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Abstract 
 
A multi-omics dataset combining clinical features with the discovery of biomarkers could contribute 
significantly to the timely identification of mortality risk and the development of personalized therapies 
for a wide range of diseases, including cancer and stroke. As well, new advances in ‘‘omics’’ 
technologies can open up a lot of possibilities for researchers to find disease biomarkers through system-
level analysis. Machine learning methods, especially based on tensor decomposition methods (TD-
based), are becoming more popular because the integrative analysis of multi-omics data is challenging 
due to biological complexity. Therefore, it is important to identify future research directions and 
opportunities on the topic of biomarker discovery using tensor decompositions in multi-omics datasets 
by integrating literature reviews. This article systematically reviews the research trends from 2015 to 
2022. Several themes are discussed, including challenges and problems of developing and applying 
tensor decompactions, application areas for biomarker discovery in ‘‘omics’’ datasets, proposed 
methodologies, key evaluation criteria used in deciding whether the new methods are effective, and the 
limitations and shortcomings of this field, which call for further research and development. This review 
helps researchers who are interested in this field understand what research has already been done and 
where potential areas for future research might lie. 
 
I. INTRODUCTION 
 
Biomarkers are biological molecules that are indicative of normal or abnormal processes, such as 
disease states or responses to treatments. These biological molecules may be found in any type of 
organism by sampling tissue and body fluids followed by biochemical analysis. The development of 
high throughput methods has facilitated an explosion of research in this field. When combined with 
clinical data, the resulting information can be used for earlier detection of diseases and the development 
of personalized therapies. Moreover, new developments in ‘‘omics’’ technology provide researchers 
the chance to look for disease biomarkers at the system level [1]. A Tremendous amount of work has 
gone into discovering disease-associated biomolecules by analyzing data obtained from different 
‘‘omics’’ experiments (genomics, transcriptomics, metabolomics). However, due to the complexity of 
biological systems and the poor integration of various forms of ‘‘omics’’ data, integrative analysis of 
multi-omics data is a difficult undertaking. Various feature selection procedures have been shown to 
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provide different sets of biomarkers [2]. A classic approach to biomarker selection comprises statistical 
approaches such as the Student’s t-test and ANOVA, which find and choose biomolecules with a 
significant change in expression level between separate biological groups (normal vs. disease; untreated 
vs. treated). One clear disadvantage of these methods is that they ignore the fact that biomolecules in a 
biological system are densely interconnected and interact with one another. Integrated analysis using 
tensor decompositions of data from many sources has recently demonstrated the ability to improve 
knowledge discovery. In metabolomics, for example, biological fluids such as blood or urine are 
examined using various analytical techniques to find molecules associated with specific diseases or 
diets [3]. A joint factorization problem has been developed for the topic of data fusion [3]. Data from 
many sources can be represented as several matrices, which can then be evaluated jointly using tensor 
decomposition methods. The tensor factorization has also been found to be effective in other domains, 
including social network analysis [4-8], signal processing [9,10], and bioinformatics [11-13]. Also, 
coupled tensor decomposition methods have been developed and employed in chemometrics [14], 
bioinformatics [11,12], signal processing [9,15,16], and data mining [17,18]. With the introduction of 
high throughput technology capable of extensive analysis of genes, transcripts, proteins, and other 
significant biological molecules, the identification of molecular markers of disease processes has 
become a reality on a scale never before seen. It has, however, made it more difficult to extract relevant 
molecular markers of biological processes from these complex datasets. The process of biomarker 
discovery and characterization allows for more sophisticated approaches to integrating purely statistical 
and expert knowledge-based approaches, and tensor decompositions provide a great opportunity to aid 
in the interpretation of such interactions and the identification of reliable biomarkers [19]. There are 
several review papers on biomarker discovery using tensor decompositions published in the last few 
years [20], [21]. 
This paper reviews research in this area from 2015 to 2022 to provide useful insights into the recent 
advances in biomarker discovery using tensor decompositions and suggests future research directions. 
The challenges, drawbacks, and new opportunities that have arisen due to the availability of more multi-
omics data and information have called for studies on developing tensor decomposition methods to 
detect biomarkers in recent years. Figure 1 shows the number of publications that use tensor 
decompositions for biomarker detection or deal with biomarker discovery challenges published between 
2015 and early 2022. 
 

 
 

Fig.1. Number of papers from 2015 to 2022 
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II. SYSTEMATIC REVIEW 
 
The first step in this systematic review was to define the goals of the survey. These goals are described 
as follows.  
• Identifying the problems and challenges regarding the biomarker discovery in multi-omics 
datasets by tensor decompositions. 
• Identifying algorithms and methodologies employed to solve these problems and their 
challenges. 
• Identifying areas of application for biomarker discovery in multi-omics datasets. 
• Identifying evaluation criteria used to evaluate developed TD-based methods. 
 
In this systematic review, we first searched the literature for publications using scientific search engines 
and collected databases of publications. The search query used was (“biomarker” AND “discovery”) 
AND (“multi-omics”) AND (“tensor” AND “decompositions”). This search query was used on several 
databases including IEEE Xplore, ACM Digital Library, Lynda.com, ScienceDirect, and SpringerLink. 
Then, the selected publications were studied, and the information was used to answer the main questions 
of this systematic review.  
 
III. INTEGRATING MULTI-OMICS DATASETS: OPPORTUNITIES AND 
CHALLENGES  
 
Developing computational models to discover potential biomarker-disease connections in multi-omics 
data, which could provide insight into disease pathophysiology and improve illness diagnostic and 
prognostic accuracy, is gaining popularity. The recent introduction of effective and low-cost screening 
technologies has resulted in massive amounts of biological data, paving the door for a new era of 
treatments and customized medicine [22,23]. Clinical information and ‘‘omics’’ data can be acquired 
directly from databases or collected through screening technologies for disease [24], class prediction 
[25], biomarker identification [26], disease subtyping [24], better system biology understanding [27], 
drug repurposing, and other applications. Each ‘‘omics’’ data type is specific to a single "layer" of 
biological information, such as genomics, epigenomics, transcriptomics, proteomics, or metabolomics, 
and provides a complementary medical perspective of a biological system or an individual [22].  
1) Integration analysis of multi-omics datasets:  
Single-omics investigations were previously conducted to discover the causes of diseases to help design 
or pick a suitable treatment. Most diseases, on the other hand, involve complicated molecular pathways 
in which distinct biological layers interact with one another. Therefore, there is a greater demand for 
biomarker discovery in multi-omics investigations that can incorporate several layers and provide a 
fuller picture of a particular phenotype [28]. Faint patterns in gene expression data can be enhanced by 
several ‘‘omics’’ [29]. For example, complementary information can be exploited to better explain 
classification results [30], improve prediction performances [31,32], or comprehend complex molecular 
pathways [33]. Multi-omics studies, on the other hand, comprise data of varying type, scale, and 
distribution, with thousands of variables and only a few samples. Furthermore, biological datasets are 
complicated and noisy, with the possibility of errors due to measurement errors or unique biological 
variances. Finding relevant information and incorporating the ‘‘omics’’ into a useful model is difficult, 
and several methods and tactics have been developed in recent years to address this difficulty [24,34]. 
As a result, researchers are seeking approaches that, by adding additional ‘‘omics’’ data, result in an 
increase in performance rather than simply increasing the complexity and processing time of the task. 
2) Challenges of multi-omics datasets: 
When integrating multi-omics datasets, several obstacles occur. Some of these, such as the existence of 
missing values or class imbalance, are general to machine learning analysis.  When working on rare 
events, such as an uncommon attribute in a population, class imbalance occurs when the distribution of 
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classes in the learning data is biased. This problem can be solved using a variety of strategies, including 
sampling and cost-sensitive learning. Sampling tries to balance the dataset before the integration 
process, where either the majority class is randomly under-sampled, or the minority class is 
oversampled by creating new artificial observations, or a combination of both methods. Cost-sensitive 
learning is directly integrated into the algorithm and balances the learning process by giving more 
weight to misclassified minority observations [35,36]. Some are more specific and include the noisiness 
and complexity of ‘‘omics’’ datasets, which naturally occur in biological data. Relevant patterns can 
occasionally be obscure and involve a large number of molecules from various ‘‘omics’’ layers. 
Therefore, identifying those patterns across numerous datasets is a challenging endeavor. Furthermore, 
due to financial constraints, the rarity of the desired phenotype, a lack of willing volunteers, etc., the 
collection of substantial volumes of biomedical data is frequently only possible on a small sample of 
patients when conducting ‘‘omics’’ or multi-omics investigations. This results in datasets with several 
variables greatly exceeding the number of samples. Machine learning algorithms have a propensity to 
overfit these high-dimensional datasets, which reduces their generalizability to new data. This problem 
is known as the ‘‘curse of dimensionality’’ [36]. Another difficulty is their heterogeneity, which must 
be handled properly because various ‘‘omics’’ methodologies may provide data with varying 
distributions of types (e.g., numerical, categorical, continuous, discrete, etc.). Furthermore, ‘‘omics’’ 
datasets can vary greatly in size (number of features), with a typical gene expression dataset having tens 
of thousands of variables and a metabolomics dataset having only a few thousand. Disparities between 
‘‘omics’’ datasets might impede integration and create an imbalance in the learning process [37]. 
Scalability is an additional technical issue regarding multi-omics datasets. The scope of genomics 
research has been broadened from a narrow single-layer examination to a comprehensive multi-
dimensional interpretation of biological data as a result of the accessibility of these massive 
multidimensional and heterogeneous datasets. To create rich, multi-scale characterizations of biological 
systems, the emphasis is on combining various forms of omics data from many layers of biological 
regulation. However, it necessitates systems that can scale across heterogeneous datasets while also 
centralizing data processing analysis, and interpretation inside a unified inference framework [38-40].  
Therefore, developing a quick and effective method that can compute tensor decompositions of larger 
quantities of data would lead to more effective biomarker discovery in multi-omics datasets. Figure 2 
shows the number of papers that deal with specific problems in biomarker discovery in multi-omics 
datasets: the curse of dimensionality, scalability, and noisiness problems. Typically, these papers 
describe the development of procedures that perform better. While these issues are still being researched 
to improve biomarker identification in multi-omics datasets, data heterogeneity necessitates a more 
thorough investigation. 

 

Fig.2. Number of studied dealing with a specific problem in biomarker discovery in multi-omics dataset 
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IV. METHODOLOGIES 
 
In this section, we review the approaches and methodologies that are used in the literature on biomarker 
discovery in multi-omics datasets by tensor decompositions.  
A. Parallel Factor Analysis 
Parallel Factor Analysis (PARAFAC) is a popular tensor decomposition method that is widely used in 
biomarker discovery in multi-omics datasets. It is a method for decomposing multidimensional arrays 
to focus on the aspects of interest and provide a clear illustration of the results. PARAFAC is based on 
a mathematical model that depicts the interactions of the dimensions to be evaluated in the input data. 
The analysis dimensions must be defined before performing PARAFAC. Each input value can then be 
related to an index for each of the dimensions. Assuming N=3 dimensions, for example, 𝑥ijk identifies 

the measured value for index 𝑖 in the first dimension, 𝑗 in the second dimension, and 𝑘 in the third 
dimension. Equation (1) represents the PARAFAC model, where f denotes the number of so-called 
components and defined so-called loading matrices A, B, and C of dimensions 𝐼 × 𝐹, 𝐽 × 𝐹, and 𝐾 × 𝐹 
and with elements 𝑎if, 𝑏jf, and 𝑐kf, respectively, and the modeling error 𝜀ijk.  

			𝑥!"# = ∑𝑎!$ 𝑏"$𝑐#$ +	𝜀!"#                                                   (1) 
 
Reference [41] then provides the generic model that PARAFAC uses to represent the input data. A 
graphical illustration of this model is given in Figure 3. The data is decomposed into triads or trilinear 
components, where each component comprises one score vector and two loading vectors rather than 
one score vector and one loading vector as in bilinear PCA. It is the standard three-way procedure to 
consider scores and loadings numerically similarly, without making any distinction between the two. A 
well-established advantage of the PARAFAC model is the mathematical uniqueness of the solution. 
Unique solutions can be expected if the loading vectors are linearly independent in two of the modes 
and the third mode, and that no two loading vectors are linearly dependent in the third mode. 
PARAFAC applications: 
Zhang et al defined ‘‘a temporal and spatial feature similarity measure to calculate the rate of change 
and velocity of each biomarker in MRI to form a vector that represents the morphological change of the 
biomarker, then calculating the similarity of the changing trend between two biomarkers to encode the 
data in a third-order tensor to extract interpretable biomarker latent factors from the original data using 
PARAFAC decomposition.’’ [42].  
Jung et al proposed ‘‘a multi-omics analysis method called MONTI (Multi-omics Non-negative Tensor 
decomposition for Integrative analysis), that selects multi-omics features that can represent trait-specific 
characteristics.’’ They provided the usefulness of multi-omics integrated analysis for cancer subtyping. 
The multi-omics data were first merged in a biologically meaningful way to generate a three-
dimensional tensor, which was then decomposed using the PARAFAC method. MONTI was then 
utilized to identify highly informative subtype-specific multi-omics features [43]. 
 

 
Figure3. A graphical illustration of the PARAFAC model. 

 
B. Tucker3 
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Tucker3 is another tensor decomposition method used in multi-omics datasets to detect biomarkers. The 
Tucker3 model name is taken from psychometrician Ledyard R. Tucker who in 1966 proposed the 
model. He also presented a method for calculating the model's parameters, and several changes to the 
algorithmic approach have subsequently been suggested. The model has remained a powerful tool for 
analyzing three-way (and higher way) data arrays. The Tucker3 model is frequently used for 
decomposition, compression, and interpretation in many applications because of its generality and the 
way it treats the PARAFAC model as a particular instance. The Tucker3 model can be seen as an 
extension of the PARAFAC-CANDECOMP model along the line of outer products. Kroonenberg 
provided ‘‘a full mathematical description of this model as well as advanced topics such as data 
preparation/scaling and core rotation. Different numbers of factors in each of the modes can be extracted 
using the Tucker3 model [44].’’ Figure 4 is used to provide a simple explanation of the model. 
Tucker3 applications: 
Taguchi has focused on post-traumatic stress disorder (PTSD), a mental condition that can cause extra 
symptoms that do not appear to be immediately related to the central nervous system, which is thought 
to be directly affected by PTSD. PTSD-mediated heart disease is one such secondary disorder [45]. The 
spatial separation between the heart and the brain hindered researchers from clarifying the mechanisms 
that link the two disorders, despite the strong associations between PTSD and heart diseases. Their goal 
was to discover the genes that link cardiac problems with PTSD. To execute gene selection, they 
employed Tucker3 factorization as the tensor decomposition method to examine the gene expression 
profiles in diverse tissues, such as the heart and brain. The gene expression profiles were regarded as 
tensors. Gene expression profiles in diverse tissues were studied under various conditions such as 
stressful or unstressful, with varying periods of stress and rest time following the application of a 
stressor. Approximately 400 genes were identified as potential genes that may mediate heart problems 
related to PTSD based on the obtained features. Additionally, before being applied to gene expression 
profiles, Tucker3 was applied to a synthetic data set to illustrate the utility of their technique [45,46]. 
 

 
Fig.4. A graphical illustration of the Tucker3 model. 

 
C. Hybrid and other techniques 
Feature extraction methods are a class of techniques that try to turn a set of input biomarkers into another 
set of variables that are linear or non-linear combinations of the original biomarkers. The goal is to 
extract features in such a way that the resulting new variables retain useful information while being less 
noisy and less redundant. Learning from a smaller set of features or biomarkers reduces complexity 
while increasing computational efficiency. The interpretability of a model may be compromised by 
feature extraction methods since the derived features are no longer biological measurements. Feature 
extraction methods are frequently employed experimentally to visualize data and uncover significant 
features. 
Principal Component Analysis (PCA) is the most extensively used feature extraction approach. [47] 
PCA creates new variables called principal components, which are uncorrelated linear combinations of 
the original features and optimize the description of variance in the dataset; however, it is sensitive to 
outliers and is unable to describe non-linear trends in the data. To address these issues, several 
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extensions have been developed, such as Kernel PCA [48] and Bayesian PCA [49]. Other similar 
methods such as Principal Coordinates Analysis (PCoA) [50], Correspondence Analysis (CA) [51], and 
Independent Component Analysis (ICA) [52] may improve PCA in certain ways. The majority of 
feature extraction techniques have also been developed with sparsity constraints. Sparse feature 
extraction methods can be used for feature selection with methods such as Sparse PCA (sPCA) [53], 
Sparse Canonical Correlation Analysis (CCA) [54], Sparse Non-negative Matrix Factorization (Sparse 
NMF) [55], and Sparse CA [56]. These approaches, however, fail to examine multi-omics datasets since 
applying them to concatenated ‘‘omics’’ typically yields unsatisfactory results. As a result, feature 
extraction methods are frequently used on each ‘‘omics’’ dataset for either block scaling or after 
concatenation of the extracted features or clustering, or other downstream analysis [38]. 
D. AI for biomarker discovery in multi-omics datasets 
Gene regulatory networks, which are critical for understanding complicated disease mechanisms, have 
become one of the most popular topics for biomarker identification in multi-omics datasets in recent 
years. Several large-scale projects have been done and significant amounts of ‘‘omics’’ data have been 
released to identify heterogeneous genetic networks that underlie complex human diseases. The gene 
networks scale is increasing, and methodologies for analyzing large-scale gene networks have been 
proposed. Park et al. proposed a novel AI technique for analyzing gene regulation networks in depth. 
The multilayer networks were decomposed using an AI technique based on deep learning to identify 
all-encompassing gene regulatory systems distinguished by patient clinical features. They extracted 
global and unique mechanisms of gene regulatory systems from the vast multiple networks using an AI 
technique based on tensor decomposition. They developed a novel technique to do integrative analysis 
for multilayer gene networks, which is an essential tool for precision medicine. In their method, gene 
regulatory networks were built under varied sample conditions, and the multilayer networks were 
thoroughly examined using an AI algorithm. To construct a low-dimensional subspace of the multiway 
interaction between genes, a deep learning algorithm for tensor decomposition was applied to the gene 
network for a target sample. They were able to understand the constructed large-scale gene networks 
since prediction and interpretation were carried out on the constructed low-dimensional subspace. Their 
technique is divided into two stages: building sample-specific gene regulatory networks and globally 
analyzing large-scale multiple gene networks using AI technology [57,58]. 
 
V. APPLICATIONS 
 
Discovering biomarkers has various uses in the healthcare system, such as early disease detection, 
disease prevention, identifying an individual's risk, monitoring disease, and drug development in the 
pharmaceutical sector. Therefore, biomarker discovery, specifically in multi-omics datasets by tensor 
decompositions could help a lot to develop biomarker applications. In this section, we will cover some 
of the important applications of biomarkers in the literature.  
A. Early disease detection, prevention, and monitoring  
Measures for the early detection of various diseases such as different cancers, and stroke, offer the 
opportunity to help control rising healthcare costs. We can already see that alternative disease 
prevention strategies will be used in the future because these strategies can and should be tailored to 
each patient based on their unique risk profiles. Fortunately, biomarkers make it possible to detect 
diseases such as Alzheimer’s, and certain cancers at a disease stage even when the patient shows no 
symptoms. The recent failures of potential medications that are tailored for various conditions may be 
an indication that the clinical trial participants are too far along to benefit clinically. Therefore, the 
development of new therapeutics will be greatly influenced by validated biomarkers for the early 
detection and precise diagnosis of diseases in their preclinical phases. When biomarkers are used 
synthetically, they may someday be able to identify patients in the initial stages of the disease, when 
therapeutic modification is most likely possible. Because whether medicine is likely to work can 
frequently be a genetic issue, biomarkers are also important in the development of individualized 
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treatment. As a result, determining or excluding specific genetic variations can make a significant 
contribution to therapeutic management, not only reducing costs and side effects but also improving 
treatment quality. Biomarkers can also be used to track treatment response [42,59,60]. 
B. Risk assessment 
Biomarkers can be classified into susceptibility, effect, and exposure indicators. It is commonly 
expected that current developments in genomics, proteomics, and metabolomics will eventually 
translate into a constellation of advantages for human health. However, only a few biomarkers have 
been reported in the past ten years for risk assessment using "omics" technologies. But there is a wide 
range of potential applications for "omics" technology. The lack of integrated bioinformatics 
techniques, statistical analysis, and predictive models frequently severely restricts the use of biomarker-
based monitoring systems as a tool for environmental risk assessment. Therefore, identifying pertinent 
and reliable biomarkers that contribute to the assessment of environmental and health risks may be 
necessary [61,62]. 
C. Drug discovery and development 
Biomarkers that are robust and verified are required to improve diagnosis, monitor drug activity, and 
therapeutic response, and lead the development of safer and more tailored therapeutics for a variety of 
diseases. The development of specialized biomarkers for complicated chronic diseases can now be 
discovered and developed more quickly thanks to recent developments in multi-omics techniques, 
bioinformatics, and biostatistics. Even though there are still many obstacles to overcome, current 
initiatives for the discovery and development of disease-related biomarkers will help with the best 
decision-making during the medication development process and further our comprehension of the 
disease processes. To the benefit of patients, healthcare professionals, and the biopharmaceutical 
industry, good preclinical biomarker translation into the clinic will pave the path for the effective 
execution of personalized therapies across a range of complex disease areas [63,64]. Figure 5 illustrates 
the distribution of the all studies focusing on each area of application.  
 

 
 

Fig.5. Areas of application for biomarker discovery in multi-omics datasets 
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the residual sum of squares, precision, and f-scores. The residual sum of squares is the sum of the 
squares of residuals (deviation of predicted from actual empirical values of data). It serves as a gauge 
for the disparity between data and the estimation model. One measure of precision is the proportion of 
correctly selected biomarkers over the whole set of biomarkers. The recall is calculated as the ratio of 
the number of correctly selected biomarkers to the total number of test biomarkers. The f-score is 
obtained using a harmonic mean between recall and precision. Other metrics, which will be introduced 
based on the nature of the problem and the proposed model, can be established, and used to analyze the 
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success of biomarker identification approaches employing tensor decompositions in multi-omics 
datasets. We describe the criteria used in the surveyed papers as follows.  
• Root Mean Square Error (RMSE) can be formulated as shown in Equation (2), where 𝑡i is the 
test rating value and 𝑝i is the predicted rating value [38,65]. 
 

		𝑅𝑀𝑆𝐸 =	8%
&
	∑ (𝑡! − 𝑝!)'&

!(%                                          (2) 

 
• Residuals Sum of Squares (RSS) is the measure of the discrepancy between the data and the 
estimated model. The important point in tensor decompositions is that the trilinear model is found to 
minimize the RSS. Equation 3 shows this metric, where 𝑦i is the i value of the biomarker to be predicted, 
and 𝑓(𝑥i) is the predicted value of 𝑦i [43]. 
 

	𝑅𝑆𝑆 = 	∑ (𝑦! − 𝑓(𝑥!))'&
!(%                                        (3) 

 
• Precision (𝑝) is the proportion of the relevant features among all retrieved feature sets and 
assesses the predictive power of a method. Precision can be formulated as follows where 𝑡p is the true 
positive, and 𝑓p is the false-positive selected cases [43,66]. 
 

		𝑝 = 	 )*
)*+$*

                                                              (4) 
 

• Recall (𝑟) calculates the proportion of the selected features as part of the optimal feature set 
relative to all features and assesses the effectiveness of an algorithm in identifying the true positive 
features. Recall can be formulated as follows where 𝑡p is the true positive, and 𝑓n is the false negative 
in selected cases [66]. 
 
𝑟 = )*

	)*+$-
                                                                  (5) 

 
• The f-score which utilizes precision (𝑝) and recall (𝑟) can be defined as follows. Recall and 
precision are balanced in the f-score when the	𝛽 constant parameter is set to 1 and is in favor of precision 
when 𝛽 > 1 [43,66]. 
 

	𝑓 = ./!+%012
(/!1)	+2

                                                                  (6) 
 

• P-values are a commonly used criterion used for ranking biomarker candidates and 
determining the top set of markers considered for further development and validation. Thus, statistical 
P-values can play a fundamental role in the evaluation of biomarker discovery studies. In the case of 
control studies, the P-value associated with a statistic is defined as follows: [63,67] 
 
			𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐	 ≥ 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑑𝑎𝑡𝑎	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐	|	𝑐𝑎𝑠𝑒𝑠	𝑠𝑎𝑚𝑒	𝑎𝑠	𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) 

 
• Sensitivity and Specificity are two other measures that evaluate the diagnostic performance of 
a biomarker. Sensitivity is the ability to detect a disease in patients in whom the disease is truly present 
(i.e., a true positive), and specificity is the ability to rule out the diseases in patients in whom the disease 
is truly absent (i.e., a true negative) [66,68,69]. 
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• Computation time and cost for biomarker detection in multi-omics datasets is an important 
evaluation criterion, especially where the problem requires a real-time application or there is a large 
amount of data for the computation [70].  

Figure 6 shows the distribution of evaluation criteria used in the reviewed papers. The top 2 criteria are 
RSS and Precision. However, the majority of the papers used a combination of criteria to enhance their 
performance evaluation.  

 
 

Fig.6. Evaluation Criteria 
 
VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 
 
There are many directions for future research. Dealing with long computation times and the associated 
costs is one of the most significant issues. Depending on the application, a large quantity of data may 
need to be evaluated in order to design a TD-based strategy for biomarker discovery. The majority of 
research in the literature focus on the development of solutions for difficulties such as interpretability 
and scalability; however, they rarely focus on the efficiency of the models. Proposing and developing 
TD-based strategies for dealing with massive amounts of data from various ‘‘omics’’ types is a research 
area that has not been extensively investigated. Another issue is that the recommended solutions are 
often developed for a specific application area. Future research directions might find it interesting to 
offer a framework that encompasses several application areas. Recently, some researches have used 
neural networks and machine learning to find biomarkers in multi-omics datasets. On this subject, 
several machine learning and deep learning models may be developed, and their performance can be 
compared to that of conventional approaches [57,58]. Additionally, different machine learning and deep 
learning models in terms of chemometrics can be developed in biomarker discovery in multi-omics 
datasets by tensor decompositions. 
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