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Abstract

This paper explores real-time Convolutional Neural Network inference on Field Pro-
grammable Gate Arrays (FPGAs) implemented in Synchronous Message Exchange (SME).
We compare SME to the widespread FPGA tool, High-Level Synthesis (HLS), and com-
pare both the SME and HLS implementations of CNNs with the PyTorch implementation
for CNN on CPU/GPU. We find that the SME implementation is more flexible than the
HLS implementation as it allows for more customization of the hardware. Programming
with SME is more difficult than HLS, although easier than traditional Hardware Descrip-
tion Languages. Finally, for a test use case, we find that the SME implementation on
FPGA is approximately 2.8/1.4/2.0 times more energy efficient than CPU/GPU/ARM at
larger batch sizes, with the HLS implementation on FPGA falling in between CPU/ARM
and GPU in terms of energy efficiency. At a batch size of 1, appropriate for edge-device
inference, the gap in energy efficiency between the FPGA and CPU/GPU/ARM imple-
mentations becomes more pronounced, with the SME implementation on FPGA being
approximately 83/47/8 times more energy efficient than the CPU/GPU/ARM implemen-
tations, and with the HLS implementation on FPGA being approximately 40/23/4 times
more energy efficient than the CPU/GPU/ARM implementations.

1 Introduction
In recent years, Artificial Intelligence (AI) has seen a huge growth in popularity. This has

been made possible by the development of complex Neural Network (NN) architectures, which
have opened the possibility of using AI to solve increasingly more complex tasks. NNs are
composed of numerous computational subtasks that can be executed in parallel, necessitating
the use of concurrent hardware to achieve high-speed performance.

Due to their data parallel performance, Graphical Processing Units (GPUs) have become
an industry standard for large NN applications. In comparison to Central Processing Units
(CPUs), GPUs perform far better in terms of speed both for training and inference tasks, when
given large enough batches of samples. However, due to the heavy power consumption of GPUs,
it is not favorable to locally install GPUs in power-restricted edge devices (such as drones) that
seek to implement AI applications. Instead, the inference for applications in power-restricted
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applications takes place in remote servers with GPUs installed, bringing on a new range of
problems such as latency and the possibility of an unreliable connection.

By developing hardware that is specifically designed to run NNs in AI applications, known
as an Application Specific Integrated Circuit (ASIC), one can alleviate the problem of power
consumption. However, this also comes with drawbacks, namely, ASICs are very expensive per
unit at lower unit counts, and take months to develop to ensure the correctness of the circuits.
Furthermore, the circuitry of ASICs cannot be changed, which means future hardware updates
cannot be applied to a developed batch of ASICs.

By trading specificity for flexibility, Field-Programmable Gate Arrays (FPGAs) share some
of the same advantages as ASICs, such as being able to capture more parallelism, being focused
on a specific application, and exhibiting low power consumption. Furthermore, they are repro-
grammable, allowing FPGAs to leverage many advantages of ASICs, while also being able to
adapt to future hardware updates. As a result, FPGAs are a very attractive alternative to GPUs
and ASICs for AI applications in power-restricted edge devices. However, FPGAs share one of
the same drawbacks as ASICs, namely, they are notoriously difficult to program for software
developers as they are primarily programmed with Hardware Description Languages (HDLs)
such as Very high-speed integrated circuit HDL (VHDL) and Verilog. Both of these languages
specify the hardware at the (fully parallel) wire level, which is difficult for programmers to
reason about [20], making the process of programming FPGAs a substantial task.

1.1 Contribution

In this paper, we explore a high-level approach for implementing Convolutional Neural
Network (CNN) (a special type of NN) on FPGAs; namely Synchronous Message Exchange
(SME) [4, 5, 11, 17, 18, 21, 22]. Being a high-level FPGA programming model, it is only natural
to compare our implementation to the most widespread high-level FPGA programming model:
High-Level Synthesis (HLS) [2]. These two approaches are on opposite ends of the spectrum
(concerning hardware development) where HLS is a high-level approach, and SME is a low-level
approach. We will explore the advantages and disadvantages of each approach, and compare
the performance of the implementations created with the two approaches with each other and a
PyTorch implementation on CPU and GPU [14]. Both the HLS and SME implementations are
cross-validated against the PyTorch implementation to ensure consistent results given identical
inputs.

The implementations are configurable through a user’s desired configuration, such as the
number of input and output channels, and the size and stride of the kernels if relevant. In SME,
we created multiple implementation versions for some layers, which vary in the degree of paral-
lelism. The choice between these versions balances the performance and resource consumption
of the hardware, allowing the user to tune the implementation for their desired FPGA. The
source code is available on Github [8].

2 Programming FPGAs

FPGAs, unlike the fixed instruction set architecture of CPUs and GPUs, offer reconfigurable
hardware that suits user needs. This combines ASIC-like efficiency with the flexibility of future
hardware updates. Similar to ASICs, FPGAs are employed through Hardware Description
Languages (HDLs) for hardware design, rather than software development.

HDLs operate at an intricate, parallel level, which renders programming notably more
challenging than conventional software development. Adding to this complexity, studies have
demonstrated the inherent difficulty of parallel programming for humans [20], compounding the
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challenges of FPGA programming. While opting for sequential designs is possible, it is subop-
timal due to the resulting extended critical path, constraining the design’s clock frequency and
overall performance. The shortcomings of HDLs are worsened by their excessive verbosity (in-
creasing error likelihood), incomplete adoption of new language features (only partial support
for 2008 standards by vendors), and absence of contemporary software development tools like
debuggers and libraries.

Various tools address the issue of FPGA HDL code generation. This paper examines High-
Level Synthesis (HLS) [2] and Synchronous Message Exchange (SME) [11] approaches, spanning
high and low levels respectively. While other tools exist, some even beyond the span of HLS
and SME, they will not be covered in this paper.

2.1 High-Level Synthesis (HLS)
HLS is a tool that enables the user to write C/C++ code, which is then compiled into

HDL code, in turn greatly boosting productivity over writing HDL code directly. By targeting
C/C++, HLS enables a wide range of software developers to utilize FPGAs as they can write
code in a familiar environment. However, the user still has to keep hardware architecture in
mind when writing code. If the user writes the code in a traditional, sequential manner, the
generated code will not be optimized for the FPGA, since the compiler will adhere to the
semantics of a traditional C/C++ program (e.g. sequential execution), rather than the truly
parallel nature of the FPGA.

To circumvent this problem, the user can use pragma directives to guide the compiler to-
ward a more optimal solution. Examples of optimizations are pipelining (exploiting pipeline
parallelism), unrolling (exploiting hardware replication), array partitioning (exploiting data
locality), loop flattening (removing unnecessary control logic), and loop dependency removal
(removing unnecessarily aggressive memory management). While guiding the compiler does
require the user to know hardware architecture, it is a powerful tool for expressing complex
hardware designs in a high-level language.

HLS supports many different design strategies but favors dataflow architectures as it can
exploit the parallel nature of FPGAs. As such, if the user writes the program using this
design strategy, the compiler will be able to generate a more optimal design. Finally, during
development, the user can co-simulate the hardware design with the software code, which
enables the user to verify that the hardware design behaves as expected.

2.2 Synchronous Message Exchange (SME)
SME is a Communicating Sequential Processes (CSP) [10]-derived programming model,

enabling the user to write concurrent programs in a C# environment. Like CSP, SME is based
on the concept of sequential processes that share nothing but their means of communication,
which for CSP is the concept of channels, and for SME is the concept of buses. A bus acts as a
broadcast channel in CSP terms, where every connected process receives messages synchronized
to a global clock, eliminating the need for the sender to wait for the receiver. Some of the
processes in an SME program are executed in parallel and are synchronized by a global clock
signal triggering them (known as clocked processes), while others are executed in sequence and
are triggered by communication on the buses (known as unclocked processes). Regardless of
which synchronization strategy is used, each process is triggered exactly once per simulated clock
cycle, which executes the process to completion for simple processes, or until a synchronization
point for more complex processes, which are not covered in this paper. These processes are
to be synthesized into HDL code, preventing them from using dynamic constructs, such as
dynamic memory allocation, recursion, and dynamic instantiation of processes as these cannot
be expressed as hardware.
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SME has been designed to fit the architecture of FPGAs, which means that the legal con-
structs of SME are also legal constructs in the generated HDL code. As a result, while SME
is a higher-level programming model, compared to HDLs, it is still very close to the hard-
ware, so the user has to keep the hardware architecture in mind when writing code. By being
implemented in C#, SME enables the features of a modern programming language, such as
debuggers, libraries (to some degree), generics, inheritance, and interfaces, which makes the
process of writing code easier and boosts productivity.

Once the network of processes and how they are connected have been defined, the network is
simulated to verify that the program behaves as expected. This is done by describing simulation
processes, which share the same interface as the processes that are to be synthesized, but allow
for the entire software suite of C# to be used without limitation. A simulation process is always
a clocked process, but the control of when to synchronize to the global clock signal is left to the
user through asynchronously waiting for the simulation to tick the clock signal. The simulation
itself is done by SME building a dependency graph of how the processes are connected and
running the following simulation loop:

1. Trigger all of the clocked processes to run in parallel.
2. Wait for all of the clocked processes to finish.
3. Propagate all of the written values on the output buses of the just triggered processes to

the connected processes.
4. Trigger all of the processes whose entire collection of input buses have been written to.
5. Repeat 3-4 until all of the processes in the network have finished.
6. Repeat 1-5 until all of the simulation processes have finished.

Step 1-5 simulates an entire clock cycle, which means that the simulation loop is synchronized to
the global clock signal. It is important to note that two clocked processes cannot communicate
within a single clock cycle as SME mimics the behavior of actual hardware, where such a setup
would lead to short-circuiting, potentially damaging the hardware. For the same reason, there
cannot exist an unclocked dependency cycle within the execution graph.

During this simulation, all of the values that are on every bus at every clock cycle are col-
lected into a trace file. This trace file is then emitted by SME, alongside VHDL implementations
for each process, a top-level VHDL file instantiating and connecting the processes, and a VHDL
testbench. This testbench loads the trace file and drives all of the top-level inputs (both the
clock signal and the buses) to the network, followed by verifying that every bus contains the
expected value for each clock cycle. This verifies that the generated VHDL implementation is
clock-cycle accurate to the C# simulation, given the same input. While the primary function
of the simulation is to verify the correctness of the program, it also provides a good entry point
for further debugging as the user can compare the values on the buses at every clock cycle.

2.3 Interfacing with the FPGA
Until now, we have covered HDL code generation for computation but have not addressed

FPGA interfacing. Our approach involves utilizing the FPGA as an accelerator in a host system,
serving as an offload device. The host handles data transfer and FPGA control, so we need a
driver to establish FPGA communication.

This interfacing is not directly part of HDL code, but rather a part of the software suite
for FPGA interaction, often termed the ”driver” or ”shell.” Typically, larger boards come with
vendor-provided shells, allowing for ease of use. However, we will make a specialized driver as
we target smaller boards that lack a shell due to resource constraints.

Our setup is straightforward: the host system interfaces with the on-chip FPGA via shared
off-chip memory access. The host transfers data to this memory, conveys input/output addresses
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and sizes to FPGA registers, and triggers processing initiation. The FPGA’s driver reads
address and size data, streams it from off-chip memory into our HDL kernels, and upon kernel
completion, streams output data back to memory. The host is notified of processing completion.
Since we know the sizes of the output, we do not need this information back from the FPGA
to the host.

3 Convolutional Neural Networks (CNNs)
A CNN is a specific type of NN designed for image classification tasks. A CNN consists of

multiple different chain-connected layers, each manipulating the output of the previous layer.
The layers most commonly found in a CNN include the Convolutional, Pooling, Batch normal-
ization, Activation, and Linear layers. In cases of multi-class classification, a Softmax layer can
also be included to provide a probability estimate of the different output classes. In this paper,
we are investigating inference, which is the process of classifying an image, given a trained CNN.
Therefore, we will not be investigating training the network on the FPGA as it is not relevant
to our use case. Further information on CNNs can be found elsewhere, so this serves as a brief
reiteration of how the layers compute their output. Each description computes the output of
a single element in the output feature map, where b is the batch index, f is the feature map
index, C is the number of input channels, K and L are window dimensions, and i and j are the
spatial indices. We seek to implement the following layers:

Convolutional: A convolutional layer convolves a kernel over the input image, producing
a feature map. The formula for computing the output of a convolutional layer is as follows:

outb,f,i,j = biasf +

C−1∑
c=0

K−1∑
k=0

L−1∑
l=0

inb,c,i+k,j+l ·Wf,c,k,l (1)

Batch normalization: A batch normalization layer normalizes the output of the previous
layer during training to achieve a mean of 0 and a standard deviation of 1. The formula for
computing the output of a batch normalization layer is as follows:

outb,f,i,j =
inb,f,i,j − µf√

σ2
f + ϵ

· γf + βf (2)

Activation: An activation layer applies a non-linear function to the output of the previous
layer. In our network, we use the Rectified Linear Unit (ReLU) activation function, which is
defined as follows:

outb,f,i,j = max(0, inb,f,i,j) (3)

Maxpooling: A maxpooling layer downsamples the output of the previous layer by taking
the maximum value of a kernel. The formula for computing the output of a maxpooling layer
is as follows:

outb,f,i,j =
K−1
max
k=0

L−1
max
l=0

inb,f,i·S+k,j·S+l (4)

Linear: A linear layer is a fully connected layer, where each output is connected to each
input. The formula for computing the output of a linear layer is as follows:

outb,f = biasf +

C−1∑
c=0

inb,c ·Wf,c (5)
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Softmax: A softmax layer is used for multi-class classification, where it outputs a proba-
bility estimate for each class. The formula for computing the output of a softmax layer is as
follows:

outb,f =
einb,f∑C−1

c=0 einb,c
(6)

4 Implementation
We aim to accelerate inference using pre-trained CNNs from PyTorch on FPGAs, employing

floating-point operations and weights to follow PyTorch standards.

4.1 HLS implementation

In the HLS design, each layer is a separate function, called through a top-level entry function.
This paper explores three design strategies: naive, optimized, and streaming. While further
optimizations are possible, we will not be investigating them in this paper.

4.1.1 Naive implementation

The naive implementation directly translates the layer’s math into C++ code with a simple
nested loop over input data elements. While it is straightforward, it lacks FPGA optimization
and serves as a baseline for the optimized and streaming versions.

4.1.2 Optimized implementation

The optimized implementation enhances performance and resource efficiency over the naive
one using the following optimizations applied to each layer:

• pragma loop flatten - merges nested loops into a single loop, reducing the cycles re-
quired to enter a nested loop.

• pragma pipeline - enables the FPGA to process multiple iterations of the loop in a
pipeline parallel fashion. The key metric, Iteration Interval (II), measures the clock cycles
between consecutive iterations. An II of 1 implies perfect pipelining with max throughput,
while an II of 2 halves throughput as it processes data elements every other clock cycle.

• pragma unroll - unrolls the loop, which enables the compiler to replicate the loop body,
allowing the FPGA to process multiple iterations of the loop in parallel.

• pragma inline - inlines the function to reduce the overhead from function calls as the
function body is inserted directly into the calling function. This can also enable further
automatic compiler optimizations as the compiler has more information about how the
code directly interacts. However, this optimization can also hinder the compiler in re-using
hardware, which in turn increases resource consumption.

• pragma bind storage - binds a variable to a specific memory resource, such as the in-
ternal FPGA cache-like memory resource BRAM. This binding enables the compiler to
optimize the memory access pattern and latencies.

• pragma array partition - partitions an array into smaller arrays, which enables the
compiler to parallelize memory access, and improves locality as the data containers can
reside closer to the computation.

• pragma dependence - removes dependencies between loop iterations, removing potentially
unnecessary memory management and correctness checks.

• 2-part reduction - The float32 adder in a multiply-accumulate, like in the convolutional
layer, has a 4-cycle latency. As a result, the convolutional layer’s loop has an II of 4,
disrupting perfect pipelining. To achieve an II of 1, the first pass writes to 4 output
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for i in 0...n:

b[i] = a[i] + 42

DRAM
a[i] b[i]

DRAM

for i in 0...n:

sa.push(a[i])

while true:

sb.push(sa.pop() + 42)

for i in 0...n:

b[i] = sb.pop()

a[i]

sa sb

b[i]

Figure 1: An example of transforming code for streaming between functions. Top: The original
code. Bottom: The transformed code. Each rectangle represents a parallel function, and each
arrow represents a memory access/stream.

buffers, and the second pass accumulates the buffers into a single value, reducing the II
of the first pass to 1 but adding resources and latency due to the second pass.

• separate buffer initialization - as each nested loop iteration initializes its buffer, the com-
piler has to insert additional hardware for inter-iteration communication to ensure correct-
ness. By initializing the buffer in a separate loop, the compiler can remove this hardware,
reducing resource usage.

It should be noted that the pragma’s are compiler hints; if the compiler cannot safely apply
the optimization, it will not do so. For instance, while we might specify that we want to pipeline
a loop with an II of 1, the compiler may not be able to do so due to dependencies between
loop iterations. Hence, we must apply a combination of all of these optimizations to achieve
the desired result.

4.1.3 Streaming implementation

The last strategy is the streaming implementation, combining the previous optimizations
with data streaming between computational units. The FPGA is a spatial architecture, meaning
individual pieces of hardware, which for our HLS implementation are functions, are replicated
to increase throughput. If we write standard C++, the compiler will adhere to the semantics of
a traditional C++ program, which is sequential execution. As a result, while the functions are
replicated and internally pipelined, they are not necessarily executed in parallel as the compiler
may not know that the functions are independent.

To circumvent this problem, instead of mimicking CPU control flow in between functions,
we replicate each function and stream data in between them, moving the control flow onto
the synchronization of the streaming transactions. This is a manual code transformation as
the compiler cannot do this automatically, but after transformation, it can be hinted to the
compiler using the pragma dataflow. An example of this transformation is shown in Figure 1.

To enable streaming, we avoid the naive sequential approach, where each layer assumes full
input availability at the start. Instead, we buffer the minimal needed data, e.g., for convolutional
and maxpooling layers, buffering k − 1 rows and k extra entries. We process using a rolling
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buffer, advancing one element per iteration until we need to buffer more. For linear layers, we
buffer the entire input for simplicity, as this layer has minimal impact on overall performance.

4.2 SME implementation

In the design of the SME implementation of the CNN architecture, each layer is constructed
individually as its own, independent implementation. A layer is modularized as a parameter-
ized unit, adaptable for various CNNs. All implementations of the layers conform to a common
interface for inter-layer communication, covered in Section 4.2.1. Some layers have multi-
ple implementation versions such as a parallelized implementation version that has enhanced
throughput. Here the user can select which implementation version to use for a layer instance.
The choice of implementation version comes with a trade-off between resource consumption
and speed, but the option of choosing between different implementation versions allows for
customization for specific FPGAs, as illustrated later.

4.2.1 Communication

We design communication between layer implementations using buses via our custom
ValueBus interface. This interface contains a 32-bit floating point field (Value) and two boolean
fields (Enable and LastValue). A bus transaction is valid (the data in Value can be read) when
the Enable field is set to true. The LastValue field is set to true when the transaction is the
last transaction on the bus for a given input, e.g. when a full image has been streamed through
a layer.

We create both more and less parallel versions of the layer implementations to extend the
pallet of options of implementations for a layer instance. The user should select the implemen-
tation version of a layer instance based on the specific layer instance’s configuration. Parallelism
in a layer implementation depends on data streaming: either the range of channels in the data
is streamed in parallel (a bus of type ValueBus[] containing values for each channel streaming
value by value, row by row), or the range of channels in the data is streamed in sequence (a bus
of type ValueBus, where the next channel is streamed once the streaming of the former channel
is done). This information is embedded into the layer implementation version’s name. For
instance, a convolutional layer implementation version with an input bus of type ValueBus[]

and an output bus of type ValueBus is named ”ConvLayer 01”, where the two digits at the
end of the name symbolize the type of the input bus and output bus respectively. If a digit is
0, it implies that the bus is of type ValueBus[], and if the digit is 1, it implies that the bus is
of type ValueBus.

4.2.2 Compositionality

For implementing each layer implementation, it is important to split up the larger, complex
computations into a chain of basic arithmetic operations, which we define as isolated processes.
The incentive behind it is that the critical path of a design is the longest critical path of all
processes, and long processes with many computations result in long critical paths. Processes
can be clocked or unclocked; we opt for purely clocked processes to minimize critical path
length. This is because, in a chain of unclocked processes executing in sequence within a single
clock cycle, the critical path becomes the sum of the critical paths of all processes in the chain.
Conversely, for a chain of clocked processes, the critical path becomes the longest critical path
of all processes in the chain, which is strictly smaller than the sum.

Leveraging SME’s compositional capability, we form and interconnect processes in class con-
structs, referred to as ”wrapper classes”. These wrapper classes, behaving like conventional C#
classes, enable us to uphold a more abstract representation of constructs in an implementation.
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Figure 2: Definitions of the components used in the later flowchart visualizations of the SME
implementations of CNN layers.

Furthermore, we can nest wrapper classes within one another and establish connections between
processes contained within the same wrapper class. By following this iterative approach, we
eventually attain a level of abstraction in a wrapper class that aligns with the layer we aim
to implement. Communication among processes, as well as between processes and wrapper
classes, is facilitated through buses utilizing the ValueBus interface. Similarly, interactions
between wrapper classes can also be accommodated through this same interface.

4.2.3 Design

Each layer operates on a single input at a time, utilizing a batch size of one. This choice
aligns with an embedded inference configuration, where sensor input data arrives in individual
samples and is processed in real-time. We use flowcharts to illustrate our design concept, with
Figure 2 outlining the component representation in the flowcharts. Processes are depicted as
rectangular boxes with single borders, while instances of internal FPGA memory (BRAM)
are represented by rectangular boxes with double borders. Arrows symbolize buses, with their
direction indicating bus flow. Circles denote wrapper classes. We will walk through the design of
the convolutional layer implementation versions, the ConvLayer 00 and ConvLayer 01 wrapper
classes, to understand the structural difference between the implementation versions. The
implementations of the other layers must be analyzed from the code repository.

4.2.4 ConvLayer 00

The ConvLayer 00, shown in Figure 3, is a wrapper class that implements a convolutional
layer that receives and handles the input and output channels in parallel. Thus, the input
and output buses of the wrapper class are both of type ValueBus[]. Each input channel is
stored in a local BRAM, which an instance of the InputCtrl ParFilter process has access
to. InputCtrl ParFilter handles the correct order of outgoing values from the input channel
according to the kernel and stride values in the configurations of the layer. Two values from a
2D region of the channel stored in the BRAM are streamed at each clock tick to each Filter

(which is described in Section 4.2.5).

4.2.5 Filter

The Filter class is a wrapper class that is used in ConvLayer 00 only, and it contains
the functionality for generating one output channel. The internals of a Filter are shown in
Figure 4, where each input goes to a designated instance of the ConvKernel type00 wrapper
class. The notation type00 implies that the wrapper class is used only by the ConvLayer 00

implementation version of the convolutional layer. ConvKernel type00 computes the sum-
product between the values on the input buses, and matching weights of the kernel. An instance
of the ValueArrayCtrl process then buffers the results in a field, which corresponds to registers
on the FPGA. The field is an array of the same size as the number of kernels in the Filter
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instance (equivalent to the number of input channels in the ConvLayer 00 instance), and the
ValueArrayCtrl instance outputs one value at each clock tick if the buffer is filled. When the
last value of this buffer has been outputted, the LastValue field of the output bus is set to
true. At every clock tick, an instance of the PlusCtrl process accumulates the incoming values,
outputting and resetting the accumulated value when the LastValue field of the input bus is
set to true. Finally, the Bias process adds the bias of the Filter to the accumulated value,
completing a single output value of the Filter.

4.2.6 ConvKernel type00

ConvKernel type00, outlined in Figure 5, computes the sum-product between input values
and the corresponding weights. The kernel weights are stored in a field, which is an array and
corresponds to registers on the FPGA, inside an instance of the KernelCtrl process. The kernel
starts when the Enable fields of the input buses are true. The inputs come from a 2D region
of a designated input channel, and once the LastValue field is set to true, all values from the
2D region have passed through the KernelCtrl instance. Each value on the two input buses
in KernelCtrl is matched with corresponding a weight and sent to a WeightValue process,
where they are multiplied. Their product continues to PlusCtrl for accumulation in a buffer
implemented as a field in the process. When PlusCtrl receives a Value with the LastValue

field set to true, it outputs the buffer. Finally, the outputs of the two PlusCtrl processes are
added together in the PlusTwo process, which outputs the final sum-product. It is important
to note that the dual-branch design optimizes FPGA dual-port BRAM utilization.

4.2.7 ConvLayer 01

A convolutional layer can also be implemented with the wrapper class ConvLayer 01; a less
parallel implementation version compared to ConvLayer 00. It receives the input channels in
parallel using an input bus of type ValueBus[], but computes the output channels in sequence
using an output bus of type ValueBus. While this version uses more clock ticks to process
the same input, it is a viable option when ConvLayer 00 is too resource-demanding for a
specific configuration. Its design is presented in Figure 6 and the core idea is to maintain a
maximum of one filter that applies all the filters in sequence, thus saving resources by using
fewer total processes than the ConvLayer 00 implementation version. ConvLayer 01 does not
use an instance of the Filter class, because of the slight change in required functionality, but
the same principles are used.

The kernel weights across filters that operate on the same input channel are stored in a single
BRAM instance, which is controlled by an instance of the InputCtrl SeqFilter process. Each
InputCtrl SeqFilter outputs one value from a 2D region of the designated input channel
and a corresponding weight every clock cycle. Once all 2D regions in the input channel have
been traversed, InputCtrl SeqFilter repeats its output process, but with weights related to
the next filter until all filters have been applied to the input channel. ConvKernel type01,
illustrated in Figure 7, applies the sum-product between the 2D regions of the input channel
and the weights it receives. The notation type01 implies that the wrapper class is used only
by the ConvLayer 01 implementation version of the convolutional layer. The sum-products of
all ConvKernel type01 instances are buffered in registers on the FPGA in a ValueArrayCtrl

instance and are accumulated in a buffer inside a PlusCtrl instance. When the PlusCtrl

instance receives the last sum-product, indicated by LastValue being true, it outputs its buffer.
The Align process contains the bias values of the filters, and when PlusCtrl outputs the last
sum-product, it outputs the corresponding bias value along with the sum-product. Emitting
the correct bias is done by counting the number of transactions as the number of outputs from a
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Figure 3: Design of ConvLayer 00. Each InputCrtl ParFilter stores a whole channel, value
by value at each clock cycle, in a BRAM. Afterward, two values from the BRAM are outputted
each clock cycle. They both go to a designated ConvKernel type00 in all Filters.

Figure 4: Design of Filter. Figure 5: Design of ConvKernel type00.

filter is known, because it is the total size of a single output channel in the specific convolutional
layer instance configuration.

4.2.8 Clock Cycles of layers

The equations for calculating the latency in clock cycles that a layer implementation version
spends processing are defined by the equations presented in Table 1, derived from source code
analysis. The equations assume that the input is consistently streamed each clock cycle until
the layer has finished. In each row, the ”Layer” column specifies which layer type is imple-
mented, the ”Version” column specifies the version of the layer implementation, and the ”Clock
Cycles Equation” column specifies how to calculate the latency in clock cycles that the layer
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Figure 6: Design of ConvLayer 01.

Figure 7: Design of ConvKernel type01.

implementation version uses to process one input. Here, the variables can be derived from the
configurations, the layer implementation version uses for generating a layer instance. As an
example, the row with a value of ”Convolutional” in the ”Layer” column and a value of ”00”
in the ”Version” column implies the ConvLayer 00 implementation version. To validate the
accuracy of the equations, we count clock ticks when testing our benchmark CNN architecture
using simulation processes, and compare this to the result of an equation. We see that for all
layers the number of recorded clock cycles match the equations.

4.2.9 Integer width optimization

When applying our layer implementations to a specific CNN architecture, we manually
convert integer variables within processes to a predefined number of bits. This alignment is
based on their known maximum values, derived from the layer configurations. These conversions
are specifically applied to indexing variables within the control processes, which are used for
array indexing and traversal. We can statically determine their maximum values, and they
never require the full 32-bit integer range. The number of bits in these integer types can be
defined using SME integer types.

To determine the bit widths, we compute the numerical range for all indexing variables in a
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Table 1: Latency in clock cycles of each layer implementation to process one entire
input.

Layer Version Clock Cycles Equation

Convolutional
00 hin · win + 2 +

⌈
kh·kw

2

⌉
· hout · wout + cout + 5

01 hin · win + 2 + kh · kw · hout · wout · cout + 3

Batchnormalization
00 hin · win + 4

11 hin · win · cout + 8

ReLU
00 hin · win + 1

11 hin · win · cout + 1

Maxpooling
00 hin · win + 2 +

⌈
kh·kw

2

⌉
· hout · wout

11 hin · win · cin + 2 +
⌈
kh·kw

2

⌉
· hout · wout · cout

Linear
00 hin · win · (cin − 1) + 2 + 3

10 hin · win · cin + 2 + 3

Softmax 00 1 + (cin − 1) + 1 + 1

The table presents the equations for calculating the latency in clock cycles used by all available SME
implementation versions of all layers, each consistently processing a single input stream. Each row in the
table provides information on the layer type (found in the ”Layer” column), the implementation version
(identified by the input and output bus type notation in the ”Version” column), and the equation used
to calculate the latency in clock cycles required to process a single input. h and w are the height and
the width of a channel, and c is the number of channels. The subscripts in and out determine whether
a variable belongs to an input or output channel. kh and kw are the kernel height and kernel width.

control process. The range is derived from the configurations of all layer instances in the CNN
architecture, which are implemented with layer implementation versions that use said control
process. Subsequently, we select the maximum range for each variable across all instances and
use that as the bit count for the integer type employed for that variable. It is worth noting
that although this process is currently manual, prior work has demonstrated automation of this
capability in SME [4]. However, this automation has not been implemented in our current SME
version.

5 Verification

The main objective of this paper is to explore the possibility of using SME as an implemen-
tation platform for embedding CNNs onto FPGA. Thus, we will need to verify that it produces
the results intended for a given CNN architecture. The HLS implementation is verified in the
same way.

We validate our layer implementations by comparing them to equivalent PyTorch imple-
mentations of the same layers. Each implementation is tested with both random input data
and MNIST dataset samples [15]. The CNN (CNN small), shown in Figure 8, is used to for-
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Conv2d(1,3,(3,3)) ReLU()

MaxPool2d((2,2))

Conv2d(3,5,(5,5))

BatchNorm2d(3) BatchNorm2d(5)

ReLU()

MaxPool2d((3,3))

Flatten()

Linear(45,2)

Softmax()

1 x 28 x 28 3 x 26 x 26 3 x 26 x 26 3 x 26 x 26

3 x 13 x 13 5 x 9 x 9 5 x 9 x 9 5 x 9 x 9 5 x 3 x 3

1 x 45

1 x 2

1 x 2

conv1

batchNorm1

relu1

maxPool1

conv2

batchNorm2

relu2

maxPool2 linear

softmax

Figure 8: Design of CNN small.

The figure provides a visual representation of the CNN small architecture and the transformations
applied to the incoming data by the layers throughout the entire CNN. The names of each layer,
along with the specific methods and configurations employed in PyTorch using the torch.nn mod-
ule, are written between the gaps of the transformations applied to the input. The dimensions of
the input at various stages during the CNN’s manipulation process are displayed either above or
below the data representation.

mally test our method for a CNN embedding onto an FPGA. CNN small is trained in PyTorch
to identify a ”one” or ”two” in MNIST images. The labels have been one-hot encoded ([1,0]
for ”one” and [0,1] for ”two”). The layers, which CNN small consists of, are named conv1,
batchNorm1, relu1, maxPool1, conv2, batchNorm2, relu2, maxPool2, linear, softmax, and
their representations and manipulations on the input data can be seen in Figure 8. The layer
implementation versions, which we use for each layer instance, are based on ensuring that re-
source consumption does not exceed what is available on our target FPGA and highlighted in
Section 6.2.

We provide the following metrics for our verification: the mean of the error, the variance of
the error, the maximum observed error, and the Relative Root Mean Squared Error (RRMSE).
The RRMSE is defined in Equation (7), where ŷi is the estimated value, yi is the true value,
and n is the number of values.

RMMSE =

√
1
n

∑n
i=1(ŷi − yi)2∑n
i=1 y

2
i

(7)

The default datatype used by PyTorch is 32-bit floating point (float32), which follows the
IEEE-754 standard [9]. Float32 designates 23 bits to capture the significant digits of a number,
enabling it to accurately represent the initial 6 digits of a number, introducing representation
discrepancies from the 7th digit onward. However, multiple arithmetic operations can accu-
mulate this error, increasing it beyond the 7th digit. Furthermore, float32 is non-associative,
which means the order of operations potentially introduces additional discrepancies. Therefore,
we consider arithmetic equivalence even with an error on the 6th digit, which is verified by
RRMSE values of 1e-6 or lower. For both the SME and the HLS implementations, we do not
see an error above this threshold, indicating that they are correct compared to the PyTorch
implementation.

6 Benchmarking

We benchmark the FPGA implementations of CNN small against PyTorch on a laptop
CPU and GPU, and Pynq-Z2’s CPU through ONNX [13]. Laptop specifications are in Table 2,
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Table 2: Specifications of the laptop and Pynq-Z2 CPU used for benchmarking.

Laptop [12] Pynq-Z2 [19]

CPU model Intel i7-7700HQ ARM Cortex-A9
CPU speed 4 cores @ 3.8 GHz 2 cores @ 650 MHz
CPU TDP 45.000 W 1.256 W
RAM size 32 GB DDR4 512 MB DDR3
GPU NVIDIA GeForce 940MX -
GPU TDP 23.000 W -
OS Arch Linux 6.2.11 PYNQ 2.7.0
Python 3.10.10 3.8.2
PyTorch 2.0.1 -
ONNX runtime - 1.9.1

Table 3: Specifications of the FPGA on the Pynq-Z2.

Name LUT FF BRAM DSP

XC7Z020 53200 106400 140 220

with Pynq-Z2 specs in Table 3. Our laptop is from 2017, with a 7th-gen Intel CPU and a 9th-
gen NVIDIA GPU, chosen to align closer with Pynq-Z2’s age (2012) and its low-power profile,
ensuring a fairer comparison. Newer generation hardware will improve all of our results for
all platforms, but the relative performance should still show the same trends. It is also worth
noting that the laptop, while mobile, has a much higher power budget than the Pynq-Z2, which
is reflected in the power consumption results. Furthermore, the two platforms are in different
price ranges at their release, with the laptop costing around 3000 USD and the Pynq-Z2 costing
around 120 USD.

6.1 HLS

We have three implementation versions with HLS for CNN architectures; the Naive, Opti-
mized, and Streaming implementations mentioned in Section 4.1. To emphasize the need for
increasing optimizations, we gauge HLS implementation performance and resource usage with
the Vivado HLS tool [2]. It simulates the design and analyzes generated HDL code, with esti-
mates detailed in Table 4. The naive approach exhausts DSP resources, rendering it infeasible
to implement. The optimized version sacrifices resources for performance, resulting in higher
latency but can fit the board. The streaming version slightly increases resource usage over the
optimized version but reduces latency almost threefold, making it the optimal choice for our
application.

6.2 SME

The choices of layer implementation versions of the layer instances in CNN small are cho-
sen such that they retain high throughput while fitting onto the FPGA. We optimize all our
layer implementation versions to the specific use case of CNN small without changing the core
structure of our layer implementation versions in the following manner.

In Table 5, we show the resource consumption and clock cycle counts for each CNN small
layer instance using the implementation versions. Clock cycle counts are determined using the
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Table 4: Resource consumption of FPGA implementations of CNN small
using SME and HLS implementations. SME and HLS-Stream are from
the placed and routed results, while HLS-Naive and HLS-Opt are from
the HLS tool.

SME HLS-Naive HLS-Opt HLS-Stream

LUT 19,109 44,174 13,886 8,873

Flip Flops 27,472 29,624 8,164 10,935

BRAM 10 44 21 11
DSP 100 246 32 60

Dynamic (W) 0.335 0.552 0.163 0.216

Static (W) 0.145 0.145 0.140 0.141

Cycles 14,908 169,113 202,663 82,410

Period (ns) 20 10 10 10

µs/Sample 298.16 1,691.13 2,026.63 824.10

mJ/Sample 0.1431 1.1787 0.6140 0.2950

equations in Table 1. We synthesize the generated VHDL code for each layer in Vivado [3],
which gives us the resource estimates. From Table 5 we derive that the implementation of
CNN small, where we choose the layer implementation versions indicated by regular font and
font that is underlined (parallel implementation versions), is not able to fit onto the FPGA due
to excessive resource utilization. Thus, we reach a point of diminishing returns, where the cost
of using the parallel versions outweighs the benefit of the fewer clock cycles spent operating on
the data using parallel versions. Instead, we opt for the layer implementation versions indicated
by regular font and bold font, which fits onto the FPGA. This demonstrates the importance
of having multiple versions with different degrees of parallelism of the implementations of the
layers.

As our implementation is pipelined, each layer can start processing as soon as it receives
the first value of the input. This is visualized in Figure 9, where we see that CNN small uses a
total of 14908 clock cycles to process one entire input. Note that the second half of the network
uses more clock cycles than the first half, highlighting the change in the degree of parallelism.

6.3 Comparison to PyTorch

The FPGA implementations (implemented with SME and HLS), intended for embedded
systems near the data source, are tested with a batch size of 1. In contrast, for the CPU
and GPU implementations, we test a range of batch sizes from 1 to 5000 to demonstrate how
performance scales with batch size. The results in Figure 10 are the mean values gathered
using 10 warmups followed by 1000 iterations for the laptop, and 100 iterations for the Pynq Z2
(due to its slower speeds), of predicting two consecutive batches. Since PyTorch is not directly
supported on the Pynq Z2, we are instead running the model through ONNX, which we denote
as ARM.

In the runtime results, SME matches CPU and GPU performance at batch size 1, while HLS
lags behind by a factor of 2.76. SME outperforms ARM by a factor of 3.18, and HLS by 1.15.
This quickly diverges as the batch size increases, where the CPU and GPU drastically reduce
per-sample time, reaching 34.35 times faster than SME at batch size 5000. ARM surpasses
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Table 5: Layer implementation options for layers in CNN small.

Configuration Version Cycles LUT BRAM DSP Flip Flops
Dynamic power

(W)
Frequency
(MHz)

conv1 00 417 6520 (12.3%) 1 (0.7%) 36 (16.4%) 8949 (8.4%) 0.17 123

batchNorm1 00 680 1857 (3.5%) 0 24 (10.9%) 3062 (2.9%) 0.13 299

relu1 00 677 50 (0.1%) 0 0 98 (0.1%) 0.02 913

maxPool1 00 1016 1029 (1.9%) 3 (2.1%) 0 809 (0.8%) 0.11 97

conv2
00 1234 23300 (43.8%) 3 (2.1%) 140 (63.6%) 31533 (29.6%) 0.64 83

01 10302 4207 (7.9%) 3 (2.1%) 16 (7.3%) 5308 (5.0%) 0.12 57

batchNorm2
00 85 3093 (5.8%) 0 40 (18.2%) 5102 (4.8%) 0.23 299

11 413 970 (1.8%) 0 8 (3.6%) 1278 (1.2%) 0.06 59

relu2
00 82 82 (0.2%) 0 0 162 (0.2%) 0.03 913

11 406 18 (∼0%) 0 0 34 (∼0%) 0.01 913

maxPool2
00 128 2039 (3.8%) 5 (3.6%) 0 1367 (1.3%) 0.22 83

11 632 358 (0.7%) 1 (0.7%) 0 274 (0.3%) 0.04 116

linear
00 41 13312 (25.0%) 2 (1.4%) 12 (5.5%) 6008 (5.7%) 0.29 125

10 50 2424 (4.6%) 2 (1.4%) 12 (5.5%) 3286 (3.1%) 0.09 179

softmax 00 7 4103 (7.7%) 0 4 (1.8%) 5180 (4.9%) 0.18 255

This table displays resource utilization, clock cycles, dynamic power, and frequency for various CNN small layer implementation versions
when synthesized in isolation. The layer type is found in the ”Layer” column, and the implementation version is found in the ”Version”
column, identified by the input and output bus type notation. For some layer instances, one has to choose between two options for the
implementation version. To meet bus type requirements, one can only choose one of the two paths highlighted in the ”Version” column
using bold (indicating a fully parallel path) and underlined (indicating a sequenced path) text fonts.

Figure 9: Gantt chart showing how each layer in the SME implementation of CNN small is
scheduled, highlighting the pipeline parallel execution.
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Figure 10: (Left:) Runtime and (Right:) energy consumption of CNN small on different
platforms. Note that the y-axis is logarithmic, and the x-axis is uneven. ARM is the processor
on the Pynq Z2.

HLS by 1.79 times but lags behind SME by 1.54 times.

This may seem suboptimal at first sight, but note that the FPGA board uses an order of
magnitude less power than the CPU and GPU. If we instead look at the energy consumption,
we see that the FPGA implementations are more energy-efficient than the CPU and GPU
implementations. As we do not have proper power measurement equipment, we gauge energy
consumption by comparing CPU/GPU TDP to FPGA dynamic power plus static power, which
is comparable to TDP. This is a rough estimate, but it is sufficient to demonstrate the energy
efficiency of the FPGA implementations. The HLS implementation is the least energy-efficient
of the two, beating only the CPU implementation by a factor of 1.38 while being beaten by
the GPU by a factor of 1.47. The SME implementation is the most energy-efficient, beating
the CPU and GPU implementations at their best batch size by a factor of 2.85 and 1.39,
respectively. Looking at the ARM processor, even though it consumes less power than the
CPU/GPU, it is still not able to beat SME and HLS, which is more efficient by a factor of 4.03
and 1.95.

While the FPGA may seem suboptimal initially, it consumes significantly less power than
the CPU and GPU. When considering energy efficiency, FPGA implementations outperform
CPU and GPU ones. We estimate energy consumption by comparing CPU/GPU TDP to FPGA
dynamic plus static power, which is comparable to TDP. HLS is the least efficient, beating the
CPU by 1.38 times and being outdone by the GPU by 1.47 times. SME is the most efficient,
surpassing CPU and GPU at their best batch size by 2.85 times and 1.39 times, respectively.
Even though the ARM processor consumes less power than CPU/GPU, it cannot outperform
SME, which is 4.03 times more efficient.

However, since we are targeting a batch size of 1, the results favor the FPGA implementa-
tions. SME is the most energy-efficient, surpassing CPU, GPU, and ARM by factors of 82.61,
47.03, and 8.32, respectively. HLS ranks second, outperforming CPU, GPU, and ARM by
factors of 40.07, 22.81, and 4.03.

Considering the platforms, their power consumption, their price, and their age differences,
we see that the FPGA implementations are a viable alternative to the CPU, GPU, and even
ARM implementations. The FPGA implementations are slower, but they are more energy-
efficient, which is a crucial factor for embedded systems.
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7 Future Work

We have shown that embedding CNN architectures in FPGAs is both feasible and beneficial,
but there is still room for improvement.

7.1 SME Process optimization

The processes inside the SME layer implementations that use BRAMs to store channels
currently wait for entire channels to be stored before outputting values. This is to ensure that
data, which will be used multiple times can be accessed again. However for some configurations,
it is not necessary to store the entire channel for the duration of the process working, and thus
clock cycles could potentially be spared.

We have not dived into the specific order of statements within a process, and we could
potentially optimize the order of statements to reduce the length of the critical path, in turn
increasing the clock rate. For instance, ensuring that writes are isolated in branches and are not
followed by reads prevents complex logic from guarding the path to ensure sequential semantics.

7.2 SME resource sharing

In our current solution, we utilize the compositionality of SME to express layers as classes,
which after initialization become interconnected. This, however, prevents resource sharing
among layers, leading to idle processes and inefficient resource utilization. By employing re-
source sharing, it could become possible to implement even larger CNN architectures given an
effective strategy, albeit at the cost of performance, especially for sample pipelining.

7.3 Sample pipelining

Currently, we pipeline the processing of a single sample, but we could also pipeline the
processing of multiple samples. This would provide further speedup at higher batch sizes,
increasing the gap between the CPU/GPU and the FPGA implementations, shown in Figure 10.
Given the existing internal pipelining, this change should be straightforward.

7.4 Proper power measurements

We have used TDP as the metric for power consumption, but it is not precise. Instead, using
a power measurement tool for accurate data would enhance energy consumption comparisons
among platforms, potentially bringing new insights to the results.

7.5 Related work

Numerous frameworks utilize FPGAs for AI applications, with one being hls4ml [7], a
Python package using Vivado HLS [2]. It generates FPGA-customized VHDL code for var-
ious NN layers. While hls4ml simplifies FPGA-based AI deployment, optimizing the VHDL
code for peak efficiency might demand manual adjustments due to specific FPGA architectures.
Nevertheless, hls4ml acts as a valuable gateway between neural network frameworks and FPGA
acceleration.

DaCeML [16] is another framework, which can load AI models from PyTorch [14] and ONNX
[13] into the Data-Centric parallel programming framework (DaCe) [6], enabling support for
various device targets, including FPGA acceleration via HLS kernels. DaCe has the advantage
gives the capability to optimize the generated code through data-centric graph transformations,
tailoring it for target-specific enhancements like memory access patterns and data reuse, all
while preserving program semantics. While DaCeML generates FPGA kernels, its original focus
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on GPU kernel generation necessitates users to manually leverage FPGA-specific optimizations
to achieve peak performance on FPGAs.

Finally, there is the Vitis AI framework [1], which is a framework that enables the user
to generate AI processors called Deep learning Processing Units (DPUs) that run AI appli-
cations on FPGAs. These DPUs follow the same design strategy as many other AI accel-
erators, namely that they employ an instruction set architecture hardware platform that is
programmable through software. While this provides a flexible solution, the generality of the
framework hinders potential optimizations for a specific application, rendering it unable to fully
exploit the spatial architecture of FPGAs.

All of these framework posts interesting solutions to the same problem, making it an inter-
esting comparison to the work in this paper.

8 Conclusion
We have demonstrated FPGA-based CNN integration using SME and HLS, showcasing on-

par performance compared to PyTorch CPU/GPU/ARM for batch size 1, and improved energy
efficiency across all batch sizes. For our CNN architecture use case, the SME implementation
on FPGA equals CPU/GPU speed for batch size 1 while being ∼83x, ∼47x, and ∼8.32x more
energy-efficient. The HLS implementation on FPGA, although slower, offers ∼40x, ∼23x, and
∼4x better energy efficiency than CPU/GPU. For larger batch sizes, CPU/GPU is ∼35x faster
than the SME implementation on FPGA, but the SME implementation on FPGA beats the
ARM by ∼1.5x while remaining ∼2.8x, ∼1.4x and ∼4x more energy-efficient than CPU, GPU,
and ARM. The HLS implementation on FPGA is ∼1.4x and ∼2x more energy-efficient than
CPU and ARM, but ∼1.5x less than GPU.

These results underscore the promising potential of FPGA-based implementations, espe-
cially for embedded systems with limited power budgets, even when compared to more expen-
sive and newer CPU/GPU platforms, as shown in this paper. Furthermore, we have shown
that SME is a viable alternative to HLS for FPGA-based applications, offering a more intuitive
and flexible development experience, while still providing competitive performance and energy
efficiency.
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