

Customized Intrusion Detection Based on a
Database Audit Log

Thomas Le, William Mitchell, and Behnam Arad

California State University, Sacramento
TLe@dir.ca.gov, mitchell@ecs.csus.edu, arad@csus.edu

Abstract

 The Internet enables world-wide communication for all areas of human activity. To deal with the
massive data involved, companies deploy database products such as Oracle® Database, MySQL,
Microsoft® SQL Server, and IBM® DB2. Databases are continuously under attack by intruders who
probe for valuable customer and corporate information. Commercial databases have auditing support
that facilitates after-the-fact review and analysis of data access. However, audit data collected has
vendor-specific structure and content. Tools are needed to optimize response to security incidents and
to proactively mine audit logs for vulnerabilities. This paper1 demonstrates some database-
independent techniques aimed toward automating the management of a site’s audit information.

Keywords: Database audit, Oracle® database, security, intrusion detection, incident tracking,
reporting.

1. Introduction

 This paper presents a utility that integrates the built-in Oracle® audit package with an Oracle®
task/job scheduler named DBMS_scheduler in order to improve the effectiveness of database auditing.
The built-in Oracle® auditing process is complex and has some practical limitations. The auditing
logs are read-only data dictionary views, and the built-in security restrictions prohibit the use of
triggers on those views. The proposed utility automatically extracts and processes targeted log data
without affecting the built-in audit at all.

 The Oracle® auditing features are very rich and powerful. However, they can be complicated and
hard to use. Database administrators (DBAs) must set polices and manually perform audit analysis.
Data collected and recorded in Oracle® audit logs are extensive but cannot be used to create custom

1 This paper is based on Thomas Le’s Master of Science Project
report. For details, please refer to [1]

EPiC Series in Computing

Volume 58, 2019, Pages 117–126

Proceedings of 34th International Confer-
ence on Computers and Their Applications

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 117–126

security alerts. Audit records are stored in SYS.AUD$, SYS.FGA_LOG$, and system logs. Subsets of
18 views must be queried. Suspicious activities can be easily overlooked. Moreover, data logs from
these views are read-only; therefore, event triggers cannot be used. Oracle® and other databases
prohibit the use of triggers on crucial internal tables; in addition, the resources used must be
considered. Triggers, custom reports, and stored procedures derived from SYS.AUD$ and
SYS.FGA_LOG$ can present significant overhead.

Figure 1: ORA-04089: cannot CREATE triggers on object owned by SYS [1]

 An important objective of this work is to be able to efficiently collect and report the audit information
from SYS.AUD$ and SYS.FGA_LOG$ on adaptive schedules. Another objective is to overcome
Oracle®’s restriction on placing triggers on these audit records.

 In this paper we use a hypothetical school database schema called GRADE_DEPOT to evaluate the
proposed utility. It includes tables representing classes that are being taught at a school. Chem301
and Physics101 are two such classes with Name, ID, and Grade as columns.

 It is the job of the school’s DBA to keep the database and its contents secured and safe. The DBA
relies on custom audit reports and security alerts to monitor the database for suspicious login attempts
and unauthorized modifications of each database object.

 In this work, we developed several custom report logs. The reports are covered in detail in [1]. We
provide a summary here. There are two predefined log tables called SYS.access_report and
dba_access_report, intended to store all database login attempts. All data manipulation language
(DML) and data definition language (DDL) statements are reported to SYS.Gen_report and
dba_gen_report. Four tables called dba_grade_depot, dba_access_alert, dba_grade_log, and
dba_grade_log2 track all changes made to the grade column of the audit object and the failed login
attempts. With these custom reports, the DBA can create custom alert reports related to database
security policy. If failed login attempts for a user exceed a threshold, the DBA is alerted. A printed
message including the user name, the terminal used, and the number of failed login attempts is
generated.

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

118

 The audit policy includes the monitoring of all logins (successful or otherwise) to the database along
with all DML and DDL actions (CREATE, TABLE, DROP, INSERT, UPDATE, DELETE, and ALTER
table). If an UPDATE statement is executed on the object, the old value as well as the new value are
reported. Furthermore, the exact SQL statements are captured.

 The rest of the paper is organized as follows. Section 2 covers some background material on
Oracle® database. The proposed utility is described in Section 3. Some test results and analysis are
presented in Section 4. Conclusions appear in Section 5.

2. Background

 We provide an overview of Oracle® database and its features used in this work. Oracle® Database,
also known as Oracle® DBMS, is an object-relational database management system. It is developed
and marketed by the Oracle ® Corporation. Please refer to [2] for detailed information.

 Oracle® 11g Express Edition (Oracle® Database XE), release 11.2.0.1.0-64 bit, is used for the
development of this utility. Oracle® Database 11G-XE is selected as it provides real application
testing options, PL/SQL stored procedures, and DML triggers. It also includes the standard Oracle®
audit subsystem that is the information base for this utility. Please see [3]-[4] for more details.

It is important to recognize that Oracle® Database XE is a reduced version of Oracle® Database
Enterprise Edition. An application that works on Oracle® Database XE, will work on Oracle®
Database Enterprise Edition, but not vice versa. The “Enterprise Edition contains all the components
of Oracle® Database [4].” It provides “the performance, availability, scalability, and security required
for mission-critical applications such as high-volume online transaction processing (OLTP)
applications, query-intensive data warehouses, and demanding Internet applications [4].”

 Safe and secure database practices such as security configuration of the database, enabling Oracle®
data dictionary protection, and enforcing password management are not within the scope of this work.
Oracle® Database 2 Day + Security Guide is an excellent reference for Oracle® Database Security
[9]. Its Checklist White Paper “provides guidance on configuring the Oracle® Database based on
security best practices for operational database deployments [5].”

 Oracle® Database Express Edition Licensing Information [8] contains a comprehensive list of
features that are available with Oracle® Database XE.

 Oracle® 3GL (PL/SQL) is a database programming language that was developed by Oracle®.
PL/SQL is an imperative 3GL that was “designed specifically for the seamless processing of SQL
commands. It provides specific syntax for this purpose and supports exactly the same datatypes as
does Oracle SQL. Server-side PL/SQL is stored and compiled in Oracle® Database and runs within
the Oracle® executable. It automatically inherits the robustness, security, and portability of Oracle®
Database [6].”

 According to Oracle®, “auditing is the monitoring and recording of selected user database actions.
[7]”. It is used investigate suspicious activity and to monitor and gather data about specific database
activities [7].

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

119

 Oracle® supports three types of auditing: regular audit, fine-grained audit, and common audit
(combination of regular and fine-grained audit). Once enabled, Oracle® audit can track actions on a
specified schema, its objects, and users’ login/logoff information. Statement audit audits DDL and
DML SQL statements, such as SELECT, CREATE, UPDATE, DELETE, and DROP. Privilege audit
audits the use of the target privilege. Audit records can be stored in either a data dictionary table, called
the database audit trail, or an operating system audit trail. The database audit trails for fine-grained
and regular audits are reported to FGA_LOG$ and SYS.AUD$ tables, respectively. These tables are in
the SYS schema of each Oracle® database data dictionary.

3. The Proposed Utility

3.1 Design

 The automation aspect of the proposed utility is achieved by utilizing Oracle® DBMS_scheduler.
The utility consists of two schedulers that run independently. While one scheduler gathers data from
Oracle®’s pre-defined audit views on a pre-set schedule, the other manipulates the gathered data and
generates audit reports and security alerts.

 The trigger mechanism is an important component. For example, when the grade column of our
student table is audit-enabled, any change in that column will trigger a notification to the DBA. This
is because we create triggers on audit data extracted from AUD$ and FGA_LOG$. Our extracted data
are updated only when SYS.AUD$ and SYS.FGA_LOG$ change.

 Oracle® prohibits the creation of triggers on the tables (objects) that are owned by SYS. In addition,
it is a good database practice that one performs DBA routines using a separate account with DBA
privileges granted by SYS [5]. This utility uses a separate schema with full DBA privileges named
DBA_ADMIN to monitor the database.

 Our system design considers the resources used by the triggers and the copy and update of the audit
records, especially for huge audit content. Performance considerations involve efficient trigger
execution (with resistance to excessive trigger use), data extraction with well thought out SQL, stored
procedures, and cursor processing between the Oracle® audit and our system. Figure 2 outlines the
process structure of the proposed system.

3.2 Code

 We comment on important aspects of the code developed for the utility. Please refer to [1] for the
complete source code.

 Audit features need to be enabled as Oracle® audit is disabled by default. Here is how to enable
auditing and save audit records to the database audit trail:

SQL> ALTER SYSTEM SET audit_trail=db SCOPE=SPFILE;

The database needs to be re-started for the change to take effect as follows:

SQL> SHUTDOWN immediate

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

120

Here is how to restart the database instance:

SQL> STARTUP

 Once audit is enabled, audit policies (audited actions) need to be specified. In this case, the audit
policy calls for AUDIT CREATE SESSION, which monitors failed/successful login attempts, as well
as DML and DDL statements on schema GRADE_DEPOT.

Oracle

Audit Facility

Regular
Audit

FineGrainAudit Common
Audit

Oracle DBMS_Scheduler Package
PL/SQL

Custom Alerts

Custom Reports

Figure 2: System Process Diagram [1]

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

121

 Below is the sequence to specify the audit policies once enabled:

CONNECT sys/password AS SYSDBA
SQL>AUDIT ALL BY GRADE_DEPOT BY ACCESS;
SQL>AUDIT CREATE SESSION WHENEVER NOT SUCCESSFUL;
SQL>AUDIT CREATE SESSION WHENEVER SUCCESSFUL;SQL>AUDIT SELECT TABLE,
UPDATE TABLE, INSERT TABLE, DELETE TABLE BY GRADE_DEPOT BY ACCESS;

 For fine-grained audit, to audit the grade column, the policy can be set using a PL/SQL built-in
package as follows:

CONN sys/password AS SYSDBA
SYS>
BEGIN
 DBMS_FGA.add_policy(
 object_schema => 'GRADE_DEPOT',
 object_name => 'physics101',
 policy_name => 'check_grade',
 audit_condition => ' ',
 audit_column => 'GRADE');
END;

 The utility uses two schedulers. The first scheduler consisting of scheduler_api_sys.sql and
scheduler_run_sys.sql operates using the SYS schema. The sole purpose of this scheduler is to
automatically collect and update the two master custom log tables, gen_report and access_report. In
the DBA_ADMIN schema, the second scheduler consisting of scheduler_api_dba.sql and
scheduler_run_dba.sql generates specific jobs and programs according to the audit policy.

 Some of these jobs and programs generate and update the predefined custom log tables, while others
manipulate the data and print custom security reports. In addition, in the DBA_ADMIN schema, a
series of triggers are set on these custom log tables.

 It is worth mentioning that these custom logs have many table columns occurring in the 18 pre-
defined views in Oracle® audit package. DBA_ACCESS_ALERT holds all failed login information.
DBA_GEN_REPORT contains all DDL and DML statements performed on the audit schema objects,
and so on.
Oracle® defines a trigger as “a named PL/SQL unit that is stored in the database and executed (fired)
in response to a specified event that occurs in the database [10].” Therefore, data access or other
audited action is required for the triggers to be defined on these tables. Explicit cursors are used to
fetch into temporary tables in schema DBA_ADMIN the data on which triggers are created.

 The schedulers used in this work are implemented with built-in Oracle package dbms_scheduler.
This package enables creation and execution of jobs that extract oracle audit content into the privileged
schema DBA_ADMIN. Extraction is accomplished by executing standard SQL user-defined cursors
for row-at-a-time extraction. The jobs are usually database stored procedures, but in the Oracle case,

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

122

could also be other kinds of modules. The additional two schedulers generate the jobs that create
reports and alerts using DML SQL triggers.

 Our proposed scheduling/extraction approach forms a database-independent audit post-processor.
However, database systems vary considerably regarding the details of scheduling flexibility,
extraction options, data storage organization and access method support. Database dependencies arise
at this level of detail.

 For example, an intense database workload, thus high auditing rate, might result in audit data
extraction becoming an operational bottleneck. As pointed in Section 3.1, this would limit scalability
of our approach. To deal with this, a given database system might or might not provide advanced
cursor capabilities such as bulk (not row-at-a-time) extraction, shared cursors, parallelizability of the
SQL engine, and so on. Moreover, SQL execution efficiency and scalability ultimately depend on the
SQL query optimizer. Specifically, the ability of the optimizer to quickly determine the least-cost
execution plan for SQL statements is database system dependent. We note that relational database
vendor SQL query optimizer capabilities vary considerably.

3.3 Test

 The utility was tested on Oracle® Database version 11g Express Edition. We performed incremental
life cycle and unit testing. The tests were based on a hypothetical schema called GRADE_DEPOT
including two objects, CHEM301 and PHYSICS101. Each one has three columns namely NAME, Id,
and GRADE. Our verification of the proposed utility covered the test cases listed in Table 1.

Table 1: Test cases for validating the Proposed Utility

Complete test results are provided in [1] (Figures 5 – 15). Here, we provide two of the figures
illustrating our testing. Figure 3 illustrates the audited actions. Figure 4 shows the exact information
from the custom log table, gen_report.

Verification Test Cases
Independent operation of both schedulers
Correct data collection from Oracle audit views
DBA_ADMIN schema’s scheduler executing all the jobs and programs as scheduled
Validity of information from the custom log table, gen_report
UPDATE, DELETE, and DROP TABLE commands
All the custom log tables being updated correctly
Proper functionality of Event triggers to alert the database administrator of suspicious activity
Correct generation of security alert and audit report when failed login attempts exceed a threshold
Functionality of DML statement audit alert and reporting

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

123

Figure 4: Custom log table, gen_report, showing the same audited actions [1]

Figure 3: Oracle’s dba_audit_trail view showing audited actions [1]

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

124

 4. Results and Analysis

 The test results show that the utility effectively monitors the database. Working independently of
one another, both schedulers in the utility work as expected. The scheduler in SYS schema correctly
collects the information from the corresponding Oracle® audit, AUD$. We verified that the correct
data are collected from Oracle® audit views. DBA_ADMIN schema’s scheduler also executes all the
jobs and programs as scheduled. All the custom log tables are updated with their respective data types.
Event triggers that alert the database administrator of suspicious activity are working properly. They
fire when conditions in the specific tables met the preset security policy. Test results show that the
correct security alert and audit report are generated once the failed login attempts exceed the threshold
of two failed attempts. DML statement audit alert and report also work.

 This paper does not include performance analysis (via benchmarks) of audit log data extraction.
Alerts can be implemented in near real time using triggers as database audit record inserts occur.
Alternatively, if triggers are not deployed, alerts can be deferred until stored procedures are executed
on extracted audit. Choosing between triggers and stored procedures depends on how quickly a site
wishes to generate alerts as well as site security policy requirements.

 Experience with very large databases having significant data modification rates suggests that triggers
should be used with caution [11]. This applies especially for systems with significant concurrent table
processing since triggers add overhead to transactional data changes. However, our use of triggers
occurs in only one security administration process associated with audit extraction. Thus, concurrency
is not a cost factor for our configuration of one centralized database and its audit.

 There remains the question of the relative speed of the trigger approach. Testing on VMware virtual
machines running Redhat Centos version 6 with identical Oracle 11g release 2.0.1.0 (4 GB memory,
Intel(R) Xeon(R) CPU, E5620 @ 2.40GHz, 12 MB cache size (as reported from /proc/cpuinfo)) yields
typical results. For example audit extractions of 55,500 rows and 918,843 rows, respectively, the
triggered executions took more than 3 times the elapsed time taken by stored procedures using row-
at-a-time cursors. In both cursor scenarios, the additional overhead of creating tables used by the stored
procedure was included. This table creation step contributes increasingly diminished cost for
increasing table size compared with stored procedure execution time on extracted audit...

 Although the above elapsed time comparisons do not address scalability for increasing audit
extraction sizes, they confirm that generating alerts via triggers has acceptable, albeit it, significant
overhead. However, a site with high audit rate would require database-specific optimizations when
the trigger approach become a performance bottleneck. In relational databases, speed improvements
depend on support for SQL bulk (not row-at-a-time) row insert, SQL statement parallelization, query
optimization sophistication, and available physical storage options such as multi-level table and index
partitioning. The tradeoff is between using triggers and priority of timely alert creation.

 We note in passing that commercial grade database audit toolkits are gradually becoming available
[2]. As is the case with many management aspects of full-featured database systems, the audit
component of a system install is usually treated as a black box [13]. However, we have illustrated (for
Oracle database) how to build a customized audit enhancement while leaving the native audit
subsystem untouched.

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

125

5. Conclusions

 Audit logging is commonly used in database systems for monitoring security. However, even for
relational databases, audit content is not standardized among databases. In addition, individual sites
using the same database product usually need customized audit functionality. This paper outlines a
process architecture for customized auditing that has some measure of database independence. The
approach uses task and job scheduling that accesses and manipulates a given database’s audit log.
Such tasks deal with policy compliance, reporting, log mining/analysis, and security incident handling.
The level of database independence supported by our task structure depends on isolating database-
specific dependencies and task modularity achievable on a given database system. This paper
demonstrates reporting and incident tracking of specified audited actions by ordinary Oracle®
database users. Customization is applied to audit data sets extracted from the actual database audit log.
This approach leaves the internal Oracle® audit log untouched.

References

[1] Thomas Le, Customized Intrusion Detection Based on a Database Audit Log, MS Project Report,
California State University, Sacramento 2014.
[2] Oracle® Database Concepts 10g Release 2 [Online].
Available:http://docs.Oracle®.com/cd/B19306_01/server.102/b14220/intro.htm
[3] Oracle® Database 12c White Paper (2013, June)
[Online].Available:http://www.Oracle®.com/technetwork/database/Oracle®-database-editions-wp-
12c-1896124.pdf?ssSourceSiteId=ocomen
[4] Oracle® Database Licensing Information 11g Release 2 [Online]. Available:
http://docs.Oracle®.com/cd/E11882_01/license.112/e47877/editions.htm#DBLIC109
[5] Oracle® Database Security Checklist White Paper (2008, June) [Online]. Available:
http://www.Oracle®.com/technetwork/database/security/twp-security-checklist-database-1-
132870.pdf
[6] Oracle® Database 12c [Online]. Available:
http://www.Oracle®.com/technetwork/database/features/plsql/index.html
[7] Oracle® 9i Database Concepts Release 2 [Online].
Available:http://docs.Oracle®.com/cd/B10500_01/server.920/a96524/c25audit.htm 66
[8] Oracle® Database Express Edition 11g [Online].
Available:http://docs.Oracle®.com/cd/E17781_01/license.112/e18068.pdf
[9] Oracle® Database 2 day + Security Guide [Online].
Available:http://docs.Oracle®.com/cd/B28359_01/server.111/b28337.pdf
[10] Oracle® Database PL/SQL Language Reference 11g
Release[Online].Available:http://docs.Oracle®.com/cd/B28359_01/appdev.111/b28370/triggers.htm
#LNPLS020
[11] Tom Kyte, ‘The Trouble with Triggers’, , Oracle Corporation, Oracle Magazine, Sept/Oct 2008
[2] P. Finnigan, ‘Delete from AUD$, P. Finnigan’s Oracle Security Weblog, February 2017
[13] ‘db2audit – Audit facility administrator tool command’, IBM Db2 11.1,
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.adm
in.cmd.doc/doc/r0002072.html

Customized Intrusion Detection Based on a Database Audit Log T. Le et al.

126

http://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm
http://www.oracle.com/technetwork/database/oracle-database-editions-wp-12c-1896124.pdf?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/database/oracle-database-editions-wp-12c-1896124.pdf?ssSourceSiteId=ocomen
http://docs.oracle.com/cd/E11882_01/license.112/e47877/editions.htm#DBLIC109
http://www.oracle.com/technetwork/database/security/twp-security-checklist-database-1-132870.pdf
http://www.oracle.com/technetwork/database/security/twp-security-checklist-database-1-132870.pdf
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://docs.oracle.com/cd/B10500_01/server.920/a96524/c25audit.htm%2066
http://docs.oracle.com/cd/B28359_01/server.111/b28337.pdf
http://docs.oracle.com/cd/B28359_01/appdev.111/b28370/triggers.htm#LNPLS020
http://docs.oracle.com/cd/B28359_01/appdev.111/b28370/triggers.htm#LNPLS020
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.cmd.doc/doc/r0002072.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.cmd.doc/doc/r0002072.html

