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Abstract

Stroke is a serious cerebrovascular condition in which brain cells die due to an abrupt
blockage of arteries supplying blood and oxygen or when a blood vessel bursts or ruptures
and causes bleeding in the brain. Because the onset of stroke is very sudden in most
people, prevention is often difficult. In Japan, stroke is one of the major causes of death
and is associated with high medical costs; these problems are exacerbated by the aging
population. Therefore, stroke prediction and treatment are important. The incidence
of stroke may be avoided by preventive treatment based on the patient’s risk of stroke.
However, since judging the risk of stroke onset is largely dependent upon the individual
experience and skill of the doctor, a highly accurate prediction method that is independent
of the doctor’s experience and skills is necessary. This study focuses on a predictive method
for subarachnoid hemorrhage, which is a type of stroke. LightGBM was used to predict
the rupture of cerebral aneurysms using a machine learning model that takes clinical,
hemodynamic and morphological information into account. This model was used to analyze
samples from 338 cerebral aneurysm cases (35 ruptured, 303 unruptured). Simulation of
cerebral blood-flow was used to calculate the hemodynamic features while the surface
curvature was extracted from the 3D blood-vessel-shape data as morphological features.
This model yielded a sensitivity of 0.77 and a specificity of 0.83.

1 Introduction

Stroke is a generic term that encompasses cerebral infarction, cerebral hemorrhage, and sub-
arachnoid hemorrhage and occurs is when brain cells die due to an abrupt blockage of arteries
that supply blood and oxygen to the brain or bleeding in the brain tissue when a blood vessel
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bursts. For many people, stroke may occur suddenly and without warning; thus, it is difficult to
prevent. In 2018, stroke became the country’s fourth leading cause of death due to illness and
the number one cause of being bedridden in Japan. Therefore, early prediction and treatment
options for stroke patients are crucial. Reducing the incidence of stroke requires a preventive
strategy that lowers the risk of stroke. Unfortunately, evaluating the risk of stroke largely de-
pends on the individual judgment and expertise of the doctor. Therefore, a highly accurate
method for predicting stroke risk that is independent of the doctor’s experience and judgment
is required.

Existing stroke-prediction models [11], [12] have incorporated features that are clinically
verified or have been manually selected by medical experts. [8], [10] and [20] used data from the
patient’s medical history as input features in their research. Meanwhile, Amini et al. [2] used
the k-nearest neighbor’s algorithm [1] and the C4.5 decision tree method [16] for predicting
stroke onset from the patient’s medical history data. Moreover, some studies have started
employing vascular imaging for predicting disease onset. For example, Nogueira et al. [14]
employed vascular imaging to predict clinical outcomes and investigated the risk of symptomatic
intracerebral hemorrhage among patients who underwent intravenous thrombolytic treatment.
On the other hand, Bentley et al. [3] used computerized tomography brain-image inputs into a
support vector machine (SVM) algorithm [7] to predict stroke.

There are several other reports wherein the state of cerebral blood flow, in addition to the
patient’s medical information, was deeply involved with the stroke onset [5]. Morino et al.
[13] used particle image velocimetry (PIV) and laser doppler velocimetry (LDV) to measure
the velocity profiles of ruptured and unruptured intra-aneurysmal hemodynamics. Xiang et al.
[21] examined how an inlet waveform affects the predicted hemodynamics in patient-specific
aneurysm geometries. Furthermore, several groups acknowledged the importance of wall shear
stress (WSS), energy loss (EL), and pressure loss coefficient (PLC) in predicting the rupture of
cerebral aneurysms [15], [17], [19].

Among these studies, very few have considered combining data from various technological
sources to successfully predict the onset of stroke. In this regard, our previous study combined
clinical information, hemodynamic information, and morphological information into a classifica-
tion model for enhanced prediction of stroke [18]. Moreover, Suzuki et al. [18] aimed to develop
a highly precise stroke-onset prediction method using machine learning. Specifically, they devel-
oped a machine learning model that would predict whether a cerebral aneurysm would rupture
and cause subsequent subarachnoid hemorrhage using clinical information, hemodynamic in-
formation obtained by computational fluid dynamics (CFD) simulation data of cerebral blood
flow, and morphological information obtained from the 3D blood-vessel-shape data as inputs.
Using logistic regression as a classification model, Suzuki et al. [18] found that this model
yielded a sensitivity of 0.64 and a specificity of 0.85.

In this paper, LightGBM [9], which is a gradient-boosting algorithm based on the decision
tree model, is used as a classifier. In this classifier, the time-series data obtained from the
CFD simulation of cerebral blood flow were additionally considered as hemodynamic features.
Additionally, the surface curvature data showing the cerebral aneurysm that was obtained from
the 3D blood vessel shape data were considered as morphological features.

In this manuscript, we describe the data required to build the proposed classification model
(Section 2), the process of building the classifier (Section 3), and the results of the numerical
experiments as well as the implications of these results (Section 4). We conclude the paper in
Section 5.
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2 Dataset

Out of the 6,470 total cases that were previously registered in the Jikei University database, we
first extracted cases based on the location of the occurrence of the aneurysm. If the case was
unruptured, we then extracted the cases that are being observed and have not been treated in
the past. If the case was ruptured, we then extracted the cases that ruptured during follow-
up visits. In addition, we used morphological classification to restrict the cases to those in
which the length, width, and neck of the bulge are each < 10 mm but at least one of these
measurements was > 3 mm. Furthermore, we restricted the unruptured cases to those in which
the follow-up period1 was over two years and analyzed all consecutive cases. In the end, 338
cases were selected for this study. Clinical, hemodynamic, and morphological information was
extracted from the 338 cases, which included 303 unruptured and 35 ruptured samples.

2.1 Clinical information

The following clinical information was obtained for each case: patient age; gender; the location
of the aneurysm; a patient history of subarachnoid hemorrhage (SAH); a history of smoking;
diabetes mellitus (DM); hypertension (HT); hyperlipidemia; alcohol consumption; polycystic
kidneys (PK); cerebral hemorrhage (CH); hormone replacement (HR); the date of last consul-
tation (discretized in units of three months and in units of ten days.); family history of SAH
(FH SAH); family history of unruptured aneurysms (FH Unruptured Aneurysm); and a family
history of PK (FH PK). A total of 32 features were collected from the patients’ medical history.

2.2 Hemodynamic Information

Hemodynamic information was obtained through the CFD simulation of the cerebral blood
flow. CFD is a branch of fluid mechanics that employs numerical analyses to solve problems
involving fluid dynamics. The simulation identified physical blood-flow characteristics such as
PLC, EL, energy loss per unit volume (ELV), inflow concentration index (ICI), WSS, oscil-
latory shear index (OSI), low shear-stress area percentage (LSA), low shear index (LSI), and
shear concentration index (SCI). While our previous study [18] used only the maximum, mini-
mum, amplitude, and average of these quantities, the maximum value : minimum value ratios
of the PLC, EL, ELV, ICI, LSA, LSI, and SCI were also used in this paper. Among these
characteristics, PLC, EL and WSS were reported as being helpful for predicting whether a
cerebral aneurysm would rupture [15], [17], [19]. In addition, we extracted time-series features
of cerebral blood flow velocity, pressure, shear force, and WSS from the CFD simulation data.
The length of the time-series data of velocity, pressure, shear force, and WSS obtained from
the CFD simulation was 0.80 seconds while the sampling interval was 0.05 seconds. From the
inside of the cerebral aneurysm, the positions where the value of each physical quantity took
the maximum value during 0.8 seconds and the positions where the variance of the values of
each physical quantity took the maximum value during 0.8 seconds (eight positions in total)
were found. Next, the rates of change during time window of 0.05 seconds for each physical
quantity at those positions were used for time-series features for the machine learning model.
A total of 181 features were collected from the blood-flow-simulation data.

The calculation conditions are summarized below. A prototype CFD solver (Siemens Health-
care GmbH, Forchheim, Germany, “Not to be used for Diagnosis and/or Therapy”), which uti-
lizes the Lattice Boltzmann method [4], was used for this method. With regards to the physical

1The follow-up period is defined as the time between the initial consultation and the final consultation.
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properties of blood, the fixed density and viscosity values were set and non-Newtonian fluids
were disregarded. After considering the laminar flow field, the two pulses were calculated using
the pulse conditions and only the results obtained from the second pulse were used. The outlet
boundary condition was set to an average static pressure of 0 Pa, and the calculations were
established in a structured computational grid with a maximum size of 0.1 mm. Further details
are described in previously published studies [15],[19].

2.3 Morphological Information

The morphological information of cerebral aneurysm that was obtained includes the maximum
aneurysm height, maximum neck diameter, neck area, volume, aspect ratio, sidewall or bifur-
cation type, and the presence or absence of a bleb. To extract additional features from the 3D
blood vessel shape data, which was stored in the stereolithography (STL) format, this study
estimated curvatures on the surface of the vessel and used these characteristics as features. This
method yielded the following four characteristics related to surface curvature: mean curvature,
Gaussian curvature, root mean square (RMS) curvature, and absolute curvature. MeshLab
[6] was used to read and analyze the STL files of blood-vessel-shape and obtain the surface
curvatures. We used the histogram of each of four surface curvature as morphological features.
A total of 257 features were collected from the morphological data.

3 Classification Model for Cerebral Aneurysm Rupture

Prediction

LightGBM, which is an open-source software library, was used as a classifier to predict whether
a cerebral aneurysm would rupture. LightGBM provides a gradient-boosting decision tree
framework. Gradient boosting is a type of ensemble learning where multiple models (“weak
learners”) are trained to solve the same problem and combined to obtain better predictive
performance. Boosting trains weak learners sequentially based on the previous weak learners.
LightGBM is one of the most popular methods that is used in data analysis competitions due
to its high efficiency and predictive power.

LightGBM internally produces predicted probability values ranging between 0.0 and 1.0
rather than predicted label values such as rupture or unruptured. Therefore, we need to set
a probability threshold to label the outcome to be ruptured or unruptured. To determine the
threshold value, the harmonic mean of the sensitivity and specificity was used for the threshold
evaluation. The sensitivity, which was computed using Eq. (1), represents the fraction of
ruptured samples that were correctly predicted out of the total number of ruptured samples.

Sensitivity =
TruePositive

TruePositive + FalseNegative
(1)

The specificity, which was computed by Eq. (2), represents the fraction of correctly-predicted
unruptured samples out of the total number of unruptured samples.

Specificity =
TrueNegative

TrueNegative + FalsePositive
(2)

A threshold value that maximizes the harmonic mean of sensitivity and specificity was regarded
as the optimal threshold value (Topt). We calculated the harmonic mean, H , using the following
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equation:

H =
2 · Sensitivity · Specificity

Sensitivity + Specificity
(3)

To improve the sensitivity of the classifier, fine-tuning was performed by multiplying the ob-
tained optimum threshold, Topt, by 0.9 using the equation below.

T
∗

opt = 0.9 · Topt (4)

Other hyperparameters were tuned manually.

4 Results and Discussion

4.1 Hyperparameter Tuning

The result of the hyperparameter tuning are organized in Table 1. The default values were used
for the other hyperparameters.

Hyperparamater Selected value

objective binary
n estimators 10
learning rate 0.02
max depth 6

Table 1: Hyperparameters selected

4.2 Predicting Cerebral Aneurysm Rupture

The classification model was evaluated by its sensitivity, specificity, and F-measure. The F-
measure is the harmonic mean of precision and sensitivity and it was computed using Eq. (6).

F-measure =
2 · TruePositive

2 · TruePositive + FalsePositive + FalseNegative
(5)

Stratified tenfold cross-validation was used to test the performance of the classification
model. Table 2 shows the confusion matrix and Table 3 summarizes the performance mea-
sures resulting from the classification of the test data. By using a gradient-boosting decision
tree framework and newly added features, the sensitivity of the model was greatly improved.
Therefore, the classification was more stable compared to our previous study, which yielded a
sensitivity of 0.64 and specificity of 0.85 [18].

N=338 Actual class
Rupture Unrupture

Predicted Rupture 27 53
class Unrupture 8 250

Table 2: Confusion matrix
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Performance measure Value
Sensitivity 0.77
Specificity 0.83
F-measure 0.47

Table 3: Performance measures resulting from the classification

5 Conclusions

A classifier incorporating clinical, hemodynamic and morphological data was constructed using
machine learning and used to predict cerebral aneurysm rupture in a total of 338 cerebral
aneurysm data samples (35 ruptured, 303 unruptured). Using LightGBM as a classification
model, we created a model with a sensitivity of 0.77 and a specificity of 0.83 that predicted
cerebral aneurysm rupture using data from three different sources. Future studies will include
evaluating the contribution of each parameter to the prediction performance and systematically
executing the tuning of hyperparameters.
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