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Abstract

Mathematical induction is a fundamental tool in computer science and mathematics.
Henkin [11] initiated the study of formalization of mathematical induction restricted to the
setting when the base case B is set to singleton set containing 0 and a unary generating
function S. The usage of mathematical induction often involves wider set of base cases
and k−ary generating functions with different structural restrictions. While subsequent
studies have shown several Induction Models to be equivalent, there does not exist precise
logical characterization of reduction and equivalence among different Induction Models. In
this paper, we generalize the definition of Induction Model and demonstrate existence and
construction of S for given B and vice versa. We then provide a formal characterization
of the reduction among different Induction Models that can allow proofs in one Induction
Models to be expressed as proofs in another Induction Models. The notion of reduction
allows us to capture equivalence among Induction Models.

1 Introduction

Mathematical induction is a fundamental tool in automated reasoning, and more broadly in
computer science and mathematics [2, 3, 9, 13]. To prove that a mathematical object A satisfies
the property P by mathematical induction, one proceeds by a careful, and often creative design
of induction hypothesis and associated base case B [11]. The property is first shown to hold
over the base case and then shown to hold under induction hypothesis [9]. While mathematical
induction is often taught to involve creativity in the design of inductive hypothesis [6, 10],
modern automated theorem proves employ mathematical induction as a core technique.

The widespread usage of mathematical induction has led to plethora of Induction Models
defined as tuples of base case and the associated generating functions [1, 12]. The existence of
plethora of Induction Models begs for a formal analysis of Induction Models. The seminal work
of Henkin [11] provided the earliest definition of Induction Model on N where the base case is
restricted 0 and the associated generating function S is unary. Subsequent work of Doornbos,
Backhouse, and Woude [5] presented several different formulations of mathematical inductions
and demonstrated their equivalence.

∗The author list has been sorted alphabetically by last name; this should not be used to determine the extent
of authors’ contributions.
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Motivated by the usage of several different Induction Models and their equivalence, we carry
forth Henkin’s work by providing a logical foundation of reduction and equivalence among
different Induction Models. To this end, we generalize Henkin’s definition of an Induction
Model. While designing an appropriate the induction hypothesis may seem matter of human
creativity, we discuss the properties of the base case B and generating set S for the tuple 〈B,S〉
to be a Induction Model. We then discuss reduction and equivalence among different Induction
Models. While the focus of this paper is to lay a formal foundation of Induction Models, we
briefly discuss motivations and potential applications of the primary contributions of this paper:
Theorem 1.1 and Theorem 1.2.

1.1 What makes 〈B, S〉 an N-Induction Model?

The first principle of induction can be written as 〈{1}, S : x → x + 1〉. Other examples of
models of induction are 〈{1, 2, . . . ,m}, S : x → x + m〉 and 〈A,S : x → x − 1〉, where A is a
infinite subset of N. What subsets B ⊂ N and S : Nk → Z can give us an Induction Model?
Henkin’s formulation[11] defines an Induction Model for the case where the base set contains
just the element 0 and the generating function S is unary. We make this definition more general
by allowing B to be any subset of N and S to be a k-ary function, and in particular, formalize
the notion of N-induction model.

An important contribution of this paper is study of existence and construction of B for a
given S and vice versa under different restrictions on the structure of S. (See Definitions 2.1, 2.2,
and 2.3 for the formal definitions of self-loop function, additive structure, and multiplicative
structure).

Theorem 1.1. 1. For every non-self loop function S : Nk → Z, there exists a B ⊂ N such
that 〈B,S〉 is an N-I.M. So this is true for S with additive and multiplicative structures
as well.

2. For any non-empty B ⊂ N, there exists a function S : Nk → Z (for some k) such that
〈B,S〉 is an N-I.M. We can find such an S with additive structure as well. If |B| ≥ 2,
this is also true for S with multiplicative structure.

Open Question: Does there always exist S with multiplicative structure for B = 1.

Potential Applications The proof of Theorem 1.1 is constructive and provides general recipe
for finding S with appropriate structure for a given B and vice versa. We expect such a recipe
to lead to algorithmic results in the context of automated mathematical induction [1] providing
where one knows that a given property P holds for some generating function S and now needs
to find the corresponding B such that once P is shown to hold over B, we can conclude that P
holds for all n ∈ N.

1.2 A Classification Among Induction Models

The following are some well known Induction Models (except maybe Definition 1.4).

Definition 1.1 (First principle of induction). Let P (n) be a statement. If

(i) P (1) is true

(ii) P (k) is true =⇒ P (k + 1) is true
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then P (n) is true ∀ n ∈ N.

Definition 1.2 (Strong form of induction). Let P (n) be a statement. If

(a) P (1) is true

(b) P (1), P (2), . . . , P (k) is true =⇒ P (k + 1) is true

then P (n) is true ∀ n ∈ N.

Definition 1.3 (Backward induction). Let A ⊆ N be an infinite subset. If

(c) P (a) is true ∀ a ∈ A

(d) P (k) is true =⇒ P (k − 1) is true

then P (n) is true ∀ n ∈ N.

Definition 1.4 (Prime Induction). Let P be be the set of all primes. If

(e) P (a) is true ∀ a ∈ P ∪ {1}

(f) P (i), P (j) is true =⇒ P (ij) is true

then P (n) is true ∀ n ∈ N.

It is easy to show that the first principle and strong form of induction are equivalent.
If we assume that Definition 1.1 holds, then we could construct a new statement Q(k) =
P (1) ∧ P (2) ∧ . . . P (k). We can apply the first principle on Q(n) to show that Q(n) is true
for all n ∈ N. So, P (n) is true for all n ∈ N. For the other way, if we know that (i) and
(ii) hold, then (a) and (b) also hold. So, Definitions 1.1 and 1.2 are equivalent. Now given
any Induction Model, is it equivalent to the first principle of induction? The key to the proof
above was coming up with the new statement Q. But it might not be easy to construct one
for any general Induction Model. For example, can a similar proof be given for the backward
Induction Model and the first principle of induction (if they are equivalent)? To this end,
we formalize the concept of reduction and equivalence among different Induction Models. In
formally, let 〈B1, S1〉 and 〈B2, S2〉 be two Induction Models, then if 〈B1, S1〉 can be reduced
to 〈B2, S2〉 (according to our definition), we show that any proof for a statement P (n) which
uses 〈B1, S1〉 can be converted into a proof that uses 〈B2, S2〉. For example, by demonstrating
equivalence among the Backward Induction and Prime Induction Models, our method can be
used to convert a proof that uses one model into a proof that uses the other one.

If 〈B,S〉 is an Induction Model, we show in Section 3 that we have
∞⋃
i=0

Si(B) = N. We can

associate a number, n(〈B,S〉), with each Induction Model based on how many times S needs
to be applied on B to reach N. For example, for the first principle of induction, we need to
apply S ℵ0 many times.

Theorem 1.2. Let 〈B1, S1〉 and 〈B2, S2〉 be Induction Models. Then, 〈B1, S1〉 can be re-
duced to 〈B2, S2〉 iff n(〈B1, S1〉) ≤ n(〈B2, S2〉). Moreover, 〈B1, S1〉 is equivalent to 〈B2, S2〉 iff
n(〈B1, S1〉) = n(〈B2, S2〉).
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Potential Applications To the best of our knowledge, Theorem 1.2 provides the first charac-
terization for reduction and equivalence of different Induction Models. The proof of Theorem 1.2
is constructive and provides a recipe to convert a proof in one inductive model to a proof in
another inductive model. We perceive such a recipe may be used to compose proofs of different
lemmas since being able to reuse parts of the proofs is a major challenge [1].

The rest of the paper is organized as follows: We discuss the notations used in the paper in
section 2 and we formally define Induction Models in section 3. We discuss characterisation of
Induction Models in section 4, reduction and equivalence in section 5. We finally conclude in
section 6.

2 Preliminaries

We first lists the symbols and notations used in this paper on the following table.

Notation Description
∅ Empty set, ∅ = {}
B Base case

I.M. (abbr. of) Induction Model
N A set of natural numbers, N = {1, 2, 3, . . . }

N-I.M. (abbr. of) N-Induction Model
ℵ0 The cardinality of N
P A set of prime numbers, P = {2, 3, 5, 7, 11, . . . }

P (i) Property of i
S Generating function
Z A set of integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }

For any sets A and B, 2A denotes the power set of A and A \ B denotes set A minus set
B, i.e. A \B = {x | x ∈ A ∧ x 6∈ B}. We also give some definitions on specific functions called
self-loop function, non-self-loop function, function with additive structure, and function with
multiplicative structure.

Definition 2.1 (Self-loop and non-self-loop function). A function F : Nk → Z is said to be a
self-loop function if for every (x1, x2, . . . xk) ∈ Nk, F (x1, x2, . . . xk) ∈ {x1, x2, . . . xk}. A function
which is not a self-loop function is said to be a non-self-loop function.

Remark. Identity function F (x) = x is the only unary self-loop function. Another example of
a self-loop function is F (x1, x2, . . . , xk) = max({x1, x2, . . . , xk}).

Definition 2.2 (Additive Structure). A function F : Nk → Z is said to have an additive
structure if it is of the form:

F : (x1, x2, . . . xk)→ a0 + a1x1 + a2x2 + . . . akxk

where ai ∈ Z and ai 6= 0 for 1 ≤ i ≤ k.

Definition 2.3 (Multiplicative Structure). F : Nk → Z is said to have a multiplicative structure
if it is of the form:

F (x1, x2, . . . , xk) =
∑

i∈2[1,k]

ai · (
∏
j∈i

xj)

where ai ∈ Z and the leading coefficient of F i.e. the coefficient of x1x2 · · ·xk is non-zero.
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Example 2.1. F : (x, y) → xy − x− y + 3 has a multiplicative structure. But, F : (x, y, z) =
x2yz−xy + z + 2 does not have multiplicative structure as its first term x2yz contains a higher
power of x.

Remark. Functions with additive or multiplicative structure cannot be self-loop functions.
Proofs can be found in the Appendix (Lemma B.1 and Lemma B.2).

We now define an Induction Model. An Induction Model is identified by its base case and
the associated generating function. Formally,

Definition 2.4 (Induction Model (I.M.)). A tuple 〈B,S〉 is said to be an Induction Model
with base case B and generating function S if B ⊂ N and S : Nk → Z

Remark. In particular, 〈B0, S0〉 denotes the first principle of induction (Definition 1.1), where
B0 = {1} and S0 : x→ x+ 1. Also, we will call this model to be the ‘basic model of induction’.

In the next definition, we define the powers of a generating function acting on a set.

Definition 2.5 (Powers of S). Let S : Nk → Z and A ⊆ N. Let S0(A) = A. Then, powers of
S when applied on set A is defined as

Si(A) :=

S(x1, x2, . . . , xk) : x1, x2, . . . xk ∈
i−1⋃
j=0

Sj(A)

⋂N

Note that the xis in the tuple (x1, x2, . . . , xk) need not to be distinct. Also, notice that each
power of S is obtained after intersecting with N. For example, for S : x→ x−1 and A = {1, 2, 3},
we get S(A) = {0, 1, 2}. But after intersecting this set with N, we get {1, 2}.

We also define the closure of an I.M. and the difference sets of powers of S.

Definition 2.6 (Closure of an I.M.). Let 〈B,S〉 be an I.M. then we define the following.

Cln(〈B,S〉) =

n⋃
i=0

Si(B)

In particular, we define Cl(〈B,S〉) = Cl∞(〈B,S〉).

Definition 2.7 (Difference sets of powers of S). Let 〈B,S〉 be an I.M. then we define

Dn(〈B,S〉) = Sn(B) \ Cln−1(〈B,S〉)

3 N-Induction Models

Henkin [11] gave a definition for an I.M. which involved a base case containing an element 0
and a unary function S. We generalise this in Definition 3.1. It is not hard to see that this
definition is equivalent to the condition Cl(〈B,S〉) = N. We prove this in Lemma 3.2.

Definition 3.1 (N-Induction Model (N-I.M.)). Let B be a non-empty subset of N and S :
Nk → Z. 〈B,S〉 is said to be an N-Induction Model if the following holds: if G ⊆ N satisfies

1. B ⊆ G, and

2. if x1, x2, . . . , xk ∈ G and S(x1, x2, . . . , xk) ∈ N, then S(x1, x2, . . . , xk) ∈ G,

173



Induction Models on N A.Dileep, K.S.Meel and A.F.Sabili

then G = N.

Let us see if the first principle of induction 〈B0, S0〉 satisfies the above definition. Recall
that B0 = {1} and S0 : x→ x + 1. Suppose there exists a G ⊆ N which satisfies conditions 1)
and 2) in Definition 3.1, but G 6= N. Let m 6∈ G. Apply S0 on 1 ∈ B0, (m− 1) times, to obtain
m. So, m ∈ G, which is a contradiction. So, no such G exists.

Example 3.1. Let us see an example of 〈B,S〉 which is not an N-I.M. Consider 〈{2}, S : x→
x + 1〉. This is not an N-I.M. as G = N \ {1} satisfies both conditions, but G 6= N.

For any N-I.M., if S is repeatedly applied on elements of B and the new elements obtained
in the previous steps, we should be able to obtain the entire set of natural numbers. We then

would expect any 〈B,S〉 which satisfies Definition 3.1 to satisfy Cl(〈B,S〉) =
∞⋃
i=0

Si(B) = N.

In the next theorem, we prove the equivalence of both these definitions.

Lemma 3.2. 〈B,S〉 satisfies Definition 3.1 ⇐⇒ Cl(〈B,S〉) = N.

Proof. (=⇒) Suppose 〈B,S〉 satisfies Definition 3.1. Let G =
∞⋃
i=0

Si(B). We will show that G

satisfies the conditions 1) & 2) in Definition 3.1, which will imply G = N.

1. B = S0(B) ∈ G.

2. Suppose x1, x2, . . . xk ∈ G & S(x1, x2, . . . xk) ∈ N. As x1, x2, . . . xk ∈ G, x1, x2, . . . xk ∈
Sl(B) for some l ≥ 0. As S(x1, x2, . . . xk) ∈ N, S(x1, x2, . . . , xk) ∈ Sl+1(B) ⊆ G.

So, G =
∞⋃
i=0

Si(B) = N.

(⇐=) We have
∞⋃
i=0

Si(B) = N. Suppose G ⊆ N such that

1. B ⊆ N,

2. if x1, x2, . . . xk ∈ G & S(x1, x2, . . . xk) ∈ N

then S(x1, x2, . . . xk) ∈ G. It is enough to show that
∞⋃
i=0

Si(B) ⊆ G.

From 1), B = S0(B) ⊆ G. Suppose for some m ∈ N, Sm(B) 6⊆ G. For every k-tuple
(x1, x2, . . . xk) ∈ Si(B), S(x1, x2, . . . xk) ∈ G if S(x1, x2, . . . xk) ∈ N. So Si+1(B) ⊆ G. By
applying S on B, m times, we get Sm(B) ⊆ G, which is a contradiction. So, Sm(B) ⊆ G

∀m ∈ N. Hence,
∞⋃
i=0

Si(B) = N ⊆ G. But, G ⊆ N. So, G = N.

4 Characterisation of N-Induction Models

In this section, we look at which B ⊂ N and S : Nk → Z combine to give an N-I.M. 〈B,S〉. To
start with, in subsection 4.1, we consider any general S, with no restrictions on its structure.
Then in subsections 4.2 and 4.3, we look at S with ‘additive’ and ‘multiplicative’ structures
respectively. We put these restrictions as the models which can be used practically tend to have
generating functions with these type of structures.

We first describe a type of S which can never give us an N-I.M. That is, 〈B,S〉 is not an
N-I.M. for any B ⊂ N.
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Lemma 4.1. If 〈B,S〉 is an N-I.M., S cannot be a self-loop function.

Proof. Suppose S is a self-loop function. Consider G = B.

1. Clearly, B ⊆ G

2. For x1, x2, . . . xk ∈ G(= B), S(x1, x2, . . . , xk) ∈ {x1, x2, . . . xk}. So, S(x1, x2, . . . , xk) ∈ N.
Clearly, S(x1, x2, . . . xk) ∈ G.

As 〈B,S〉 is an N-I.M., we have G = N, which is a contradiction.

In the next sub-section, we look at the case where there are no restrictions put on the
structure of S.

4.1 For any arbitrary S

We show in Lemma 4.2 that for every non-empty B ⊂ N, there exists a non-self-loop function
S such that 〈B,S〉 is an N-I.M. In Lemma 4.4, we show that for every non-self-loop function
S, there exists a B ⊂ N such that 〈B,S〉 is an N-I.M.

Lemma 4.2. For every non-empty B ⊂ N, there exists a non-self-loop function S such that
〈B,S〉 is an N-I.M.

Proof. We have two cases: either B is a finite set or B is an infinite subset of N.
Case 1: When B is finite.

If 1 ∈ B, we can take S : x → x + 1. As i ∈ Si−1(B) for each i ∈ N, N ⊆
∞⋃
i=0

Si(B). As

Si(B) ⊆ N for all i ∈ N ∪ {0},
∞⋃
i=0

Si(B) = N. So, due to Theorem 3.2, 〈B,S〉 is an N-I.M.

If 1 6∈ B, let b = min(B). Consider

S(x) =


1, if x = b

b + 1, if x = b− 1

x + 1, otherwise

S(b− 1) = b + 1 is necessary. Without it, S will take b− 1 to b and b is mapped to 1. So, we
will not be able to generate elements greater than b.

Observe that {1, 2, . . . , b + 1} ⊂
b⋃

i=0

Si(B). Also, for each i ≥ b + 2, i ∈ Si−1(B). So,

N ⊆
∞⋃
i=0

Si(B).

Case 2: When B is infinite.
Use S : x→ x− 1. This is nothing but the backward induction. The detailed proof can be

found in the Appendix (Lemma A.1).

In the proof of the previous lemma, we used a unary S. We can extend it to say that for
every k, such a k-ary S exists.

Lemma 4.3. For every non-empty B ⊂ N, there exists a k-ary non-self-loop function S′ :
Nk → Z, for every k, such that 〈B,S′〉 is an N-I.M.

The proof for the above lemma can be found in the Appendix (section C).
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Lemma 4.4. For every non-self-loop function S : Nk → Z, there exists a B ⊂ N such that
〈B,S〉 is an N-I.M. So this holds for S with additive and multiplicative structure as well.

Proof. As S is a non-self-loop function, ∃ (x1, x2, . . . xk) ∈ Nk such that S(x1, x2, . . . xk) 6∈
{x1, x2, . . . xk}. Say S(x1, x2, . . . xk) = a. Take B = N \ {a}. x1, x2, . . . xk ∈ B as none of them

is equal to a. So, a ∈ S(B), which implies B ∪ S(B) ⊆ N. So,
∞⋃
i=0

Si(B) = N.

In the proof of Lemma 4.2, in the case where B is finite and 1 6∈ B, we used the following
generating function:

S(x) =


1, if x = b

b + 1, if x = b− 1

x + 1, otherwise

If we are trying to prove that a property P (n) is true for all n ∈ N, using induction, it is
very unlikely that one would be able to show that P (b) =⇒ P (1), P (b − 1) =⇒ P (b + 1) and
P (x) =⇒ P (x+1) for all other x. While trying to prove properties/statements using induction,
it could be useful to have some kind of a structure for S. In the following sub-sections, we look
at S with ‘additive’ and ‘multiplicative’ structures.

4.2 S with Additive Structure

Let us see for which B ⊂ N and S : Nk → Z, 〈B,S〉 is an N-I.M. The results for a unary S and
k-ary (k ≥ 2) S are different. Let us look at the unary case to start with.

Lemma 4.5. For a unary function S : N → Z with additive structure, 〈B,S〉 is an N-I.M. iff
B contains 1 or B is an infinite subset of N.

Proof. (=⇒) Suppose 〈B,S〉 is an N-I.M., where S is unary. A unary S with additive structure
is of the form S : x → a0 + a1x. Observe that this function is monotonic i.e. it is either
increasing or decreasing. If it is increasing, B should contain 1. If 1 6∈ B, 1 cannot be generated
by an increasing function. If S is decreasing, then B has to be an infinite subset of N. Otherwise,
if B is finite, all elements greater than max(B) cannot be generated.

(⇐=) If B contains 1, consider S : x→ x + 1. If B is an infinite subset of N, S : x→ x− 1
would give us an N-I.M.

Let us now look at the k-ary (k ≥ 2) case. In this case, no restrictions are required on B.
For every non-empty B, we can find such an S.

Lemma 4.6. For every non-empty B ⊂ N, there exists a k-ary (k ≥ 2) S with additive structure
such that 〈B,S〉 is an N-I.M.

Proof. Say q ∈ B. Consider S : (x, y) → x − y + (q + 1). Take y = q to get S(x, q) = x + 1.

So, {q, q + 1, q + 2, . . .} ⊆
∞⋃
i=0

Si(B). Now we put y = q + 2, to get, S(x, q + 2) = x − 1. This

implies {q − 1, q − 2, . . . , 1} ⊆
q+1⋃
i=3

Si(B). So, N ⊆
∞⋃
i=0

Si(B).

This lemma can be extended to show that such a k-ary S exists for every k ≥ 2. One might
think of using S′ : (x1, x2, . . . , xk) → S(x1, x2), where S is the generating function used in
Lemma 4.6 for proving this statement. But, for S′, ai = 0 for i ≥ 3 and hence doesn’t have an
additive structure.
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Lemma 4.7. For every non-empty B ⊂ N and every k ≥ 2, there exists a S with additive
structure such that 〈B,S〉 is an N-I.M.

The proof for the above lemma can be found in the Appendix (section C).

Remark. We could also use the following generating function to give an alternate proof for the
above lemma.

S : (x1, x2, . . . , xk)→ 2x1 + x2 + x3 + . . . + xk−1 − (k − 1)xk + 1

Put x2 = x, x1 = x3 = . . . = xk = q to get S(q, x, q, . . . , q) = x + 1. Then, put x1 = q, x2 =
x, x3 = x4 = . . . = xk = (q + 1) to get S(q, x, q + 1, q + 1, . . . , q + 1) = x− 1.

4.3 S with Multiplicative Structure

Consider this example which shows a generating function S having a ‘multiplicative’ structure.

Example 4.8. Let B = P ∪ {1} and S : (x, y) → xy. We can use the fact that every natural
number can be written as a product of primes to show that this is an N-I.M. A detailed proof
can be found in the Appendix (Lemma A.2).

We will now show that for every B ⊂ N containing at least 2 elements, there exists an S
with multiplicative structure such that 〈B,S〉 is an N-I.M. Before that, we will prove a lemma
which will be useful for proving this result.

Lemma 4.9. For every B ⊂ N containing two consecutive natural numbers, there exists a
non-self-loop function S with multiplicative structure such that 〈B,S〉 is an N-I.M.

Proof. Say q − 1, q ∈ B. Consider the following S:

S : (x, y)→ xy + y − yq + 1

Put x = y = (q − 1) to get S(q − 1, q − 1) = (q − 1)(q − 1) + (q − 1)− (q − 1)q + 1 = 1. Now,
put x = q to get, S(q, y) = y + 1. As 1 ∈ S(B), i ∈ Si(B) ∀ i ∈ N.

We now prove the main lemma.

Lemma 4.10. For every B ⊂ N containing at least two elements, there exists a non-self-loop
function S with multiplicative structure such that 〈B,S〉 is an N-I.M.

Proof. Say p, q ∈ B, where p < q. Consider the same S as in Lemma 4.9. Put x = q to get
S(q, y) = y + 1. So, every i > p can be generated, which implies q − 1 can also be generated.
Now, we can use the same argument as in Lemma 4.9. In this case, i ∈ S(q−p−1)+i ∀ i ∈ N.

Like before, we can extend this lemma to say that for every k ≥ 2, a k-ary S with multi-
plicative structure exists, which together with B, gives us an N-I.M.

Lemma 4.11. For every B ⊂ N containing at least two elements, there exists a k-ary S with
multiplicative structure, for every k, such that 〈B,S〉 is an N-I.M.

The proof for the above lemma can be found in the appendix (section C).
The main results of this section are summarized in the following theorem.

Theorem 1.1. 1. For every non-self loop function S : Nk → Z, there exists a B ⊂ N such
that 〈B,S〉 is an N-I.M. So this is true for S with additive and multiplicative structures
as well.

2. For any non-empty B ⊂ N, there exists a function S : Nk → Z (for some k) such that
〈B,S〉 is an N-I.M. We can find such an S with additive structure as well. If |B| ≥ 2,
this is also true for S with multiplicative structure.
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5 Reduction and Equivalence of Induction Models

In this section, we give a definition for reduction and equivalence between I.M.s (Subsection
5.1) and we prove a criterion which can be used to determine if one I.M. can be reduced to
another or if they are equivalent (Subsection 5.2).

5.1 Reduction and Equivalence of Induction Models

Before defining reduction, we need to describe how to obtain an injective version of a generating
function and its properties.

Definition 5.1 (Smallest power of S for x). For an I.M. 〈B,S〉, we define

l(x, 〈B,S〉) = min{i ≥ 0 : x ∈ Si(B)}

Definition 5.2 (Injective version of S). Consider the I.M. 〈B,S〉, where S is k-ary.
For every x ∈ Cl(〈B,S〉) \B, choose a tuple nx = (n1, n2, . . . , nk) ∈ Sl(x,〈B,S〉)−1 such that

S(n1, n2, . . . , nk) = x. Then the following is an injective version of S.

Sinj(n) =

{
S(n), if n = nx, for some x ∈ Cl(〈B,S〉) \B
0, otherwise

Note that Sinj(n) = 0 if S(n) ∈ B or S(n) 6∈ N.

Remark. We will use Sinj to denote the injective version of a generating function S.

Example 5.1. Unary, additive S : N→ Z are of the form S(x) = a0 + a1x, where a0, a1 ∈ Z.
Let S(x1) = S(x2). That means a0 + a1x1 = a0 + a1x2 or x1 = x2. So S is injective, which
means

Sinj(x) =

{
S(x), when x ∈ N
0, otherwise

Lemma 5.2. Let x ∈ Cl(〈B,S〉) \B. Then, l(x, 〈B,S〉) = m iff x ∈ Dm(〈B,Sinj〉).

Proof. The proof can be found in the appendix (section D).

Lemma 5.3. Let 〈B,S〉 be an I.M. Then, Si
inj(B) = Si(B) \B for all i ≥ 1.

Proof. The proof can be found in the appendix (section D).

Proposition 5.4. For any I.M. 〈B,S〉, we have Cl(〈B,S〉) = Cl(〈B,Sinj〉).

Proof. By definition, Cl(〈B,Sinj〉) =
∞⋃
i=0

Si
inj(B). As Si

inj(B) = Si(B) \ B for all i ≥ 1,

∞⋃
i=0

Si
inj(B) =

∞⋃
i=1

[
Si(B) \B

]⋃
B =

∞⋃
i=0

Si(B) = Cl(〈B,S〉)

Lemma 5.5. If 〈B,S〉 is an N-I.M., then 〈B,Sinj〉 is also an N-I.M.

Proof. It follows from Proposition 5.4 and Lemma 3.2.

We now give a definition for reduction between Induction Models.
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Definition 5.3. Let 〈B1, S1〉 and 〈B2, S2〉 be two I.M.s. 〈B1, S1〉 can be reduced to 〈B2, S2〉 if
there exists a relation R : Cl(〈B2, S2〉)→ 2Cl(〈B1,S1〉) such that:

1.
⋃

x∈Cl(〈B2,S2〉)
R(x) = Cl(〈B1, S1〉)

2.
⋃

x∈B2

R(x) = B1

3. If x ∈ Cl(〈B2, S2〉) \ B2, we have x = S2inj (n1, n2, . . . , nk) where (n1, n2, . . . , nk) ∈ Nk.
We define

R(x) = S1(

k2⋃
i=1

R(ni)) ∪

[
k2⋃
i=1

R(ni))

]

An example that motivates this definition has been given in the appendix (Section E).

In the above definition, in (3), S1 (a k1-ary function) acts on the set
k2⋃
i=1

R(ni). This is defined

even if this set contains less than k1 elements. S1 can act on a tuple n = (x1, x2, . . . , xk1
) even

if xis are not all distinct (see Definition 2.5).

Remark. Let A and B be two sets. Then to denote x → B or R(x) = B for each x ∈ A, we
will use A→ B or R(A) = B.

Example 5.6. Consider the following N-I.M.s: 〈B1, S1〉 = 〈P, x → x − 1〉 and 〈B2, S2〉 =
〈{1, 2, 3, 4, 5}, x→ x + 5〉. Recall that P denotes the set of primes. We will show that 〈B1, S1〉
can be reduced to 〈B2, S2〉. Notice that S2 is injective. So, S2inj = S2. Consider the following
relation, R:

{1, 2, 3, 4, 5} → P
{5n + 1, 5n + 2, 5n + 3, 5n + 4, 5n + 5} → {p− i : 1 ≤ i ≤ n, p ∈ P} ∩ N

Here, Cl(〈B1, S1〉) = Cl(〈B2, S2〉) = N.

1.
⋃

x∈Cl(〈B2,S2〉)
R(x) =

⋃
x∈N
{p− i : 1 ≤ i ≤ x, p ∈ P} ∩ N = N

2.
⋃

x∈{1,2,3,4,5}
R(x) = P

3. Let x ∈ N\B2. Then x = 5a+b, where a > 0 and 1 ≤ b ≤ 5. We have x = S2(5(a−1)+b).

S1(R(5(a− 1) + b)) ∪R(5(a− 1) + b)

= [S1({p− i : 1 ≤ i ≤ (a− 1), p ∈ P}) ∪ {p− i : 1 ≤ i ≤ (a− 1), p ∈ P}] ∩ N
= [{p− i : 2 ≤ i ≤ a, p ∈ P} ∪ {p− i : 1 ≤ i ≤ (a− 1) ∈ P}] ∩ N
= [{p− i : 1 ≤ i ≤ a, p ∈ P}] ∩ N
= R(5a + b)

Example 5.7. Suppose 〈B1, S1〉 can be reduced to 〈B2, S2〉. If 〈B2, S2〉 is an N-I.M., then does
it imply that 〈B1, S1〉 is also an N-I.M.?

The answer is no. Let 〈B1, S1〉 = 〈{2}, x→ x + 2〉 and 〈B2, S2〉 = 〈{1}, x→ x + 1〉. Notice
that S1 and S2 are injective. Consider the following relation: R(x) = {2, 4, . . . , 2(x − 1), 2x}.
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We get Cl(〈B1, S1〉) = {2n : n ∈ N} and Cl(〈B2, S2〉) = N. Conditions 1 & 2 (in Definition
5.3) are clearly true. To see 3), suppose x 6= 1 and x ∈ Cl(〈B2, S2〉). We have x = S2(x− 1).

S1(R(x− 1)) ∪R(x− 1) = S1({2, 4, . . . , 2(x− 1)}) ∪ {2, 4, . . . , 2(x− 1)}
= {4, 6, . . . , 2x} ∪ {2, 4, . . . , 2(x− 1)}
= {2, 4, . . . , 2(x− 1)} = R(x)

So, 〈B1, S1〉 can be reduced to 〈B2, S2〉. Here, 〈B2, S2〉 is an N-I.M., but 〈B1, S1〉 is not.

Definition 5.4. Two I.M.s 〈B1, S1〉 and 〈B2, S2〉 are said to be equivalent if:

1. 〈B1, S1〉 can be reduced to 〈B2, S2〉

2. 〈B2, S2〉 can be reduced to 〈B1, S1〉
Example 5.8. In Example 5.6, we showed that 〈B1, S1〉 can be reduced to 〈B2, S2〉. We can
also show that 〈B2, S2〉 can be reduced to 〈B1, S1〉 which implies that 〈B1, S1〉 and 〈B2, S2〉 are
equivalent. (For details, see F).

Example 5.9. In Example 5.7, we can use R(x) = {x/2, x/2− 1, . . . , 1} to show that 〈B2, S2〉
can be reduced to 〈B1, S1〉. So, 〈{2}, x→ x + 2〉 and 〈{1}, x→ x + 1〉 are equivalent.

In the next example, we present an I.M. which can be reduced to 〈B0, S0〉, but 〈B0, S0〉
cannot be reduced to that I.M.

Example 5.10. Let B = N \ {2}.

S(x) =

{
10, when x = 1 or 5

x− 1, otherwise

Consider the following relation, R:

x→ Clx−1(〈B,S〉)

1.
⋃
x∈N

R(x) = Cl∞(〈B,S〉) = Cl(〈B,S〉)

S0(B) = N \ {2}. S(3) = 2. So, {2} ⊆ S(B) which gives us
⋃
x∈N

R(x) = N.

2.
⋃

x∈{1}
R(x) = B

3. S0 is injective. For x ∈ N \ {1}, x = S(x− 1).

S(R(x− 1)) ∪R(x− 1) = S(Clx−2(〈B,S〉)
⋃

Clx−2(〈B,S〉)

= Sx−1(B)
⋃

Clx−2(〈B,S〉) = Clx−1(〈B,S〉) = R(x)

So, 〈B,S〉 can be reduced to 〈B0, S0〉.
Let us now see if 〈B0, S0〉 can be reduced to 〈B,S〉. For a relation, R, satisfying Definition

5.3 to exist, we need R(n) = 1 for n ∈ N \ {2} (from the second condition) and R(2) = N \ {1}
(from first condition). The Sinj is given by:

Sinj =

{
x− 1, for x = 3

0, otherwise

From the third condition, as 2 = Sinj(3), we have R(2) = S0(R(3)) ∪ R(3) = S0(1) ∪ {1} =
{1, 2} 6= N \ {1}. So, such an R does not exist.
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5.2 Checking Reducibility and Equivalence of Two Induction Models

In this section, we present a criterion to determine if one I.M. can be reduced to another
(Theorem 1.2). It immediately follows from this theorem that every I.M. can be reduced to the
basic model of induction. Now, we will give a few definitions and lemmas which will be useful
in proving that result.

In Example 5.10, B ∪S(B) = N. Whereas for the first principle of induction i.e. 〈B0, S0〉 =
〈{1}, x→ x + 1〉, S0 needs to be applied infinitely on B0 to obtain N. We formally define this
in the next definition.

Definition 5.5 (Number of Steps of an I.M.). For an I.M. 〈B,S〉, we define

n(〈B,S〉) = min{i ≥ 1 : Di(〈B,S〉) = ∅}

Lemma 5.11. Let 〈B,S〉 be an I.M. Then, Di(〈B,S〉) = ∅ ∀ i ≥ n(〈B,S〉).
Proof. The proof can be found in the appendix (Section D).

Remark. Another way to look at n(〈B,S〉) is: n(〈B,S〉) = |{i ≥ 1 : Di(〈B,S〉) 6= ∅}|+ 1.
Let U = {i ≥ 1 : Di(〈B,S〉) 6= ∅}. If U is an infinite set, as U ⊆ N, it has the same

cardinality as N. So, in cases where the minimum does not exist in Definition 5.5, we set
n(〈B,S〉) = ℵ0 + 1 = ℵ0.

Also, in fact, U = N when U is infinite. Let n ∈ N. If Dn(〈B,S〉) is empty, then U is finite,
which gives us a contradiction. So, it is non-empty. This implies that n ∈ U . As n is arbitrary,
we have N ⊆ U . But U ⊆ N, which gives us U = N.

Proposition 5.12. Let 〈B,S〉 be an Induction Model. Then Cln(〈B,S〉)−1(〈B,S〉) = Cl(〈B,S〉).

Proof. By definition,
∞⋃
i=0

Si(B) = Cl(〈B,S〉). For i ≥ n(〈B,S〉), we have Si(B) \

Cln(〈B,S〉)−1(〈B,S〉) =
i⋃

j=n(〈B,S〉)
Sj(B)\Clj−1(〈B,S〉), which is an empty set. So, Cln(〈B,S〉)−1 =

Cl(〈B,S〉).

Lemma 5.13. Let 〈B,S〉 be an Induction Model. Then, n(〈B,S〉) = n(〈B,Sinj〉).
Proof. Suppose n(〈B,Sinj〉) < n(〈B,S〉). From Lemma 5.12, we have Cln(〈B,S〉)−1(〈B,S〉) =
Cl(〈B,S〉). This implies

Cl(〈B,S〉) = Cl(〈B,Sinj〉) = Cln(〈B,Sinj〉)−1(B,Sinj)

⊆ Cln(〈B,Sinj〉)−1(〈B,S〉) (as Si
inj(B) = Si(B) \B ⊆ Si(B))

⊆ Cl(〈B,S〉)

This gives us Cln(〈B,Sinj〉)−1(〈B,S〉) = Cl(〈B,S〉). So, Di(〈B,S〉) = ∅ for i = n(〈B,Sinj〉) <
n(〈B,S〉), which is a contradiction. So, we have n(〈B,Sinj〉) ≥ n(〈B,S〉).

If n(〈B,Sinj〉) > n(〈B,S〉), then Dn(〈B,S〉)(〈B,Sinj〉) 6= ∅.

Dn(〈B,S〉)(〈B,Sinj〉) =
[
Sn(〈B,S〉)(B) \B

]
\

B ∪ n(〈B,S〉)−1⋃
i=1

(Si(B) \B)


=
[
Sn(〈B,S〉)(B) \B

]
\

n(〈B,S〉)−1⋃
i=0

Si(B) = Sn(〈B,S〉)(B) \
n(〈B,S〉)−1⋃

i=0

Si(B) = Dn(〈B,S〉)(〈B,S〉)

So, Dn(〈B,S〉)(〈B,S〉) 6= ∅, which is a contradiction. Therefore, n(〈B,Sinj〉) = n(〈B,S〉).
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Proposition 5.14. For n 6= m, Dn(〈B,S〉) ∩Dm(〈B,S〉) = ∅.

Proof. Say n > m. Dn(〈B,S〉) = Sn(B) \
n⋃

i=0

Si(B). So, Dn(〈B,S〉) ∩ Sm(B) = ∅, which

implies Dn(〈B,S〉) ∩
[
Sm(B) \

m−1⋃
i=0

Si(B)

]
= ∅. Therefore, Dn(〈B,S〉) ∩Dm(〈B,S〉) = ∅.

We now prove the criteria for reduction and equivalence.

Theorem 1.2. Let 〈B1, S1〉 and 〈B2, S2〉 be Induction Models. Then, 〈B1, S1〉 can be re-
duced to 〈B2, S2〉 iff n(〈B1, S1〉) ≤ n(〈B2, S2〉). Moreover, 〈B1, S1〉 is equivalent to 〈B2, S2〉 iff
n(〈B1, S1〉) = n(〈B2, S2〉).

Proof. (=⇒) Suppose n(〈B1, S1〉) ≤ n(〈B2, S2〉). Consider the following relation, R:

B2 → B1

D1(〈B2, S2inj
〉)→ Cl1(〈B1, S1〉)

D2(〈B2, S2inj
〉)→ Cl2(〈B1, S1〉)

...

Dn(〈B1,S1〉)(〈B2, S2inj
〉)→ Cln(〈B1,S1〉)(〈B1, S1〉)

...

Dn(〈B2,S2〉)(〈B2, S2inj
〉)→ Cln(〈B2,S2〉)(〈B2, S2〉)

1.
⋃
x∈N

R(x) =
n(〈B2,S2〉)⋃

i=0

⋃
x∈Di(〈B,S〉)

R(x) =
n(〈B2,S2〉)⋃

i=0

S1
i(B1) =

n(〈B1,S1〉)⋃
i=0

S1
i(B1) =

Cl(〈B1, S1〉)

2.
⋃

x∈B2

R(x) = B1

3. Let x ∈ N \ B2. Say x ∈ D(〈B2, S2inj 〉,m). Then, from Lemma 5.2, l(〈B,S〉, x) = m.
Let x = S2inj (n1, n2, . . . , nk2), where ni ∈ Clm−1(〈B,S〉). But at least one of the
nis lies in Dm−1(〈B,S〉), otherwise l(〈B,S〉, x) < m which is a contradiction. So,

S1(
k2⋃
i=1

R(ni)
⋃[ k2⋃

i=1

R(ni)

]
= S1(Clm−1(〈B1, S1〉)) ∪ [Clm−1(〈B1, S1〉)] = S1

m(B) ∪

Clm−1(〈B1, S1〉) = Clm(〈B1, S1〉)

(⇐=) Suppose 〈B1, S1〉 can be reduced to 〈B2, S2〉. Let us assume that n(〈B1, S1〉) >
n(〈B2, S2〉) or n(〈B2, S2〉) < n(〈B1, S1〉). As 〈B1, S1〉 can be reduced to 〈B2, S2〉, ∃ a relation
R satisfying the conditions in Definition 5.3. We have R(B2) = B1 (from second condition). It
follows from the third condition that R(S2inj (B2)) ⊆ S1(B1) ∪B.
Our claim is that R(Dk(〈B2, S2inj 〉) ⊆ Clk(〈B1, S1〉) for k ≥ 1. We will use induction to show
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this. For i = 1, the statement is true. Assume it is true for i < k. If k < n(〈B2, S2〉):

R(Dk(〈B2, S2inj
〉) =

⋃
n∈Clk−1(〈B2,S2inj

〉)
S2inj

(n)6∈Clk−1(〈B2,S2inj
〉)

S1(

k2⋃
i=1

R(ni))
⋃[

k2⋃
i=1

R(ni)

]

⊆ S1(Clk−1(〈B1, S1〉))
⋃

Clk−1(〈B1, S1〉)

= S1
k(B1)

⋃
Clk−1(〈B1, S1〉)

= Clk(〈B1, S1〉)

If k ≥ n(〈B2, S2〉): R(Dk(〈B2, S2inj 〉)) = ∅ ⊆ Clk(〈B1, S1〉) as Dk(〈B2, S2inj 〉) = ∅ or in other
words, @ n ∈ Clk−1(〈B2, S2inj 〉) such that S2inj (n) 6∈ Clk−1(〈B2, S2inj 〉). So we have,

R(Cl(〈B2, S2〉)) = R(Cln(〈B2,S2〉)−1(〈B2, S2〉))

= R

B2

⋃n(〈B2,S2〉)−1⋃
i=1

Di(〈B2, S2〉)

 ⊆ B1

⋃n(〈B2,S2〉)−1⋃
i=1

Cli(〈B1, S1〉)


= Cln(〈B2,S2〉)−1(〈B1, S1〉) 6= Cl(〈B1, S1〉) (as n(〈B1, S1〉) > n(〈B2, S2〉))

which is a contradiction. Therefore, n(〈B1, S1〉) ≤ n(〈B2, S2〉).
The criterion for equivalence follows immediately from the criterion for reduction.

Corollary 5.15. Let 〈B,S〉 be an I.M., where S is a k-ary function. Then it can be reduced
to 〈B0, S0〉.

Proof. n(〈B0, S0〉) = ℵ0. If n(〈B,S〉) is finite, we have n(〈B,S〉) ≤ n(〈B0, S0〉). If n(〈B,S〉) =
ℵ0, then also we have n(〈B,S〉) ≤ n(〈B0, S0〉). It follows from Theorem 1.2 that 〈B,S〉 can be
reduced to 〈B0, S0〉.

In the next corollary, we show that reduction on Induction Models is a transitive property.

Corollary 5.16. Let 〈B1, S1〉, 〈B2, S2〉 and 〈B3, S3〉 be I.M.s. If 〈B1, S1〉 can be reduced to
〈B2, S2〉 and 〈B2, S2〉 can be reduced to 〈B3, S3〉, then 〈B1, S1〉 can be reduced to 〈B3, S3〉. In
other words, reduction on Induction Models is a transitive property.

Proof. Follows from Theorem 1.2.

6 Conclusion

In this paper, we generalize the notion of Induction Models introduced by Henkin [11]. We
then characterize the existence of B for a given S and vice versa. Interestingly, we show that
the existence of S with additive structure depends on |B|. Finally, we introduce the notion of
reduction and equivalence among Induction Models.

Theorem 1.1 shows that for every non-empty B, there exists S with additive structure that
〈B,S〉 is an Induction Model but we could show existence of S with multiplicative structure only
for |B| ≥ 2. An open question would be to show existence of S with multiplicative structure for
|B| = 1. Mathematical induction is a widely employed tool in mathematics and therefore while
we have focused on Induction Models over N, an interesting extension would be to seek logical
foundations of definition and the notions of reduction and equivalence for induction over real
numbers ([4],[8]), Induction over sets ([7]), structural and transfinite induction ([?]).
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A Backward Induction and Prime Induction are
N-Induction Models

Lemma A.1. The backward induction i.e. 〈A,S : x→ x− 1〉, where A is an infinite subset of
N, is an N-Induction Model.

Proof. Suppose there exists a G ⊆ N such that:
1) A ⊆ G, and
2) if x ∈ G and S(x) ∈ N, then S(x) ∈ G,
but G 6= N.

Say m 6∈ G. Pick the smallest element greater than m in A, say m′. Such an element exists
as A is an infinite subset of N. m′ ∈ G due to 1). Apply S on m′, m′−m times, to get m. Then,
m ∈ G due to 2), which is a contradiction. So, no such G exists, which implies, G = N.

Lemma A.2. Let B = {p : p is a prime} ∪ {1} and S : (x, y) → xy. Then, 〈B,S〉 is an
N-Induction Model.

Proof. Let n ∈ N be a composite number. Then, n = pr11 pr22 . . . prll , where pis are primes and
ri ≥ 1. Let r = max{r1, r2, . . . , rl}. Then, prii ∈ Sr−1(B) for 1 ≤ i ≤ l. So, pr11 pr22 . . . prll ∈
Sr−1+l−1 = Sr+l−2. Note that r + l − 2 ≥ 0 as r ≥ ri ≥ 1 for all 1 ≤ i ≤ l and l ≥ 1. This

implies, every n ∈ N lies in some Si(B). So, N ⊆
∞⋃
i=0

Si(B).

B Generating Functions with Additive and Multiplicative
Structures are Non-self Loop Functions

Lemma B.1. If S : Nk → Z has an additive structure, then S is a non-self-loop function.

Proof. Let S(x1, x2, . . . xk) = a0 + a1x1 + . . . + akxk.

If
k∑

i=0

ai 6= 1 , we can take x1 = x2 = . . . = xk = 1, to get, S(1, 1, . . . , 1) =
k∑

i=0

ai 6∈

{1, 1, . . . , 1}.

If
k∑

i=0

ai = 1, there are two cases. Either a0 = 0 or a0 6= 0.

If a0 = 0, for some l ≥ 1, al 6= 1 (otherwise
k∑

i=0

ai = k). As l ≥ 1 and S is additive, al 6= 0

(see Definition 2.2).

If a0 6= 0, for some l ≥ 0, al 6= 1 (otherwise
k∑

i=0

ai = k + 1). al 6= 0 as a0 6= 0 and ai 6= 0 for

i ≥ 1. So, we have 0 ≤ l ≤ k such that al 6∈ {0, 1}.
Take xl = 2 and xi = 1 for other i, to get,

S(1, . . . , 2, . . . , 1) = a0 + a1 + . . . + 2al + . . . + ak

=

k∑
i=0

ai + al

= 1 + al
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As al 6∈ {0, 1}, 1 + al 6∈ {1, 2}. So, S(1, 1, . . . , 2, . . . , 1) 6∈ {1, 2}. Hence, S is not a self-loop
function.

Lemma B.2. If S : Nk → Z has a multiplicative structure, then S is a non-self-loop function.

Proof. Let S(x1, x2, . . . , xk) =
∑

i∈2[1,k]

ai · (
∏
j∈i

xj). There are 3 cases: a∅ = 0, a∅ = 1 and

a∅ 6∈ {0, 1}. Let us define

g(x) :=
∑

i∈2[1,k]

|i|≥1

ai · x|i|−1

If a∅ 6∈ {0, 1}: Consider a prime p such that p - a∅. Take x1 = x2 = . . . = xk = p to get,

S(p, p, . . . , p) = a∅ + p · g(p)

So, S(p, p, . . . , p) ≡ a∅ (mod p). As p - a∅, a∅ 6≡ 0 (mod p). So, S(p, p, . . . , p) 6≡ a∅ (mod p).
This implies that S(p, p, . . . , p) 6∈ {p}.

If a∅ = 1: Put x1 = x2 = . . . = xk = 2, to get,

S(2, 2, . . . , 2) = a∅ + 2 · g(2)

= 1 + 2 · g(2)

So, S(2, 2, . . . , 2) ≡ 1 (mod 2) which implies S(2, 2, . . . , 2) 6∈ {2}.
If a∅ = 0: For some n ∈ N, we have

S(n, n, . . . , n) = n · g(n)

Claim: ∃ m ∈ N such that g(m) 6= 1.
Suppose ∀ n ∈ N, g(n) = 1.
Consider the following polynomial

f(x) = g(x)− 1

=

 ∑
i∈2[1,k]

|i|≥1

ai ·m|i|−1

− 1

=

 k∑
s=1

 ∑
i∈2[1,k]

|i|=s

ai

xs−1

− 1

We have f(n) = 0 ∀ n ∈ N i.e. f has infinitely many roots. But f is a polynomial of degree
k − 1. So, it has exactly k − 1 roots in C, which is a contradiction. So, ∃ m ∈ N such that
g(m) 6= 1.

Take x1 = x2 = . . . = xk = m, to get,

S(m,m, . . . ,m) = m · g(m)

6= m
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Remark. The argument in the above proof cannot be used for proving Lemma B.1. If instead of
the cases for a∅ in Lemma B.2, if we do the same with a0, the method will work for a0 6∈ {0, 1}.
But for the a0 = 0 case, we will have S(n, n, . . . , n) = n

∑
i∈2[1,k]

ai. If
∑

i∈2[1,k]

ai = 1, it would not

work.

C Proof of Lemmas 4.3, 4.7 and 4.11

Lemma 4.3. For every non-empty B ⊂ N, there exists a k-ary non-self-loop function S′ :
Nk → Z, for every k, such that 〈B,S′〉 is an N-I.M.

Proof. Use S′(x1, x2, . . . , xk) = S(min(x1, x2, . . . , xk)), where S is the generating function in
Lemma 4.2. Take x1 = x2 = . . . = xk = x and use the same argument as in Lemma 4.2.

Lemma 4.7. For every non-empty B ⊂ N and every k ≥ 2, there exists a S with additive
structure such that 〈B,S〉 is an N-I.M.

Proof. Say q ∈ B. Consider the following S:

S : (x1, x1, . . . , xk)→ x1 + x2 + . . . + xk−1 − (k − 1)xk + (q + 1)

Take x1 = x, x2 = x3 = . . . = xk = q to get S(x, q, . . . , q) = x + 1. So, {q, q + 1, q + 2, . . .} ⊆
∞⋃
i=0

Si(B).

Now we put x1 = x, x2 = x3 = . . . = xk = q + 2, to get, S(x, q + 2, . . . , q + 2) = x− 1. This

implies {q − 1, q − 2, . . . , 1} ⊆
q+1⋃
i=3

Si(B). So, N ⊆
∞⋃
i=0

Si(B).

Lemma 4.11. For every B ⊂ N containing at least two elements, there exists a k-ary S with
multiplicative structure, for every k, such that 〈B,S〉 is an N-I.M.

Proof. Say p, q ∈ B. Consider the following S:

S(x1, x2, . . . , xk) = x1x2 . . . xk + (xn−1xn + xn − xnq + 1)− qx2x3 . . . xk

Put x1 = q, to get, S(q, x2, . . . , xn) = xn−1xn + xn − xnq + 1. Now, use the same argument as
in Lemma 4.10.

D Proof of Lemmas 5.2, 5.3 and 5.11

Lemma 5.2. Let x ∈ Cl(〈B,S〉) \B. Then, l(x, 〈B,S〉) = m iff x ∈ Dm(〈B,Sinj〉).

Proof. (=⇒) Let us use induction to prove this.

1. If l(x, 〈B,S〉) = 1, then for a tuple nx ∈ Bk, we have Sinj(nx) = S(nx) = x. So,
x ∈ Sinj(B). As x ∈ Cl(〈B,S〉) \B, x ∈ D1(〈B,Sinj〉).

2. Suppose that if l(x, 〈B,S〉) = m, then x ∈ Dm(〈B,Sinj〉).
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to show: if l(x, 〈B,S〉) = m + 1, then x ∈ Dm+1(〈B,Sinj〉).

As, l(x, 〈B,S〉) = m + 1, we have a tuple nx ∈
m⋃
i=0

Sm(B) such that S(nx) = x. Let nx =

(y1, y2, . . . , yk). Then for at least one of the yis, l(yi, 〈B,S〉) = m, otherwise l(x, 〈B,S〉) < m+1.
So, yi ∈ Sm

inj(B), which implies that x ∈ Sm+1
inj (B).

(⇐=) Suppose x ∈ Dm(〈B,Sinj〉). Then x ∈ Sm(B), which implies l(x, 〈B,S〉) ≤ m. If
l(x, 〈B,S〉) < m, then x ∈ Sl

inj(B) for some l < m. So, x 6∈ Dm(〈B,Sinj〉), which is a
contradiction. So, l(x, 〈B,S〉) = m.

Lemma 5.3. Let 〈B,S〉 be an I.M. Then, Si
inj(B) = Si(B) \B for all i ≥ 1.

Proof. For any set A ∈ Nk, as Sinj is a restricted version of S, Sinj(A) ⊆ S(A). By repeatedly
applying Sinj and this property, we get Si

inj(B) ⊆ Si(B) for i ≥ 1. Let us use induction now.
1) We have Sinj(B) ⊆ S(B). Also, Sinj(B) ∩ B = ∅ (follows from the definition of Sinj). So,
Sinj(B) = Sinj(B) \B ⊆ S(B) \B. Let x ∈ S(B) \B. Then, l(x, 〈B,S〉) = 1. So, from Lemma
5.2, we have x ∈ Sinj(B), which implies that S(B) \B ⊆ Sinj(B).
2) Suppose Si

inj(B) = Si(B) \B ∀ i ≤ m. We need to show that Sm+1
inj (B) = Sm+1(B) \B.

Sm+1
inj (B) = Sinj(

m⋃
i=0

Si
inj(B))

= Sinj(

m⋃
i=1

[Si(B) \B] ∪B)

= Sinj(

m⋃
i=0

Si(B))

⊆ S(

m⋃
i=0

Si(B)) = Sm+1(B)

But, Sm+1
inj (B) ∩ B = ∅. So, Sm+1

inj (B) = Sm+1
inj (B) \ B ⊆ Sm+1(B) \ B. Let x ∈ Sm+1(B) \

B. Then, l(x, 〈B,S〉) ≤ m + 1. So, x ∈ Si
inj(B) for 1 ≤ i ≤ m + 1. But, as Si

inj(B) ⊆
Sm+1
inj (B)for1 ≤ i ≤ m+ 1, we have x ∈ Sm+1

inj (B). So, Sm+1(B) \B ⊆ Sm+1
inj (B). Hence, from

1) & 2), Sinj
i(B) = Si(B) \B for i ≥ 1.

Lemma 5.11. Let 〈B,S〉 be an I.M. Then, Di(〈B,S〉) = ∅ ∀ i ≥ n(〈B,S〉).

Proof. We use induction to prove this.

1. Dn(〈B,S〉)(〈B,S〉) = ∅ (follows from the definition of n(〈B,S〉))

2. Suppose Dk(〈B,S〉) = ∅ for some k ≥ n(〈B,S〉). Either Sk(B) = ∅ or Sk(B) ⊆
Clk−1(〈B,S〉) = ∅.

Case 1: If Sk(B) = ∅, then Si(B) = ∅ for 1 ≤ i ≤ k − 1 (as Si(B) ⊆ Sk(B) for
1 ≤ i ≤ k − 1). So, we have Sk+1(B) = S(Clk(〈B,S〉)) = S(B) = ∅. Similarly, Si(B) = ∅ ∀
i ≥ k. So, Cl(〈B,S〉) = B, which is a contradiction as 〈B,S〉 is an N-I.M.

Case 2: If Sk(B) ⊆ Clk−1(〈B,S〉), we have

Sk+1(B) = S(Clk(〈B,S〉)) ⊆ S(Clk−1(〈B,S〉)) = Sk(B).

So, Dk+1(〈B,S〉) = ∅. By the principle of induction, Di(〈B,S〉) = ∅ ∀ i ≥ n(〈B,S〉).
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E Motivation for Definition 5.3

Suppose we have a proof for the statement

n∑
i=1

i =
n(n + 1)

2

that uses the first principle of induction i.e. 〈B0, S0〉 = 〈{1}, x → x + 1〉. Now that we have
this proof, can we construct a proof that uses the Prime Induction i.e. 〈B,S〉 = 〈P ∪ {1}, S :
(x, y)→ xy〉?

Let Ω(n) be the number of prime factors of n, counted with multiplicity. Consider the
following relation R : N→ 2N:

R(n) =

{
{1}, if n = 1

[1,Ω(n)], otherwise

We construct a new statement
Q(n) =

∧
x∈R(n)

P (x)

Now let us try to prove that Q(n) is true for all n ∈ N using the Prime Induction Model.

Step 1 (Base Case): Q(1) =
∧

x∈R(1)

P (x) = P (1). Also, for any prime p, Q(p) = P (1). So,

Q(n) is true for n = 1 and n ∈ P.

Step 2 (Induction Step): Suppose Q(m) and Q(n) are true (m,n 6= 1). So,
∧

x∈R(m)

P (x)

and
∧

x∈R(n)

P (x) i.e.
∧

x∈[1,Ω(m)]

P (x) and
∧

x∈[1,Ω(n)]

P (x) are true. As P (x) is true implies

P (x + 1) is true, we have that
∧

x∈[1,Ω(m)+Ω(n)]

P (x) is true. But Ω(x) + Ω(y) = Ω(xy) for

all x, y ∈ N. So,
∧

x∈[1,Ω(mn)]

P (x) is true, which implies that Q(mn) is true.

Step 3 (Conclusion): So, by the Prime Induction Model, Q(n) is true for all n ∈ N
i.e.

∧
x∈[1,Ω(n)

P (x) is true for all n ∈ N. This implies that P (n) is true for all n since⋃
n∈N

[1,Ω(n)] = N.

The key to this proof is the relation R and the new statement Q. We want the relation
to satisfy three conditions essentially. First, that the base case of the first I.M. is mapped to
the base case of the second one. This takes care of Step 1. Second, we need

⋃
n∈N

R(n) = N

for Step 3 to work. To take care of Step 2, we define R(n) for n ∈ Si(B) using the values for
x ∈

⋃
1≤j<i

Sj(B). We look at the tuple which generates n and we use the values of R for the

components of this tuple to obtain the value of R(n).

F Details for Example 5.8

In this example, we have 〈B1, S1〉 = 〈P, x → x − 1〉 and 〈B2, S2〉 = 〈{1, 2, 3, 4, 5}, x → x + 5〉.
We now show that 〈B2, S2〉 can be reduced to 〈B1, S1〉.
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Consider the following relation, R:

P→ {1, 2, 3, 4, 5}

For x ∈ N \ P, let p be the smallest prime greater than x. Then R(x) = [1, 5(p− x + 1)]

1.
⋃
x∈N

R(x) =

[ ⋃
x∈P

R(x)

]⋃[ ⋃
x∈N\P

R(x)

]
Let us see if there exists an x ∈ N \P such that 5n+ b ∈ R(x) =, where n > 0, 1 ≤ b ≤ 5.
Enough to check if 5(n + 1) ∈ R(x). Suppose such an x does not exist. Then the
distance between every pair of primes is less than n, which is not true as we can construct
arbitrarily long sequences of composite numbers of the form m! + 2,m! + 3, . . . ,m! + m.
So, we have a contradiction. So, such an x exists. This gives us

⋃
x∈N

R(x) = {1, 2, 3, 4, 5}
⋃[ ∞⋃

a=1

5a + b

]
= N

2.
⋃
x∈P

R(x) = {1, 2, 3, 4, 5}

3. For x ∈ N \ P, x = S1(x + 1). Let the first prime greater than or equal to x be p. If
x + 1 is a prime, then x + 1 = p, then R(x + 1) = {1, 2, 3, 4, 5} = [1, 5(p− x)]. If x + 1 is
composite, then p is the smallest prime ≥ x+1. So, by definition, R(x+1) = [1, 5(p−x)].

S2(R(x + 1)) ∪R(x + 1) = S2([1, 5(p− x)]) ∪ [1, 5(p− x)]

= [6, 5(p− x + 1)] ∪ [1, 5(p− x)]

= [1, 5(p− x + 1)] = R(x)
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