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Abstract

This report presents the results of a friendly competition for formal verification of con-
tinuous and hybrid systems with piecewise constant dynamics. The friendly competition
took place as part of the workshop Applied Verification for Continuous and Hybrid Sys-
tems (ARCH) in 2022. In this edition, five tools have been applied to solve six different
benchmark problems in the category for piecewise constant dynamics: BACH, PHAVer,
PHAVerLite, SAT-Reach, and XSpeed. The result is a snapshot of the current landscape
of tools and the types of benchmarks they are particularly suited for. Due to the diversity
of problems, we are not ranking tools, yet the presented results probably provide the most
complete assessment of tools for the safety verification of continuous and hybrid systems
with piecewise constant dynamics up to this date.

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 44–57
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1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with piecewise constant dynamics and bounded model checking aims at pro-
viding a landscape of the current capabilities of verification tools. We would like to stress
that each tool has unique strengths—not all of the specificities can be highlighted within a
single report. To reach a consensus in what benchmarks are used, some compromises had
to be made so that some tools may benefit more from the presented choice than others.
The obtained results have been verified by an independent repeatability evaluation. To
establish further trustworthiness of the results, the code with which the results have been
obtained is publicly available at gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2022 friendly competition of the ARCH
workshop1 in PCDB category for two types of problems: for verifying hybrid systems with
piecewise constant bounds on the dynamics (HPCD) and for bounded model checking (BMC)
of HPCD systems.

The PCDB category concerns hybrid systems where in each location (mode, piece of the
hybrid state space), the dynamics are given by a differential inclusion of the form

ẋ(t) ∈ U ,

where U is a convex subset of Rn. Specifically, the BMC task concerns the bounded model
checking of HPCD systems where the bound is described as the depth of the discrete jump of
the system.

Tool developers run their tools summarized in Sec. 2 on different benchmark problems
presented in Sec. 3 and report the results obtained from their own machines also in Sec. 3.

The results reported by each participant have not been checked by an independent authority
and are obtained on the machines of the tool developers. Thus, one has to factor in the
computational power of the used processors summarized in Sec. A as well as the efficiency of
the programming language of the tools. It is not the goal of the friendly competition to rank
the results, the goal is to present the landscape of existing solutions in a breadth that is not
possible by scientific publications in classical venues. Those would require the presentation of
novel techniques, while this report showcases the current state of the art.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anybody. All tools presented in this report use some form of reachability analysis. This,
however, is not a constraint set by the organizers of the friendly competition. We hope to
encourage further tool developers to showcase their results in future editions.

2 Participating Tools

The tools participating in the category PCDB: Continuous and Hybrid Systems with Piecewise
Constant Dynamics and Bounded Model Checking are introduced below in alphabetical order.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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BACH BACH [12, 11, 23] is a bounded reachability checker for Linear Hybrid Automata
(LHA) model, Hybrid Systems with Piecewise Constant Dynamics (HPWC) in the term of
ARCH competition. The tool provides GUI for LHA modeling and also bounded reachability
checkers for both single automaton and automata network. Be different from classical bounded
checkers of LHA, which encodes the “complete” bounded state space of the system into a huge
SMT problem, BACH conducts the bounded checking in a “path-oriented” layered style. It
finds potential paths which can reach the target location on the graph structure first, then
encodes the feasibility of such path into a linear programming problem and solve it afterwards.
In this way, as the number of paths in the discrete graph structure of an LHA under a given
bound is finite, all candidate paths can be enumerated and checked one by one to tackle the
bounded reachability analysis of LHA. Furthermore, the memory usage is well controlled as
it only encodes and solves one path at a time. Meanwhile, BACH provides an efficient way
to locate the infeasible path segment core when a path is reported as infeasible to guide the
backtracking in the graph structure traversing to achieve good performance [24]. Such infeasible
path segments can also be used to derive complete state arguments under certain conditions [25].

PHAVer/SX PHAVer [13] is a formal verification tool for computing reachability and equiv-
alence (simulation relation) of hybrid systems. It can handle the class of Linear Hybrid Au-
tomata (LHA), whose continuous dynamics is characterized by piecewise constant bounds on
the derivatives and whose discrete jumps can be a convex linear predicate over the variables
before and after the jump. PHAVer uses standard operations on polyhedra for the reachability
computation over an infinite time horizon (similar to those used in HyTech), and the algorithm
for computing simulation relations is a straightforward extension of these. Using unbounded
integer arithmetic, the computations are exact and formally sound. While termination of LHA
is undecidable, PHAVer provides formally sound, precise overapproximation and widening oper-
ators that can force termination at the cost of reduced precision. These operators also simplify
the computed continuous sets and dynamics of the system, and may result in a considerable
speed-up without much loss in precision. Since 2011, PHAVer is continued as a plugin to the
tool platform SpaceEx. This plugin is the tool actually used for the competition: for clarity, in
the following we refer to it under the name PHAVer/SX.

PHAVerLite (and PHAVer-lite/SX) PHAVerLite is a variant of the stand alone tool
PHAVer (which was integrated as plug-in PHAVer/SX in the SpaceEx framework), sharing
the same capabilities and formal soundness guarantees. The main differences with respect to
PHAVer/SX are:

• the use of the modeling syntax of PHAVer (rather than the SpaceEx syntax);

• the adoption of the new polyhedra library PPLite [5, 6, 8], achieving significant efficiency
improvements with respect to the PPL [4] implementation used in PHAVer/SX;

• the development of a few novel algorithms and the revisiting of some of the design/im-
plementation trade-offs [7];

• the possibility to experiment with Cartesian factoring techniques [17].

In order to better highlight the efficiency improvements obtained, in the experimental evalua-
tions, we will pair the results obtained by PHAVerLite 0.4 (available at https://github.com/
ezaffanella/PHAVerLite), which is based on PPLite 0.7 (available at https://github.com/
ezaffanella/PPLite), with those that were obtained, in the 2018 edition, by its first prototype
PHAVer-lite/SX, which was developed as a SpaceEx plugin.
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SAT-Reach SAT-Reach, another variant of XSpeed, is a bounded model checker for hybrid
systems with piecewise affine dynamics, modeled as a hybrid automaton. It implements a path-
guided reachability analysis routine for BMC, in which paths are obtained from the discrete
structure of the hybrid automata by SAT-solving, and set-based reachability analysis [14] is sub-
sequently carried out along the paths. SAT-Reach also incorporates an effective path pruning
technique based on the integration of SAT-based path enumeration and pathwise reachability
analysis. The input language of SAT-Reach is the same as SpaceEx ’s input language, one model
file (xml) to describe the hybrid automaton and one configuration file to describe the initial
states, forbidden states, and parameter settings. The tool is available online at SAT-Reach.

XSpeed XSpeed implements algorithms for reachability analysis of continuous and hybrid
systems with affine dynamics. The focus of the tool is to exploit the modern multicore archi-
tectures to enhance the performance through parallel computations. The algorithms in XSpeed
are based on symbolic states represented using support functions. The tool can analyze hybrid
automata models in the SpaceEx input format. It allows to compute the reachability in bounded
depth as well as reachability till fixed point. XSpeed realizes two algorithms to enhance the per-
formance of reachability analysis of purely continuous systems. The first is the parallel support
function sampling algorithm and the second is the time-slicing algorithm [21]. The performance
of hybrid systems reachability analysis is enhanced using an adaptation of the G.J. Holzmann’s
parallel BFS algorithm in the SPIN model checker, which is called the AGJH algorithm [16].
In addition, a task parallel and an asynchronous variant of AGJH are also implemented in the
tool. The tool is available at https://gitlab.com/raj.ray84/XSpeed-plan.

3 Verification of Benchmarks

3.1 Adaptive Cruise Controller

Model The adaptive cruise controller is a distributed system for assuring that safety distances
in a platoon of cars are satisfied [9]. It is inspired by a related benchmark in [19]. For n cars, the
number of discrete states is 2n and the number of continuous variables is n. Each variable xi

encodes the relative position of the i-th car, for i = 0, . . . , n− 1. The car i-th car is considered
to be in front of the i + 1-th car. The relative velocity of each car has a drift |ẋi − ẋi+1| ≤ 1
when cruising and |ẋi − ẋi+1 − ε| ≤ 1 when recovering, where ε is the slow-down parameter.
The cars can stay in cruise mode as long as the distance to the preceding vehicle is greater 1.
The can go into recovery mode when the distance is smaller than 2.

ACCSnn The model with nn cars, ε = 2. This model is considered safe with respect to
specification UBnn and BDnn (no collisions).

ACCUnn The model with nn cars, ε = 0.9. This model is considered unsafe with respect to
specification UBnn and BDnn (collisions are possible).

Specification The distance between adjacent cars should be positive:

xldr − x > 0,

where x and xldr are the positions of the car and the car in front, respectively.
For unbounded state space, we have UBnn. For bounded state space, we have BDnn.

UBnn For i = 0, . . . , n− 1: xi − xi+1 > 0.
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Table 1: Computation Times of the Adaptive Cruise Controller.

instance ACCS05 ACCU05 ACCS06 ACCU06 ACCS07 ACCU07 ACCS08 ACCU08

safety safe unsafe safe unsafe safe unsafe safe unsafe

# vars 5 5 6 6 7 7 8 8

# locs 32 32 64 64 128 128 256 256

tool computation time in [s]

unbounded spec. UB05 UB05 UB06 UB06 UB07 UB07 UB08 UB08

PHAVer/SX 9.4 13.7 461 13430 – – – –

PHAVer-lite/SX 1.0 0.9 38.1 22.4 – – – –

PHAVerLite 0.08 0.05 0.51 0.24 4.14 1.30 48.28 7.88

bounded spec. 2 BD05 BD05 BD06 BD06 BD07 BD07 BD08 BD08

BACH 2.27 0.06 3.31 0.10 4.73 0.11 6.68 0.17

XSpeed 898.70(B : 2) - 172.32(B : 1) - - - - -

SAT-Reach 377.01(B : 3) - 215.58(B : 2) - - - - -

BDnn For i = 0, . . . , n− 1: xi − xi+1 > 0 within default discrete search depth 30.

Results The computation times of various tools are listed in Tab. 1.

Note on XSpeed and SAT-Reach The flow expressions of the form c1 ≤ d′ ≤ c2 are
modified to d′ = c, where c is a new added variable in the system and the initial specification
includes the constraints c1 ≤ c ≤ c2.

3.2 Distributed controller

Model The benchmark is an extension of the benchmarks presented in [18], to which multiple
sensors with multiple priorities have been added. It models the distributed controller for a robot
that reads and processes data from different sensors. A scheduler component determines what
sensor data must be read according to the priority of the sensor. The controller has 1 continuous
and n discrete variables, the scheduler has n continuous and n discrete variables, and each sensor
has 1 continuous variable. The controller has 4 locations, the scheduler has 1 + n, and each
sensor has 4 locations. The product automaton has 4× (1+n)×4n locations, 2n+1 continuous
variables and 2n discrete variables. Note that some tools, such as all tools based on PHAVer,
do not support discrete variables and may model the discrete variables as continuous variables.

DISCnn The model with nn sensors. This model is considered safe with respect to specification
UBnn.

Specification The system is considered safe if at no point in time all sensors send data
simultaneously.

For unbounded state space, we have UBnn. For bounded state space, we have BDnn.

UBnn It is never the case that all nn sensors are in location send.

BDnn All nn sensors are not in location send within default discrete search depth 30.
2The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
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Table 2: Computation Times of the Distributed Controller.

instance DISC02 DISC03 DISC04 DISC05

safety safe safe safe safe

# vars 9 13 17 21

# locs 192 1024 5120 24976

tool computation time in [s]

unbounded spec. UB02 UB03 UB04 UB05

PHAVer/SX 1.1 – – –

PHAVer-lite/SX 0.1 548.0 – –

PHAVerLite 0.05 0.39 2.76 23.38

bounded spec. BD02 BD03 BD04 BD05

BACH 0.17 0.23 0.32 0.62

XSpeed 15.81 769.85(B : 11) 625.09(B : 10) 65.35(B : 8)

SAT-Reach 2.98 68.93 - -

Results The computation times of various tools are listed in Tab. 2.

Note on PHAVerLite The DISC benchmark is an example where the application of Carte-
sian factoring techniques makes a significant difference: in the 2019 edition of the competition,
where Cartesian factoring was not available, about 78 seconds were spent to solve instance
DISC04-UB04, while instance DISC05-UB05 was timing out.

Note on XSpeed and SAT-Reach The guard conditions of the form x+y < c is converted
to x+ y ≤ c.

3.3 Fischer’s Protocol

Model Fischer’s protocol is a time based protocol of mutual exclusion between processes,
originally from [20]. The flow constraints are given by 1

2 ≤ ẋ1 ≤ 3
2 , . . . ,

1
2 ≤ ẋm ≤ 3

2 , where
xi is the clock of the i-th process. The product automaton has (n + 1) × 4n locations and n
variables.

FISCSnn protocol with nn processes, considered safe with respect to specification UBnn and
BDnn.

FISCUnn protocol with nn processes, considered unsafe with respect to specification UBnn
and BDnn.

Specification The protocol is correct if no two processes are ever in the critical section at
the same time.

For unbounded state space, we have UBnn. For bounded state space, we have BDnn.
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Table 3: Computation Times of the Fischer Benchmark.

instance FISCS04 FISCU04 FISCS05 FISCU05 FISCS06 FISCU06

safety safe unsafe safe unsafe safe unsafe

# vars 4 4 5 5 6 6

# locs 1280 1280 6144 6144 28672 28672

tool computation time in [s]

unbounded spec. UB04 UB04 UB05 UB05 UB06 UB06

PHAVer/SX 90.5 579 – – – –

PHAVer-lite/SX 12.3 102.2 14722.2 – – –

PHAVerLite 0.18 0.18 1.03 0.77 8.61 3.97

bounded spec. BD04 BD04 BD05 BD05 BD06 BD06

BACH 12.11(B : 20) 0.23 64.92(B : 20) 0.65 181.53(B : 20) 1.29

UBnn There are no two processes such that both are in location cs (critical section) at the
same time.

BDnn There are no two processes such that both are in location cs (critical section) at the
same time within default discrete search depth 30.

Results The computation times of various tools are listed in Tab. 3.

3.4 Navigation (NAV)

3.4.1 Model

The navigation example is also a single automaton. It models the motion of a point robot
in a n-dimensional cube. The cube is partitioned into mn rectangular regions and each such
region is associated with a vector field described by the flow equations. We use a generalization
method introduced in [15] to generate such a navigation mode, NAV m n. Similar with the
motorcade model, in order to generate a not too complex model, we set m as 3 and n as 2, 3,
and 4 respectively. As the model is too large to put in the paper, we will omit the graphical
presentation here.

3.4.2 Specification

The specification is to check whether there is a behavior of the system which can reach the
specific state in the farthest corner. In the benchmark model, Whether l(m− 1) . . . (m− 1)︸ ︷︷ ︸

n

is

reachable.
For unbounded state space, we have UBnn. For bounded state space, we have BDnn.

UB m n It is never the case that the system is in location l(m− 1) . . . (m− 1)︸ ︷︷ ︸
n

.
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Table 4: Computation Times on the NAV Benchmark

instance NAV 3 2 NAV 3 3 NAV 3 4

safety safe safe safe

# vars 3 4 5

# locs 9 27 81

tool computation time in [s]

unbounded spec. UB 3 2 UB 3 3 UB 3 4

PHAVerLite 0.01 0.45 0.47

bounded spec. BD 3 2 BD 3 3 BD 3 4

BACH 0.12 12.79 48.04

XSpeed 446.98(B : 12) 715.99(B : 12) 1683.12(B : 10)

SAT-Reach 618.33(B : 18) 314.77(B : 19) 662.25(B : 15)

BD m n The system is not in location l(m− 1) . . . (m− 1)︸ ︷︷ ︸
n

within default discrete search depth

30.

3.4.3 Result

Computation Times The computation times of various tools for the NAV benchmark are
listed in Tab. 4.

Note on PHAVerLite Safety of the unbounded instances is proved using exact reachability
for instances UB 3 2 and UB 3 3, while resorting to over-approximation for instance UB 3 4
(in this case, the computation of the exact reachable set diverges).

Note on XSpeed and SAT-Reach Since XSpeed and SAT-Reach expects affine dynamics,
the flow expressions of the form x′ ∈ [xl, xh] is converted to x′ = xc, where xc is an introduced
variable together with added constraint xl ≤ xc ≤ xh in the initial condition.

3.5 TTEthernet

Model The TTEthernet protocol is a protocol for the remote synchronization of possibly
drifted clocks distributed over multiple components, taken from [10]. The system consists of
two compression masters (CM) and k synchronization masters (SM). Each CM has two clocks
cmi, each SM has one clock smi. Both CM and SM are modeled by a hybrid automaton with
4 locations each. The product automaton has 4 + k variables and 4k+2 locations.

TTESn protocol with n SM. This model is considered safe with respect to specification UBn
and BDn. The global time horizon is limited to 3000ms.
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Table 5: Computation Times of the TTEthernet Benchmark

instance TTES05 TTES07 TTES09

safety safe safe safe

# vars 9 11 13

# locs 16384 262144 4194304

tool computation time in [s]

unbounded spec. UB05 UB07 UB09

PHAVer/SX 25.2 113 –

PHAVer-lite/SX 1.9 7.7 –

PHAVerLite 0.37 1.42 8.99

bounded spec. BD05 BD07 BD09

BACH 0.09 0.13 0.16

Specification The difference between the clocks of the SM should not exceed a threshold of
2max drift .

For unbounded state space, we have UBnn. For bounded state space, we have BDnn.

UBn For all i, j, smi − smj ≤ 2max drift , where max drift = 0.001ms.

BDn For all i, j, smi − smj ≤ 2max drift within default discrete search depth 30, where
max drift = 0.001ms.

Results The computation times of various tools are listed in Tab. 5.

3.6 Dutch Railway Network

We consider a finite-horizon safety problem over max-plus linear (MPL) systems. An MPL
system is described by recurrence equation

x(k + 1) = A⊗ x(k), k = 0, 1, . . . , (1)

where x(k) = [x1(k) . . . xn(k)] ∈ Rn is the state variables representing the time stamps of the
discrete events at time horizon k and A is n× n max-plus algebraic matrix representing model
under consideration. It should be noted that the matrix operation on (1) is defined over max-
plus algebra: see [3] for more detailed descriptions about max-plus algebra and its operations,
and to [1, 2] for more details on formal verification of MPL systems.

Given an MPL system (1), a time horizon N , a set of initial conditions X0 and an unsafe
set S, a finite-horizon safety problem is an instance problem to check whether the system can
reach the unsafe set within the given time horizon.
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Model In [22, Appendix B], the high-scale Dutch railway networks are modeled as a max-
plus-linear(MPL) system. For details on MPL system, please refer to [2] That model has 214
state variables x1(k), . . . , x214(k) representing the k-th departure from the selected stations.
For ARCH-COMP this year, we use a subset of that model by considering only the first 21
state variables x1(k), . . . , x21(k). The model instance is defined formally as follows:

DRNW03 initial condition X0 = {x ∈ R21 : 0 ≤ x1 ≤ x2 ≤ . . . ≤ x21 ≤ 1}.

The model is easily embedded in a hybrid automaton with a single location, where the time
derivative of all variables is zero, and a self-loop transition that models the discrete dynamics
for each region.

Specification We have four specifications of interest for bounded state space:

BD01 ∃k = 0, . . . , 30 such that x1(k) > x2(k) > . . . > x21(k) (not satisfied)

BD02 ∃k = 0, . . . , 30 such that x1(k)− x2(k) > 20 or x1(k)− x2(k) < −20 (satisfied)

BD03 ∃k = 0, . . . , 30 such that x9(k)− x13(k) > 40 or x9(k)− x13(k) < −40 (satisfied)

BD04 ∃k = 0, . . . , 30 such that x17(k)− x21(k) > 60 or x17(k)− x21(k) < −60 (not satisfied)

For unbounded state space, we have UB01, . . . , UB04 by removing the upper bound from
k ∈ N. In the sense of a safety specification, the above specifications specify unsafe states. If
the unsafe sets are reachable, the corresponding specification BD01, . . . ,BD04 is satisfied.

Results The computation times of various tools are listed in Tab. 6.

Note on the model Given an MPL system (1), it is possible that there exist k0, c ∈ N,
λ ∈ R such that for all x(0) ∈ Rn the trajectory of (1) starting from x(0) satisfies

xi(k + c) = (λ× c) + xi(k), i = 1, . . . , n, k ≥ k0.

The smallest such k0 and c are called the transient and the cyclicity of A, respectively. Further-
more, the scalar λ corresponds to the max-plus eigenvalue of the state matrix A. We refer the
interested readers to [3, Section 3.7] about this periodic behavior and how to compute transient
and cyclicity.

For the underlying DRNW03 model, the corresponding transient and cyclicity is k0 = 26 and
c = 5, respectively. As a result, xi(k + 5) − xj(k + 5) = xi(k) − xj(k) for all i, j ∈ {1, . . . , 21}
and k ≥ 26. Since, the unsafe sets BD01, . . . ,BD04 can be expressed as the conjunction or
disjunction of inequalities xi(k) − xj(k) > c for c ∈ R, it is suffice to check the reachability
problems BD01, . . . ,BD04 up to time horizon N = 26 + 5− 1 = 30.

Note on PHAVerLite Since the iteration count in PHAVerLite does not guarantee the
actual search depth, in the bounded-depth case we added an additional variable (k) to track
the number of discrete transitions taken: this is initialized to 0, it is incremented at each
discrete transition and it is limited from above by the invariant k ≤ 30. The tool is then run
until either a fixed point is found (for specifications BD01 and BD04) or a reachable unsafe
state is found (for BD02 and BD03). In the lower part of Table 6 we consider unbounded
variants UB01, . . . , UB04 (we also omit the additional variable from the hybrid model). The
goal, in this case, is to try and prove/disprove the properties without exploiting the cyclicity
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Table 6: Computation Times of the Dutch Railway Network Benchmark

instance DRNW03 DRNW03 DRNW03 DRNW03

safety safe unsafe unsafe safe

# vars 21 21 21 21

# locs 1 1 1 1

tool computation time in [s]

bounded spec. BD01 BD02 BD03 BD04

BACH 0.08 0.09 2.07 156.76

PHAVerLite 0.79 0.29 0.31 0.78

unbounded spec. UB01 UB02 UB03 UB04

PHAVerLite 10.84 0.27 0.28 –

of the original MPL system. By resorting to over-approximations (starting from a larger initial
region and approximating set unions using constraint hulls), PHAVerLite is able to prove that
UB01 is not satisfied (i.e., the unsafe region is unreachable); UB02 and UB03 are disproved
similarly to BD02 and BD03, using exact reachability (in this case, the missing upper bound
for k makes no difference); on the other hand, the tool is not able to prove that UB04 is not
satisfied: a reachability analysis using over-approximations yields a false positive, whereas the
exact reachability analysis does not terminate.

4 Conclusions and Outlook

This report presents the results of the sixth edition of a friendly competition for the formal
verification of continuous and hybrid systems of the ARCH’22 workshop, in the category on
PCDB: piecewise constant dynamics and BMC of such systems. The reports of other categories
can be found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH. The code
with which the results have been obtained is publicly available at gitlab.com/goranf/ARCH-
COMP.

As PCDB category includes both unbounded checkers and bounded checkers of HPCD sys-
tems, we provide both unbounded and bounded specifications for each benchmark respectively.
Then, each participator can choose to solve the corresponding specifications they are partic-
ularly suited for. In the spirit of a friendly competition, this report does not provide any
ranking of tools. We report a few casual observations. For the reported instances, PHAVerLite
and BACH solved almost all the cases in the respective category of unbounded and bounded
problem efficiently.
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A Implementation Languages and Used Machines

A.1 BACH

• Implementation language: C++

• Processor: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 21224 (full), 3128 (single thread)

A.2 PHAVer/SX

• Implementation language: C++

• Processor: Intel Core i7-4850HQ CPU @ 2.30GHz x 4

• Memory: 15.9 GB
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• Average CPU Mark on www.cpubenchmark.net: 9057 (full), 1966 (single thread)

A.3 PHAVerLite (and PHAVer-lite/SX)

• Implementation language: C++

• Processor: Intel Core i7-3632QM CPU @ 2.20GHz x 4

• Memory: 15.5 GB

• Average CPU Mark on www.cpubenchmark.net: 6939 (full), 1566 (single thread)

A.4 SAT-Reach

• Implementation language: C++

• Processor: AMD (R) Ryzen 7 5800U @ 1.90 x 8

• Memory: 16 GB

• Average CPU Mark on www.cpubenchmark.net: 18861 (full), 3092 (single thread)

A.5 XSpeed

• Implementation language: C++

• Processor: AMD (R) Ryzen 7 5800U @ 1.90 x 8

• Memory: 16 GB

• Average CPU Mark on www.cpubenchmark.net: 18861 (full), 3092 (single thread)
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