of type M. Since πrec2 corresponds to a
base case, there are no right premises in the rule t-fix.

We finish with the derivation of the else branch of the conditional:

πcond :=

t-var2

f : {{B}};∅ ⊢[] f : B
t-var1

∅;m : M ⊢[] m : M
t-app

f : {{B}};m : M ⊢[B] f m : []nat
t-succ

f : {{B}};m : M ⊢[B] S(f m) : []nat
t-succ

f : {{B}};m : M ⊢[B] S(S(f m)) : []nat

here, the term S(S(f m)) represents the result of doubling S(0), which is the normal form of
t. As the normal form is not “used” in any way (i.e. there are no further interactions with the
environment), it is typed with []nat.

3.2 Properties of H
This subsection develops the meta-theory of system H and proves the main results of this work.
We begin by studying basic properties of the typing system, such as relevance and splitting
lemmas. Then, we state auxiliary lemmas to prove soundness for system H, as well as auxiliary
lemmas to prove completeness.

A first remark states that a natural number must be typed with a nat-multitype:

Remark 4. If Φ; Γ ⊢m k : T , then T is of the form N .

Recall that System H is linear so, in particular, all assumptions are used. This property is
known as relevance:

Lemma 5 (Relevance). If π � Φ;Γ ⊢m t : T then dom(Φ) ∪ dom(Γ) ⊆ fv(t).

Proof. The proof is straightforward by induction on π.

191

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

The next lemma establishes the equivalence between two different conditions regarding the
typability of a value. Specifically, it states that a value is typable with a family context, a
typing context, and a multi-counter that are empty if and only if it is typed with an empty
ν-multiset, for any proper nature ν.

Lemma 6. Let v be a value. Then the following are equivalent:

1. Φ;Γ ⊢m v : []ν , where ν = abs if v is an abstraction, and ν = nat if v = k

2. Φ = ∅, Γ = ∅ and m = []

Proof. We prove both items by induction on v. Cases v = λx. t and v = 0 are trivial. Case
v = S(l) is straightforward using the IH.

The following property establishes a form of stability of the subsumption relation concerning
the sum operator.

Lemma 7 (Multitype Splitting Lemma). The following hold:

1. If ⊥� T then T is of the form []ν for some proper nature ν.

2. T ?
1 +T ?

2 �T if and only if there exist multitypes T1, T2 such that T = T1+T2 and T ?
i �Ti

for all i ∈ {1, 2}.

3. +i∈IT ?
i � T if and only if either I is empty and T = []ν for some proper nature ν, or I

is non-empty and there exist multitypes (Ti)i∈I such that T = +i∈ITi and T ?
i � Ti for all

i ∈ I.

The Multitype Splitting Lemma is used to split and merge the type derivation of values:

Lemma 8 (Generalized Value Splitting / Merging). Let I be a finite set, (T ?
i)i∈I a family of

optional multitypes and (Fi)i∈I a family of multitype families. Then the following are equivalent:

1. π � Φ;Γ ⊢m v : T with T a multitype such that +i∈IT ?
i � T

2. There exist family contexts (Φi)i∈I , typing contexts (Γi)i∈I , multi-counters (mi)i∈I and
multitypes (Ti)i∈I such that Φ = +i∈IΦi and Γ = +i∈IΓi and m = +i∈Imi and πi�Φi; Γi ⊢
v : Ti and T ?

i � Ti for all i ∈ I.

3.2.1 Lemmas for Soundness

To show that the type system H is sound, we follow well-known techniques for non-idempotent
types (see [8, 2]). First, a Subject Reduction lemma is established, which is in turn based on
two substitution lemmas: one for each kind of substitution that PCFH has.

Lemma 9 (Value Substitution Lemma). Let ζ �Ψ;∆ ⊢n v : S and let S? be such that S? �S.
If π � Φ;Γ, x : S? ⊢m t : T then there exists a derivation π′ such that π′ � Φ +Ψ;Γ + ∆ ⊢m+n

t{x := v} : T .

Lemma 10 (Substitution Lemma). Let I be a finite set, and (ζi�Ψi; ∆i ⊢ni q : Si)i∈I a family
of type derivations. If π �Φ, x : {{Si}}i∈I ; Γ ⊢m t : T then there exists a derivation π′ such that
π′ � Φ+i∈I Ψi; Γ +i∈I ∆i ⊢m+i∈Ini t{x := q} : T .

192

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

Both substitution lemmas are proved by induction on π.
Now we move to Subject Reduction, which gives preservation of types. Moreover, it also

provides quantitative information in the sense that the multi-counter for typing t′ is smaller
than the multi-counter for typing t, by exactly one element.

Lemma 11 (Subject Reduction). Let t be such that t →ρ t′ and π�Φ;Γ ⊢m t : T . Then there

exist a derivation π′ and a multi-counter m′ such that [ρ] +m′ = m and π′ � Φ;Γ ⊢m′
t′ : T .

Proof. By induction on the derivation of t →ρ t′. We show only cases r-beta and r-fix to see
how the substitution lemmas are applied.

• r-beta. Then t = (λx. s)v →B s{x := v} = t′. The conclusion of π can then only be
derived using rule t-app, so π has the form:

π1 � Φ1; Γ1, x : S? ⊢m1 s : T
t-abs

Φ1; Γ1 ⊢m1 λx. s : [S? → T]abs
(1) S? � S π2 � Φ2; Γ2 ⊢m2 v : S

t-app
Φ1 +Φ2; Γ1 + Γ2 ⊢[B]+m1+m2 (λx. s)v : T

where Φ = Φ1 + Φ2 and Γ = Γ1 + Γ2 and m = [B] + m1 + m2. Given (1), we can apply
Lemma 9 to π1 with π2, yielding π′ � Φ1 + Φ2; Γ1 + Γ2 ⊢m1+m2 s{x := v} : T , and we
conclude with m′ = m1 +m2, since [B] +m′ = [B] +m1 +m2 = m.

• t-fix. Then t = fixx. s →ρ s{x := fixx. s} = t′. The conclusion of π can then only be
derived by rule t-fix, so π has the form:

π0 � Φ0, x : {{Si}}i∈I ; Γ0 ⊢m0 s : T (πi � Φi; Γi ⊢mi fixx. s : Si)i∈I
t-fix

Φ0 +i∈I Φi; Γ0 +i∈I Γi ⊢[F]+m0+i∈Imi fixx. s : T

where Φ = Φ0 +i∈I Φi and Γ = Γ0 +i∈I Γi and m = m0 +i∈I mi. By Lemma 10 on π0

with (πi)i∈I we obtain π′ � Φ0 +i∈I Φi; Γ0 +i∈I Γi ⊢m0+i∈Imi s{x := fixx. s} : T . We let
m′ = m0 +i∈I mi and we conclude since [F] +m′ = [F] +m0 +i∈I mi = m.

3.2.2 Lemmas for Completeness

To show that the type system H is complete, the procedure is analogous to the one to prove
soundness. First, a Subject Expansion lemma is required, which is in turn based on two anti-
substitution lemmas: one for each kind of substitution that PCFH has.

Lemma 12 (Value Anti-Substitution). Let π′�Φ;Γ ⊢m t{x := v} : T . Then there exist family
contexts Φ1, Φ2, typing contexts Γ1, Γ2, multi-counters m1, m2, an optional multitype S? and
a multitype S satisfying:

1. π � Φ1; Γ1, x : S? ⊢m1 t : T

2. ζ � Φ2; Γ2 ⊢m2 v : S

3. Φ = Φ1 +Φ2 and Γ = Γ1 + Γ2 and m = m1 +m2 and S? � S

Lemma 13 (Anti-Substitution). Let π′ � Φ;Γ ⊢m t{x := q} : T . Then there exist a finite
set I, family contexts Φ0, (Ψi)i∈I , typing contexts Γ0, (∆i)i∈I , multi-counters m0, (ni)i∈I and
multitypes (Si)i∈I satisfying:

193

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

1. π � Φ0, x : {{Si}}i∈I ; Γ0 ⊢m0 t : T

2. (ζi �Ψi; ∆i ⊢ni q : Si)i∈I

3. Φ = Φ0 +i∈I Ψi and Γ = Γ0 +i∈I ∆i and m = m0 +i∈I ni

Both anti-substitution lemmas are proved by induction on π.
We can proceed now to show Subject Expansion, which is analogous to Subject Reduction

in Lemma 11. However, it goes in the opposite direction of the reduction relation t →ρ t′: given
a type derivation of t′, it proves that t has the same type as t′.

Lemma 14 (Subject Expansion). Let t →ρ t′ and π′ � Φ;Γ ⊢m′
t′ : T . Then there exist a

derivation π and a multi-counter m such that m = [ρ] +m′ and Φ;Γ ⊢m t : T .

Furthermore, to prove completeness (i.e. normalization implies typability) it is necessary
to show that non-stuck normal forms are typable. As stated in Section 2, the focus is only
on proper normal forms since the stuck ones do not have any meaning, i.e. they represent
computation errors that type systems such as H do not capture.

Lemma 15 (Normal Forms are Typable). Let t ∈ NFν with ν a proper nature. Then Φ;Γ ⊢m

t : T for some m,Φ,Γ, T .

We can even state a stronger result than the previous one, namely that proper normal forms
can be obtained from a tight derivation. Moreover, the multi-counter of such tight derivations
is empty, which is crucial to obtain exact bounds by tight type derivations:

Lemma 16 (Normal Forms are Tight Typable). Let t ∈ NFν with ν a proper nature. Then
∅;∅ ⊢[] t : []ν .

Proof. By induction on the derivation of t ∈ NFν . Recall cases nf-app, nf-succ-stuck and
nf-if do not apply since stuck is not a proper nature.

1. nf-abs. Then t = λx. s ∈ NFabs and indeed ∅;∅ ⊢[] λx. s : []abs by t-abs.

2. nf-zero. Then t = 0 ∈ NFnat and indeed ∅;∅ ⊢[] 0 : []nat by t-zero.

3. nf-succ-nat. Then t = S(s) ∈ NFnat where s ∈ NFnat. By IH on s ∈ NFnat, ∅;∅ ⊢[] s :
[]nat, hence ∅;∅ ⊢[] S(s) : []nat by applying t-succ.

3.2.3 Soundness and Completeness of System H

We now turn to the main results of this paper, which are the properties of soundness and
completeness of H. Both properties give an equivalence between typability and normalization.
The following theorem provides upper bounds for normalization sequences of a given term, for
which no tightness condition is required:

Theorem 17 (Soundness and Completeness of System H with Upper Bounds). Let t be a
closed term, and ν be a proper nature. The following are equivalent:

1. Φ;Γ ⊢m t : T

2. There exists a sequence of steps t = t0 →ρ1
t1 . . . →ρn

tn where tn ∈ NFν and #(m) ≥
#([ρ1, . . . , ρn]).

194

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

Proof.
(1 ⇒ 2) By induction on the size of m, analyzing whether t ∈ NFν or not.

• If t ∈ NFν , then t is of the form λx. s, 0, or S(k), since ν is a proper nature. Hence t can
only be derived by rule t-abs, t-zero, or t-succ respectively. In the three cases, we can
take the empty evaluation sequence and we are done.

• If t /∈ NFν . Then by Proposition 2 it must exist a term t′ and a rule name ρ such that
t →ρ t′. By Subject Reduction there exists m′ such that m = [ρ]+m′, and Φ; Γ ⊢m′

t′ : T .
By IH on m′, there exists a sequence of steps t′ →ρ1 t1 . . . →ρn tn where tn ∈ NFν

and #(m′) ≥ #([ρ1, . . . , ρn]). By joining this sequence with the step t →ρ t′ we obtain
the sequence t →ρ t′ →ρ1

t1 . . . →ρn
tn, where m = [ρ] + m′, and therefore #(m) ≥

#([ρ, ρ1, . . . , ρn]).

(2 ⇒ 1) By induction on n.

1. n = 0. Then t ∈ NFν , and we conclude with Φ; Γ ⊢m t : T by Lemma 15.

2. n > 0, assuming the property holds for n−1. Taking the reduction sequence of (n−1) steps
from t1 to tn, and #(m′) ≥ #([ρ2, . . . , ρn]) we can apply the IH, yielding Φ; Γ ⊢m′

t1 : T .
Since t →ρ1

t1, then Φ; Γ ⊢m t : T by Subject Expansion, with m = [ρ1] + m′, so we
conclude with #(m) ≥ #([ρ1, ρ2, . . . , ρn]).

Soundness and completeness of system H restricting type derivations to tight ones provide
exact bounds for normalization sequences of a given term:

Theorem 18 (Tight Soundness and Completeness of System H). Let t be a closed term, and
ν be a proper nature. The following are equivalent:

1. ∅;∅ ⊢m t : []ν with π a tight derivation

2. There exists a sequence of steps t = t0 →ρ1
t1 . . . →ρn

tn where tn ∈ NFν and m =
[ρ1, . . . , ρn].

Proof. Follows the same structure as in Theorem 17, mutatis mutandis.
To summarize the proof, we start with soundness (1 ⇒ 2): in the case where t ∈ NFν , we

know that t must be a value, hence the typing derivation ∅;∅ ⊢m t : []ν of the hypothesis must
be such that m = [] by Lemma 6. To prove completeness (2 ⇒ 1), we resort to the stronger
Lemma 16, rather than just to Lemma 15, to ensure that we can construct a typing derivation
of the form ∅;∅ ⊢[] t : []ν .

4 Conclusions

This paper proposes a quantitative study of a hybrid evaluation strategy for PCF, called PCFH,
without relying on any encoding of natural numbers or fixed-point operators.

Our key contribution is a quantitative semantics for PCFH, by means of a non-idempotent
intersection type system called H, which is sound and complete with respect to the strategy.
System H highlights the hybrid nature of the PCFH semantics, in the sense that CBN and CBV
quantitative behaviors coexist within the same framework. Moreover, not onlyH provides upper
bounds for the length of evaluation sequences to normal form, but we also achieve exact bounds
by refining the typing derivations of H to those that are tight.

195

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

Frameworks such as CBPV or the Bang Calculus are able to encode both CBN and CBV co-
hesively, by distinguishing values from computations, instead of exhibiting explicitly the hybrid
behavior they have. Therefore, it would be worth studying whether PCFH can be embedded
into such calculi.

An interesting question is whether the quantitative information of other hybrid settings can
be expressed using type systems such as H. Another question for future work is the study of
the inhabitation problem in a hybrid-type setting, which we conjecture to be decidable, given
that it was already proven to be decidable in CBN [7], CBV, and CBPV [4].

References

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF. Inf.
Comput., 163(2):409–470, 2000.

[2] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. J. Funct. Program., 30:e14, 2020.

[3] Beniamino Accattoli and Giulio Guerrieri. Types of fireballs. In Sukyoung Ryu, editor, Program-
ming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand,
December 2-6, 2018, Proceedings, volume 11275 of Lecture Notes in Computer Science, pages
45–66. Springer, 2018.

[4] Victor Arrial, Giulio Guerrieri, and Delia Kesner. Quantitative inhabitation for different lambda
calculi in a unifying framework. Proc. ACM Program. Lang., 7(POPL):1483–1513, 2023.

[5] Pablo Barenbaum, Delia Kesner, and Mariana Milicich. Hybrid intersection types for pcf (extended
version). CoRR, abs/2404.14340, 2024.

[6] Antonio Bucciarelli, Delia Kesner, Alejandro Ŕıos, and Andrés Viso. The bang calculus revisited.
Inf. Comput., 293:105047, 2023.

[7] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. The inhabitation problem
for non-idempotent intersection types. In Josep Dı́az, Ivan Lanese, and Davide Sangiorgi, editors,
Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014,
Rome, Italy, September 1-3, 2014. Proceedings, volume 8705 of Lecture Notes in Computer Science,
pages 341–354. Springer, 2014.

[8] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for the
lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017.

[9] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD thesis, Ecole
Doctorale Physique et Sciences de la Matière (Marseille), 2007.

[10] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Log., 21(4):685–693, 1980.

[11] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersection
types. CoRR, abs/0905.4251, 2009.

[12] Gilles Dowek and Jean-Jacques Lévy. Introduction to the Theory of Programming Languages.
Undergraduate Topics in Computer Science. Springer, 2011.

[13] Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégielski and Arnaud
Durand, editors, Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual
Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of
LIPIcs, pages 259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[14] Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Peter Thiemann, editor,
Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in
Computer Science, pages 202–228. Springer, 2016.

196

Hybrid Intersection Types for PCF Barenbaum, Kesner, and Milicich

[15] Thomas Ehrhard. A coherent differential PCF. Log. Methods Comput. Sci., 19(4), 2023.

[16] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus generaliz-
ing call-by-name and call-by-value. In James Cheney and Germán Vidal, editors, Proceedings of the
18th International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 174–187. ACM, 2016.

[17] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic PCF.
J. ACM, 65(4):23:1–23:44, 2018.

[18] Philippa Gardner. Discovering needed reductions using type theory. In Theoretical Aspects of
Computer Software, pages 555–574. Springer, 1994.

[19] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[20] Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value computation. Theor.
Comput. Sci., 221(1-2):393–456, 1999.

[21] Delia Kesner and Andrés Viso. Encoding tight typing in a unified framework. In Florin Manea and
Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022,
February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages
27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[22] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,
Typed Lambda Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila, Italy,
April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in Computer Science, pages 228–242.
Springer, 1999.

[23] Robin Milner. Fully abstract models of typed lambda-calculi. Theor. Comput. Sci., 4(1):1–22,
1977.

[24] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

[25] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5(3):223–
255, 1977.

197

	Introduction
	The PCFH calculus
	A Quantitative Type System for PCFH
	The Type System H
	Properties of H
	Lemmas for Soundness
	Lemmas for Completeness
	Soundness and Completeness of System H

	Conclusions

