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Abstract

Characterization of all possible faults in a cryptosystem exploitable for fault attacks is a problem
which is of both theoretical and practical interest for the cryptographic community. The complete
knowledge of exploitable fault space is desirable while designing optimal countermeasures for any
given crypto-implementation. In this paper, we address the exploitable fault characterization problem
in the context of Differential Fault Analysis (DFA) attacks on block ciphers. The formidable size
of the fault spaces demands an automated albeit fast mechanism for verifying each individual fault
instance and neither the traditional, cipher-specific, manual DFA techniques nor the generic and au-
tomated Algebraic Fault Attacks (AFA) [10] fulfill these criteria. Further, the diversified structures
of different block ciphers suggest that such an automation should be equally applicable to any block
cipher. This work presents an automated framework for DFA identification, fulfilling all aforemen-
tioned criteria, which, instead of performing the attack just estimates the attack complexity for each
individual fault instance. A generic and extendable data-mining assisted dynamic analysis frame-
work capable of capturing a large class of DFA distinguishers is devised, along with a graph-based
complexity analysis scheme. The framework significantly outperforms another recently proposed
one [6], in terms of attack class coverage and automation effort. Experimental evaluation on AES and
PRESENT establishes the effectiveness of the proposed framework in detecting most of the known
DFAs, which eventually enables the characterization of the exploitable fault space.

1 Introduction
The pervasive use of embedded electronic systems, with in-built cryptographic cores often tailored for
resource constrained environments, has lent great impetus to the construction of optimal countermea-
sures against implementation based attacks, such as passive side channel attacks and active fault attacks.
Ensuring security is, however, nontrivial, especially with the resource and performance constraints im-
posed, and designing precise countermeasures require proper knowledge of the possible attack space
on the device. Differential Fault Analysis (DFA) attacks, the most widely explored class of fault at-
tacks so far, are particularly interesting in this context given their (relatively) low data/fault complexity
and easy-to-mount nature [1, 9, 3]. It is well-established that even a single properly placed malicious
fault is able to compromise the security of mathematically strong crypto-primitives in certain cases.
However, discovering even a single attack instance for a given cryptosystem is nontrivial, as not every
possible fault may lead to a successful attack. While finding a single exploitable fault instance for a
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system is sufficient from the perspective of an attacker, certifying a system for fault attack resilience
demands the characterization of the complete space of exploitable faults. The problem becomes even
more challenging when different ciphers with diverse structures are considered.

Typically, faults in a cipher (let us focus on the block ciphers only) are specified by multiple at-
tributes (e.g. the location, width of the fault and the mathematical structure of the cipher), which
eventually lead to a fault space of formidable size. Identifying exploitable faults in such a fault space
demands a fast and completely automated mechanism for characterizing each individual fault, which,
on the other hand, should be equally applicable to all existing ciphers and different forms of DFAs.
Although, automation of fault attacks has been addressed in recent past via the Algebraic Fault Anal-
ysis (AFA) framework [10], analyzing a single fault instance there requires solving a SAT problem of
prohibitive cost, which makes it a bad choice in the exploitable fault space characterization context.
Recently, Barthe et.al. [11] framework for synthesising fault attacks automatically given a software im-
plementation using concepts of program synthesis. However, their framework works for public key
cryptosystems only.

The goal of this work is to figure out a generic albeit low-cost mechanism for individual fault char-
acterization in a cipher, which is suitable for scalably covering the complete fault space. A reasonable
approach to achieve this goal could be to construct a methodology, which just estimates the attack com-
plexity instead of doing the attack explicitly to recover the secret. In the light of this simple strategy,
this paper presents a completely automated flow for quick characterization of individual faults in any
given block cipher. We begin with a rigorous formalization of the cipher description and the DFA with
an emphasis on the distinguisher identification, which, is the key step for any successful fault attack.
Based on the formalization, a data-mining assisted, generic, dynamic analysis framework is proposed
to identify a large class of distinguishers, automatically. The data-mining scheme typically identifies
complex relationships among fault variables, useful for reducing the key entropy, with sufficient amount
of fault simulation data obtained at the initial phase, from the internal states of a cipher after fault
injection, by varying the fault values, plaintexts, and the keys. Next, we propose a graph-based algo-
rithm which automatically estimates the evaluation complexity of the distinguisher, and in the process
identifies the independent key extraction equation (or inequation) systems in an abstract form, by auto-
matically figuring out a proper divide-and-conquer strategy. At the final step, the proposed framework
estimates the size of the remaining keyspace, which, along with the distinguisher evaluation complexity
is a representative of the overall attack complexity.

Based on similar principles, recently, Khanna, Rebeiro, and Hazra have proposed a solution to the
exploitable fault problem [6] called XFC. The key component of XFC is the characterization of the fault
propagation path by means of coloring, where each color represents a variable. The coloring based static
analysis eventually provides a scalable way for the calculation of the attack complexity as well. Albeit
being scalable, the usability of the XFC scheme is found to be limited to a specific class of DFAs. More
specifically, it fails to detect distinguishers, which typically exploit the constraints on the values that
certain fault difference variables may assume. Impossible Differential Fault Analysis (IDFA) attacks
are prominent examples of such cases. Further, XFC scheme lacks proper automation in its attack
complexity analysis algorithm and makes certain simplifying assumptions, which fails to capture the
most generic scenario. As it will be established in this paper, the proposed framework does not suffer
from any of the issues found in XFC. It is also worth to mention that the data-centric view is sufficiently
generic to be extended for other fault attack classes (viz. Integral Fault Attacks [7] and Differential Fault
Intensity Analysis attacks). The limitations of XFC are elaborated in the next section through examples
to establish the relevance of our proposed methodology.

The rest of the paper is organized as follows. We start by describing two attacks as motivating
examples in Sec. 2, which the XFC framework clearly fails to detect. In Sec. 3, the cipher, and the fault
models, are formalized. Next, we describe the complete scheme in Sec. 4. Proof-of-Concept evaluations
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Figure 1: Motivating Example: Fault propagation in impossible differential fault attack on AES in terms
of colors from XFC framework. The colors are represented by circled numbers.

on AES and PRESENT block ciphers will be presented in Sec. 5. Finally, we conclude in Sec. 6.

2 Motivating Examples
In this section, we briefly discuss two attack examples which the XFC framework fails to detect. The
first among these examples is the IDFA attack on AES [2], which targets the 7-round of the AES state.
The second one is the fault attack on PRESENT at 28-th round [5].

2.1 Undetected Distinguishing Properties
The concept of impossible differential fault analysis stems from the fact that, a cipher state differential,
in certain scenarios, may not attain certain values, which eventually results in the reduction of the
entropy of the state differential, and is exploitable as a key distinguisher. Fig. 1 presents the generation
of an impossible differential property in the case of AES, where the fault is injected at the beginning of
the 7-th round of the cipher. The fault propagation path is represented in the context of XFC, with colors
assigned to them according to Algorithm 3 in [6]. The XFC framework represents the propagation path
of a fault by means of colors, with each color representing a new fault difference variable, which can
take all possible values within its respective domain determined by its bit length. An induced fault
assigned with a new color, as its correct value is always unknown. The fault is then propagated through
linear and nonlinear functions. The output of a nonlinear function is always assigned a new color owing
to its lack of correlation with its input. On the other hand, the for the linear functions, a new color
is assigned to the output, only if the inputs have different colors. Otherwise, the same input color is
assigned to the output. The coloring is continued up to the generation of the ciphertext. The colors are
actually the abstractions of word-level variables.

The shaded states in Fig. 1 denote the existence of an impossible differential, with all bytes being
active (fault difference cannot be 0) for any fault value, ciphertext and key. It is convenient to use the last
among them as a distinguisher (marked by red). The key observation here is that the coloring framework
of XFC does not provide any information regarding the existence of this impossible differential property,
as according to XFC, each new variable (color) should assume all possible values in its range. So in this
case, XFC will fail to detect the missing 0s. In general, the values that a fault difference variable may
assume, actually depend on several complex cipher-dependent factors and no straightforward extension
of the static-analysis based coloring framework can capture them. As a concrete example of this claim,
the colors up to the 9-th round ShiftRow in the Fig. 1, will never assume the value 0, whereas, after
the 9-th round MixColumn operation, they can assume values within the full range, including 0. No
trivial modification of XFC can capture such variation a in generic sense. Another example of similar
nature can be provided for the fault attack on PRESENT-80, where a 2-byte fault is injected at the 28-th
round of the cipher. The fault propagation results in a typical distinguishing property at the beginning of
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round 30, in which each 4-bit state differential variable can assume only 2 values from the total possible
range of 16 values. While this property leads to a successful attack, the coloring scheme of XFC, for
the reason similar to the previous one fails to detect this.

2.2 Lack of Automation and Fault Difference Equations
The practicality of a DFA attack lies within the efficient extraction of key parts in a divide-and-conquer
manner, which is often realized in the form of small systems of equations (or inequations). For example,
in the single fault based optimal attack on AES [9], the state differential after the 9-th round MixColumn
operation is used as a distinguisher and keys can be extracted in 4-byte chunks with time complexity
O(232). This actually results in 4 independent systems of difference equations (one system per 4-byte
key part) each containing 4 equations of the following form:

aδ = S−1(xh⊕ kh)⊕S−1(x
′
h⊕ kh) (1)

where, xh and x
′
h denote the correct and faulty ciphertext bytes, respectively; δ denotes some fault

difference variable after the 9-th round MixColumn; khs denote the associated key bytes, and a denote
some constant. In practice, the structures of resulting fault difference relations may vary significantly
from (1) depending on the distinguisher chosen. For example, Fig. 2 corresponds to the impossible
differential distinguisher of AES, where one shall obtain inequalities of much complex nature. The
cipher states are represented by the color gray, whereas the associated keys are represented with white.
The state S9

SR works as a distinguisher here. The bold boxes in each state of the figure represents the
associated key bytes as well as the state bytes one need to guess/compute to calculate the first column
of the distinguisher (shown in bold). The fault difference relations, which are inequations in this case,
can be represented with relations of the following form:

MC−1|b(S−1(xh⊕ kh))⊕MC−1|b(S−1(x
′
h⊕ kh)) 6= 0 (2)

In the set of relations represented by. 2, the MC−1|b for b ∈ {1,2,3,4} represent the effect of the inverse
MixColumn operations on the 4 columns of the state S9

MC. An important observation at this point is
that, the 9th round keys (denoted by state k9 in the figure) are not included in the inequations described
by 2, as they get cancelled out during the calculation of the XOR differences. An automated tool is
supposed to identify such simplification tricks and work according to that. Similar complex difference
equations can be obtained for the attack on PRESENT in [5]. However, XFC only assumes equations
of the form (1), which is clearly an oversimplification. From the perspective of an automated tool, it
is desirable that the tool should generate such relations internally on-the-fly, which is possible only if a
proper divide-and-conquer strategy is chosen for keeping the attack complexity reasonable. Automatic
identification of the correct divide-and-conquer strategy is, however, nontrivial and demands algorithmic
support. This paper addresses such issues for the first time. From the next section, we present our
framework, which efficiently handles these issues.

3 A Formalization of the Differential Fault Analysis
In this section, we construct a formal notion of the cipher representation as well as the differential fault
analysis, which perfectly suits our purpose in this paper. We begin with a general view of the DFA
attacks and eventually present the formal framework.

3.1 Differential Fault Attack on Block Ciphers: A Generic View
The general concept of DFA remains the same for most of the ciphers, except some manual cipher-
specific tricks, which make the automation a challenging task. DFAs broadly follow three major steps:

1. Distinguisher Identification: The key step of DFA is to identify a wrong key distinguisher, which
unlike classical differential attacks, is deterministic in nature. Typically, a distinguisher in a block
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Figure 2: Motivating Example: Key Extraction in Impossible DFA

cipher context is a logical or statistical property affecting the essential Pseudorandom Permutation
(PRP) nature of the cipher. According to the well-known wrong key assumption, a distinguisher
state attains a uniform distribution with a wrong key guess and a non-uniform one with a correct
key guess.

2. Divide-and-Conquer: The step following the distinguisher identification is the evaluation of the
same with different key guesses to filter out the wrong keys in a computationally efficient manner.
Not every distinguisher is efficiently computable and the computational efficiency lies in two
facts: 1) whether it can be partitioned into independent subparts; and, 2) whether each subpart is
efficiently computable, that is with a reasonable number of exhaustive key guesses. Identification
of the subparts in a distinguisher (using a proper divide-and-conquer strategy), as well as the
number of required key guesses for computing each subpart is, however, highly cipher dependent,
and indeed a decisive factor for determining the practicality of the attack.

3. Estimating the Number of Possible Key Candidates: The sole idea of DFA is to reduce the
complexity of the exhaustive key search by means of the distinguisher. However, the reduction of
the search space typically depends upon the distinguisher used. If the distinguisher is unable to
sufficiently reduce the search space complexity, more faults should be injected. Thus, the quality
of a distinguisher must be quantified to achieve successful and practical attacks.

Automation of the above-mentioned steps demands a mathematical specification of the cipher and the
faults, to begin with. The following subsections present a formalization the cipher and the differential
fault attacks in this context.

3.2 Notations Used
In this subsection, we list the notations and symbols, that are extensively used throughout this work.

• Fk A Block cipher.

• P , C , K : Plaintext, Ciphertext and Key space of the cipher.

• R: Total number of iterative rounds in the block cipher.

• d: Total number of sub-operations in each round.

• oi
j: The i-th sub-operation in the j-th round.

• Ek : Data-centric view of the cipher.

• si
j: The output of the i-th sub-operation in the j-th round.

• λ , m: Block size; word-size(size of each word in the cipher state in bits).

• l = λ

m .

• F : A fault instance.
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• X : Fault affected register.

• r, wd, t, f :Fault round, width, location and value.

• D : Distinguisher.

• T : the enumeration algorithm for the key set using distinguisher

• R: Remaining key space.

• H(.): Entropy

• ∆k: Set of state differentials of the cipher

• δ i
j: state differential for the output of the i-th sub-operation in the j-th round.

• wi j
z : is a discrete random variable corresponding to each m-bit word of the state differential δ i

j,

having probability distribution pwi j
z .

• T (.): Represents dataset for state differentials or for each wi j
z .

• IS, V S: Itemset and Variable set.

• MKS, V G: Maximal independent key set, and Variable group.

3.3 Representing A Block Cipher
A block cipher is a mapping Fk : P → C , where, P and C denote the plaintext and ciphertext space,
respectively. Block ciphers are typically abstracted as PRPs (that is P =C ) specified by the key k∈K .
Structurally, they can be represented as a tuple of invertible functions as follows:

Fk = 〈o1
1,o

2
1, ....,o

d
1 ,o

1
2,o

2
2, ....,o

d
2 , ....o

1
R,o

2
R, ....,o

d
R〉 (3)

Typically, for a given p∈P and a fixed k∈K , there exists a unique c∈C such that, c= od
R(o

d−1
R (...(o2

1
(o1

1(p))...). Here, each oi
j represents the i-th sub-operation in the j-th round of a R round cipher. Further,

each oi
j can be represented as:

oi
j(x1,x2, ....xl) =

h1=l⊕
h1=1

ah1 · xh1 , if oi
j is linear (4)

oi
j(x1,x2, ....xl) =

h1=2l⊕
h1=1

ah1 ·∏
h2∈I

xh2 , if oi
j is nonlinear (5)

Here, I ⊆ {1,2, ....l}, and each ah1 is a constant. The data width of the function inputs is a notable factor
in this description. Given the block width of a cipher is λ bits, it is processed as m-bit words, where
m = λ

l . We call m as the word size of the cipher.
In an alternative data-centric view, the cipher Fk is represented as a sequence of states as follows:

Ek = 〈p,s1
1,s

2
1, ....,s

d
1 ,s

1
2,s

2
2, ....,s

d
2 , ....s

1
R,s

2
R, ....,s

d
R〉 (6)

where each si
j represents the output of the i-th sub-operation in the j-th round of a R round cipher. Intu-

itively this representation presents an execution trace of the cipher on plaintext p and key k. Following
the standard practice, we call each si

j an internal state or simply state. We also denote Ek as the exe-
cution trace of the cipher. The state sequence begins with the plaintext p and it is obvious that sd

R = c.
Each state si

j is a vector of length l of m-bit words. The values assumed by the state vectors are subject to
change with the variation of the plaintext and the key. Intuitively, the data-centric specification formally
represents the simulation data from the cipher and can be generated easily using some execution model
constructed from the structural specification of the cipher described in Equation. (3).
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3.4 Formalization of the DFA

The formalization of DFA requires a precise specification of the injected faults. In general, it is assumed
that injected faults are localized and transient so that they can affect at least one bit from a chunk of
contiguous bits within a state, at some specific round. If a fault affects some part of the input state of the
sub-function oi

j, the output of oi
j will differ from its expected value. We provide a formal representation

of a fault, which is similar to that of [10], as a tuple F = 〈X ,λ ,wd, t, f 〉. Here, X represents the register
(a datapath register, key register or round counter), where the fault is to be injected, λ denotes the width
of the state, wd is the width of the fault, t is the fault location, and f is the value of the injected fault.
Without loss of generality, we assume that X is the datapath register, and the fault is to be injected at
round r < R. It is easy to follow that, X basically belongs to the set {si

j} described in Equation. (6). Let
us denote si

j = 〈V1,V2, ....Vl〉, where each Vz (z ∈ {1,2, ..., l}) is an m-bit variable. The localized fault,
depending on the scenario, will affect one or more of these variables. In general, this is determined by
the width of the fault wd. To simplify the matter we assume that wd is either ≤ m or it is a multiple of
m. As a result, one or more of the Vzs can be affected by the fault. For simplicity, it is further assumed
that only consecutive Vzs can be affected by the fault and the location of that is indicated by the fault
location parameter t, in the fault model. The width of the fault wd is often used to represent the fault
models. In this work, we only consider standard fault models (the bit (wd = 1), nibble (wd = 4), and
byte (wd = 8) fault models), although the framework is not limited to them.

Once the cipher and the fault model are determined, we can now formally describe the DFA attack
on a cipher. Given a cipher Fk and a fault F in it, the DFA can be formally described as:

A = 〈D ,T ,R〉 (7)

where:

• D denotes the distinguisher, which could be a non-uniform distribution or a set mathematical/-
logical expressions, over the difference variables of some correct and faulty state, in the context
of DFA. The evaluation of the distinguisher D over the complete key set K partitions the set
into two non-overlapping subsets Kw and Kcr; the first one being the set of wrong keys and the
second one being the set of candidate keys one of which is the correct key.

• T is the enumeration algorithm for the key set K through the evaluation of the distinguisher. The
main component of this algorithm is a divide-and-conquer strategy, which enables the evaluation
of the distinguisher in parts. The time complexity of the enumeration algorithm is of particular
interest, which is O(2n), with n ≤ log2(|K |). For practical cases n� log2(|K |), whereas n =
log2(|K |) implies no gain from the perspective of an attacker.

• R is the remaining key search space after the injection of a single instance of the fault F . One
should note that, it is sufficient to consider the search space reduction for one single fault instance
as the reduction for multiple fault instances can be easily calculated from that. Evidently, R =Kcr
and |R| � |K | for an efficient fault attack. R is often represented as a system of equations or
inequations, involving the keys and distinguisher variables, whose solution space enumerates Kcr.
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Algorithm 1 Procedure RngChk
Input: The dataset for a state δ i

j as T
δ i

j
= 〈T

wi j
1
, T

wi j
2
, ..., T

wi j
l
〉

Output: 〈{Rng
wi j

z
}l

z=1, HInd(δ
i
j)〉

1: HInd(δ
i
j) := 0

2: for each T
wi j

z
∈ T

δ i
j

do . 1

3: Store all distinct values assumed by wi j
z in Rng

wi j
z

. 2

4: Calculate the probability distribution of wi j
z as p′w

i j
z . 3

5: Calculate the Entropy of wi j
z as HInd(w

i j
z ) using p′w

i j
z

6: end for
7: Return 〈{Rng

wi j
z
}l

z=1, HInd(δ
i
j)〉

1z = 1,2, ..., l
2values of wi j

z belongs to the set {0,1, ...2m−1}
3 p′w

i j
z

q := #q
|T

wi j
z
| , where #q denote the frequency of q ∈ {0,1, ...2m−

1} in T
wi j

z
and |T

wi j
z
| denote the size of |T

wi j
z
|

Algorithm 2 Procedure Miner
Input: T

δ i
j
= 〈T

wi j
1
, T

wi j
2
, ..., T

wi j
l
〉

Output: 〈V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1 , HAssn(δ
i
j)〉

1: 〈V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1 〉 := Apriori(T
δ i

j
)

2: HAssn(δ
i
j) := 0

3: for each v ∈V S
δ i

j
do

4: tot := VarCount(v)×m . 4

5: p′vq :=
|ISv

δ i
j
|

2tot , ∀q ∈ ISv
δ i

j
. 5

6: p′vq := 0, ∀q 6∈ ISv
δ i

j

7: HAssn(v) :=−
2tot−1

∑
q=0

p′vq log2(p′vq ) . 6

8: HAssn(δ
i
j) := HAssn(δ

i
j)+HAssn(v)

9: end for
10: Return 〈V S

δ i
j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
, HAssn(δ

i
j)〉

4VarCount returns the number of variables in a
variable set

5Calculate the probability distribution of each
variable set

6Calculate the entropy of variable sets

4 Proposed Framework for Exploitable Fault Characterization
In this section, we describe the proposed automated framework in detail. The following subsections, will
provide generic algorithms for each of the components described in (7). The input to the framework is a
mathematical description (linear layers as matrices and the S-Boxes as tables) and an executable model
(software/hardware implementation) of the target block cipher along with an enumeration of the fault
space under consideration. The output is the exploitable fault space.

4.1 Automatic Identification of Distinguishers D
Let us consider the execution trace Ek of a cipher, as described in (6). The values assumed by the
states si

j change, for every execution of the cipher with different p or k. To capture the effect of a
fault F = 〈X ,λ ,wd, t, f 〉, injected at the round r < R, we define a similar trace E

′
k = 〈p,s1

1,s
2
1, ....,

sd
1 ,s

1
2,s

2
2, ....,s

d
2 , ....,s

′1
r ,s

′2
r , ....,s

′d
r , ...,s

′1
R ,s

′2
R , ....,s

′d
R 〉. Here each s

′i
j represents the faulty output of the

i-th sub-operation in the j-th round (r ≤ j ≤ R) after the injection of the fault at round r. Before the
r-th round the states remain the same. The next step is to consider the XOR difference between the
correct and faulty states to study the fault propagation up to the ciphertext. To capture this, we define
the differential execution trace ∆k as, ∆k = Ek

⊕
E
′
k = 〈0,0,0, ...,δ 1

r ,δ
2
r , ....,δ

d
r , ...,δ

1
R ,δ

2
R , ....,δ

d
R 〉. For

obvious reasons, the state differences before the r-th round are zero. Further, each δ i
j is represented

as, δ i
j = si

j
⊕

s′ij = 〈V
i j
1 ⊕V

′i j
1 ,V i j

2 ⊕V
′i j
2 , ...,V i j

l ⊕V
′i j
l 〉, r ≤ j < R, where, V i j

z denotes the z-th m-bit

correct word of the state at j-th round and after i-th sub-operation, and V
′i j
z denotes the faulty word for

the same. For each such word, ⊕ denote the bitwise XOR operation.
For convenience, now onwards we shall denote ∆k as, ∆k = 〈δ 1

r ,δ
2
r , ....,δ

d
r , ...,δ

1
R ,δ

2
R , ....,δ

d
R 〉 by

ignoring the zeros. We call this ∆k as the differential execution trace after the injection of the fault,
and each δ i

j is denoted as state differential. Note that, valuations of ∆k for different keys, plaintexts or
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fault values result in new traces, which carry information regarding the fault propagation paths and the
distinguishers. Each of the state differentials δ i

j in ∆k may potentially form a distinguisher. We now
define the decision criterion by which we declare a state differential as a distinguisher.

Definition 4.1. [Entropy of a State Differential] The entropy of a state differential δ i
j = 〈w

i j
1 ,w

i j
2 , ...,w

i j
l 〉,

where each wi j
z is a discrete random variable with probability distribution pwi j

z , is defined as H(δ i
j) =

H(wi j
1 ,w

i j
2 , ...,w

i j
l ), that is the joint entropy of the random variables in the state differential.

Definition 4.2. [Maximum Entropy of a State Differential] The maximum entropy of a state differen-

tial δ i
j = 〈w

i j
1 ,w

i j
2 , ...,w

i j
l 〉, is defined as Hmax(δ

i
j) =

l
∑

z=1
Hmax(w

i j
z ) =

l
∑

z=1
(−

2m−1
∑

q=0
pwi j

z
q log2(pwi j

z
q )), where

each wi j
z is independent and uniformly distributed within the range [0,2m−1], given m is the bit width

of variable wi j
z .

Note that, the maximum entropy defined here assumes the uniformity and independence of the as-
sociated random variables within a specific range [0,2m−1], where m is basically the bit length of each
variable. In case, the variable is not uniform within this complete range the entropy will be less than
the maximum entropy. Correlations among the variables will also cause entropy reduction. Next, we
define the distinguishing criteria, which provides a decision metric for determining the distinguishing
capability of a state differential.

Definition 4.3. [Distinguisher Criteria] A state differential δ i
j is called a distinguisher if the entropy

H(δ i
j) is less than the maximum entropy of the state differential.

The main idea of our dynamic distinguisher identification scheme is to learn the distinguishers from
the fault simulation data, acquired from the executable cipher model by varying the plaintexts, keys, and
the fault values. The data acquisition step is extremely low cost and takes only a couple of seconds. Let
us denote the datasets corresponding to each state differential δ i

j as T
δ i

j
. Each T

δ i
j
is a table, each contain-

ing l, m-bit variables wi j
z (1 ≤ z ≤ l) and data values, corresponding to each of them. For convenience,

we further denote each column of a T
δ i

j
as Twi j

z
. Given a fault simulation at some round r, we have many

such tables corresponding to each state differential. Typically, a subset of the possible state differentials
actually qualifies as potential distinguishers. We denote T∆k = 〈Tδ 1

r
,Tδ 2

r
, ....,T

δ d
r
, ...,T

δ 1
R
,T

δ 2
R
, ....,T

δ d
R
〉 as

the set of the tables for the state differentials. Our data-based framework tests each δ i
j separately and

decides whether it constructs a distinguisher. Two distinct cases can be identified in the course of the
distinguisher identification.

4.1.1 Case 1. The Variables are Independent, but not Uniform within the Complete Range:
In this typical case, the probability distributions of individual state differential variables change, while
they still remain independent. Decrease in individual entropies of the variables due to their non-
uniformity over the complete range [0,2m−1] (note that uniformity may still hold over some sub-range
of [0,2m− 1]), causes a drop in the total state differential entropy. The situation is described in Algo-
rithm 1, where the changed probability distributions are denoted as p′w

i j

z (z = 1,2, ..., l), and the joint

state differential entropy as HInd(δ
i
j) = ∑

l
z=1(−∑

2m−1
q=0 p′w

i j
q

z log2(p′w
i j
q

z )). Each column of the table T
δ i

j

(denoted as Twi j
z

), corresponding to each variable wi j
z is treated separately for missing values (if any)

within the range of [0,2m−1]. As a concrete example, if a state differential pose an impossible differ-
ential property, none of the wi j

z s can assume value 0, and as a result, the value 0 will be missing in the
table Twi j

z
for any z. Information regarding the values which are not missing are important in the context
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Table 1: Frequent Itemset Mining: Toy Example
TID v1 v2 v3 v4 v5
1 1 5 7 8 11
2 2 4 6 9 13
3 1 5 7 10 2
4 2 4 6 11 4
5 3 9 8 6 5
6 1 10 11 9 8

of the distinguisher and hence preserved for each wi j
z in the set Rngwi j

z
. Typical examples of Case. 1

include the IDFA attack on AES and the attack on PRESENT described in [5] (both will be described
in the case study.).

4.1.2 Case 2. The Variables are not Independent
The second case of the distinguisher identification problem deals with the scenarios where correlations

exist between some of the variables within a state distinguisher, which eventually cause the reduction of
state entropy. Typical examples exist for the ciphers with MDS matrices. Detection of the association-
s/correlations among the variables is crucial for calculating the entropy HAssn(δ

i
j) = H(wi j

1 ,w
i j
2 , ...,w

i j
l )

in this case. We utilize well-known association rule mining (itemset mining) strategies for this purpose.

Frequent Itemset and Association Rule Mining:
Association rule/itemset mining is a widely explored, classical problem in the domain of data mining,

which refers to the discovery of association relationships or correlations among a set of items. Formally,
given a large number of variables (attributes) (var1,var2, ...,varn), and a table/database of values they
assume within their respective domains, an item is defined as varq = val, where val lies in the domain
of varq. The simplest case occurs while dealing with discrete-valued variables having small ranges,
where each item can be defined precisely. If I = {i1, i2, ..., ia} is a set of all items constructed from a
table of discrete valued variables, then any Is ⊂ I is called an itemset. The prime task of an association
rule mining algorithm is to figure out associations (if any) of the form A⇒ B, where both A and B are
propositional logic formulae over the items.

In the present context, we are mainly interested in itemsets and the variables associated with them. The
number of all possible itemsets are exponential with the size of I, and most of them are not interesting
for practical purpose. This fact leads to the finding of itemsets occurring frequently in a table, which
is known as frequent itemset mining. The frequent itemset mining task is governed by a statistical
parameter support, which represents the frequency of occurrence of an itemset in the database. Formally
support of an itemset Is in a table/database DB is defined as, supp(Is) = |Is(ti)|/|DB|, where Is(ti) =
{ti|ti is an entry in DB and ti contains Is}. An itemset is called a frequent itemset if its support is
greater than or equal to some predefined minimum support value. Further, an itemset is called a maximal
frequent itemset if none of its immediate supersets is frequent.

To illustrate the above-mentioned concepts precisely, let us consider the toy database presented in
Table. 1. There are 5 discrete valued variables in this table having value ranges from 1 to 13. We set
the support as 2

6 = 0.33. It can be easily figured out from Table. 1, that there are two itemsets of size 3,
beyond this support threshold – namely (v1 = 1,v2 = 5,v3 = 7) and (v1 = 2,v2 = 4,v3 = 6). It is worth
to note that, no superset of these itemsets are frequent (that is, these are the maximal frequent itemsets),
and all subsets of these are frequent. Further, it is interesting to note that, for variable v4 and v5 all
the itemsets are of cardinality 1. Intuitively, this implies that the variables v4 and v5 are statistically
uncorrelated. Note that, setting the proper support is imperative, as otherwise, one may obtain a large
number of itemsets of little practical interest.
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Finding Itemsets within State Differentials:
In the context of distinguisher identification, we are mainly interested in the maximal frequent itemsets

within some reasonable support. The key idea is to figure out the variables within a state differential,
which are strongly correlated. For this purpose, we utilize the well-known Apriori association rule
mining framework. The complete procedure is described in Algorithm 2. The algorithm takes a T

δ i
j

as input, which is the input to the Apriori function after some basic preprocessing (similar to that
was done in the case. 1 to deal with incomplete diffusion). From, each of the itemsets generated by
the miner, we separate out the variables and create sets called Variable Sets. Variables within the same
variable set are dependent, whereas they are assumed to be independent across different variable sets.
Multiple itemsets exist corresponding to each Variable Set and a table is formed which stores each
Variable Set, along with its corresponding itemsets. This table contains complete information regarding

the distinguisher of our interest and is represented here as a pair (V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
), where V S

δ i
j

denote

the set of all variable sets and {ISv
δ i

j
}
|V S

δ i
j
|

v=1
denote the set of itemsets corresponding to each variable set

v. Next, the state differential entropy is calculated using this table, which involves the calculation of the
joint distribution followed by the joint entropy of each variable set v ∈ V S

δ i
j

(line 6-8 in Algorithm 2).
Using the independence assumption of the variable sets, these entropies can be summed up giving the
total entropy of the state as HAssn(δ

i
j).

Setup for Apriori Algorithm:
Frequent itemset mining is crucially dependent on the support parameter of the miner. The implemen-

tation of the Apriori algorithm we used (from WEKA package [4]), iteratively decrements the support
from a value of 1.0 to a predefined lower bound. To generate all desired maximal frequent itemsets, the
support lower bound of Apriori was experimentally decided to be 1

2m (m: bit length of each variable).
The maximality of the itemsets was ensured experimentally by varying the support threshold as well as
the data set size, which also nullifies the risk of generating an insufficient number of itemsets. We found
that the dataset size of 12750 (that is 10 plaintexts, 5 different keys, and all 255 possible fault values)
for 128-bit ciphers and 750 for 64-bit ciphers (10 plaintexts, 5 different keys, and all 15 possible fault
values), are sufficient to discover all possible itemsets. Varying the keys, plaintexts and the fault values
ensure that the discovered rules/itemsets are independent of all these factors, which is essential for a
DFA distinguisher. An interesting feature of the itemset generation algorithm is that it returns null when
all the variables are independent, which, in turn, significantly reduces the risk of generating spurious
associations.

Complete Distinguisher Identification Flow:
The complete distinguisher identification algorithm takes the dataset T∆k = 〈Tδ 1

r
,Tδ 2

r
, ....,T

δ d
R
〉 as in-

put, and outputs a set Dist = {〈D i
j, H i

j〉}, where D i
j is a distinguisher corresponding to the state

δ i
j (only if δ i

j satisfies the distinguishing criterion), and H i
j is the entropy of this distinguisher. The

entropy H i
j is typically the minimum of HInd(δ

i
j), HAssn(δ

i
j) (returned by RngChk and Miner, re-

spectively), and Hmax(δ
i
j) (calculated according to the Definition 4.2 by ignoring the 0 valued vari-

ables in the case of incomplete diffusion). Indeed, H i
j < Hmax(δ

i
j) is the essential criterion for a

state differential to qualify as a distinguisher. It is worth to note that, D i
j contains the complete de-

scription of a distinguisher, obtained by combining the outputs of RngChk and Miner, given by,

D i
j := 〈{wi j

z }l
z=1, {Rngwi j

z
}l

z=1, V S
δ i

j
, {ISv

δ i
j
}
|V S

δ i
j
|

v=1
〉. The pseudocode for this algorithm is rather straight-

forward and is thus omitted here.

Determining the proper distinguisher:
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Figure 3: Example: Subgraphs corresponding to different sub-operations of a cipher

The distinguisher identification step usually returns a set of potential distinguishers with their respec-
tive entropies specifying their qualities. However, the evaluation complexity of a given distinguisher
plays a crucial role in its selection for a practical attack, as will be shown in the next subsection. Fur-
ther, it is mandatory to have an S-Box between the distinguisher and the ciphertext. In an even strict
sense, if one intends to extract round keys from a specific round with a given distinguisher, he/she must
have an S-Box between the distinguisher and the key addition step. Otherwise, the difference equations
for key extraction cannot be constructed. Nevertheless, in general, the distinguisher having the lowest
entropy is the best for obvious reasons, only if it does not get rejected by the above-mentioned criteria.

4.2 Enabling Divide-and-Conquer in Distinguisher Enumeration algorithm T
Injection of a fault results in a set of distinguishers with different entropy values, as shown in the previ-
ous subsection. However, only a few of them are practically utilizable, as the usability of a distinguisher
depends on the complexity of evaluating it exhaustively. Typically, the candidates for the correct key are
obtained by exhaustive evaluation of the distinguisher over all possible key guesses, which, in most of
the occasions is realized in the form of the complete solution space of a system of difference equations
(or inequations). The time complexity of distinguisher evaluation, as well as the size of the remain-
ing keyspace (denotes the offline complexity of the attack), can be estimated once such systems are
constructed, and the maximum among these two quantities denote the overall complexity of the attack.
Further, the number of required fault injections for a practical attack can also be determined from these
equations. However, knowing these relations apriori, is not a practical assumption for an automated
tool, as it critically depends upon the distinguisher chosen. As already pointed out in Sec. 2.2, au-
tomatic construction of these equations require a proper divide-and-conquer strategy to be identified.
Such a strategy allows parallel evaluation of each individual variable/variable set of the distinguisher by
guessing small key parts exhaustively, instead of guessing the complete key at once.

In this work, we construct such equations systems automatically in an abstract form, which is suit-
able for the purpose of attack complexity evaluation and can be extended to concrete fault difference
equations, if required. To automatically determine the divide-and-conquer strategy we propose an al-
gorithm which typically, identify the key bits one need to guess to compute each variable/ variable
set within a distinguisher by means of a graph-based abstraction of the cipher. Let us consider the
data-centric view of the cipher in (6). Each state si

j here is represented as a set of binary variables as

si
j = 〈b

i j
1 ,b

i j
2 , ....,b

i j
λ
〉, in contrary to the last subsection, where they (the states) were represented as vec-

tors of variables of size m bits. Let us define a directed acyclic graph (DAG) G (Ver, E), where the set
of the vertices Ver, consists of all the bit variables within the cipher. The set of directed edges E, on
the other hand represents the effect of various sub-operations on the vertices, directed from the plain-
text input towards the ciphertext outputs. More specifically, given two consecutive states si

j, and si+1
j ,
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Figure 4: Example: Finding Key Parts for the Distinguisher Evaluations in PRESENT

the edges represent the dependencies between them, imposed by the sub-operation oi+1
j , at bit-level,

considering the bit variables of si
j as inputs, and that of si+1

j as outputs, respectively. For a bit variable

bi j
e , 1≤ e≤ λ , the incoming edges on it, define on which bit variables, the value of bi j

e actually depends
on. We call such a graph as Cipher Dependency Graph (CDG).

Certain simplifying assumptions were made, while constructing the CDGs. Some basic CDG build-
ing blocks are illustrated in Fig. 3. For the S-Boxes, we assume that each output variable is dependent
on all the S-Box inputs (Fig. 3 (a)). The key addition operations are represented by structures shown
in Fig. 3 (b). The nodes corresponding to the key variables are of specific interest, and special pointers
to each of these variables are kept within the nodes they are incident to. Permutation layers are often
straightforward and thus not shown here. However, some linear operations like MDS matrices need
special care (more specifically the linear layers which involves XOR operations). Fig. 3 (d) represents
one such scenario for 8-bit variables, which are shown in groups for convenience. The MDS structures
are also complete graphs (of 32 vertices in this example). It is worth to mention that, the graph G is
completely cipher-specific, and thus one needs to construct it only once while doing the exploitable
fault analysis for a specific cipher. A CDG, corresponding to a fault attack test case on PRESENT
is illustrated in Fig. 4. For ease of understanding, only the sub-graph relevant to the attack is shown.
Interestingly, the CDG is already divided into clearly identifiable levels.

The next step to the CDG construction is the identification of independent key parts. For a given
distinguisher, we initiate a series of breadth first searches (BFS) up to the ciphertexts nodes of the CDG.
Each BFS search begins with a bit variable at the state, where the distinguisher has been constructed.
The search typically figures out all the mutually dependent bit variables starting from the start node, in
the form of the BFS tree (refer to Fig. 4 for example). Once the BFS tree is obtained, one can figure out
the key nodes attached to it in O(1) complexity, by using some special key pointers maintained in the
nodes of the CDG which represent the key addition operations. Such pointers can be added easily during
the construction of the CDG. For the sake of illustration, let us refer to Fig. 4 once again. The attack
discussed here construct the distinguishers at the inputs of the 30th round S-Box operation (the first
layer of nodes shown in Fig. 4.) In the figure, the shaded circles represents the associated state bits one
must compute to calculate the first bit in the distinguisher. The key bits one need to guess to calculate
the shaded state bits are shown in red. All the colored variables here are the part of a BFS tree. Further,
from the BFS tree of Fig. 4, the key variables to be guessed can be extracted which are 20 in number for
the first bit. In summary, to calculate the first bit of the distinguisher, it is sufficient to guess these 20
bits together and no other key bit is required to be guessed. This provides the divide-and-conquer we
require.

Certain intricacies are there to be taken care of while collecting the independent key parts for a dis-
tinguisher. Interestingly, not all key variables obtained by the BFS search are necessary. To illustrate
this, we refer to the Fig. 2, where the key bits corresponding to k9 are not used for distinguisher eval-
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uation, however, will still be detected by the BFS based search. The key reason behind this fact is that
there are no nonlinear layer between the key variables in k9 and the distinguisher in S9

SR. As a result,
these key variables get canceled out with the calculation of the differential. Fortunately, we can easily
enhance the proposed mechanism to encompass such scenarios. The idea is to keep the track of the
non-linear layers (S-Boxes) encountered, at each level of the CDG during the BFS traversal. This can
be easily done by maintaining counters within the nodes of the CDG. While collecting the key variables,
if it is found that the level corresponding to the key variables is not preceded by any S-Box level, the
keys can be discarded.

We provide an illustrative example at Fig. 4, which refers to a fault attack for PRESENT. The
distinguisher is at the input of the S-Box layer at round 30 of the cipher. For clarity, we have only
presented the BFS tree for a single node at round 30. The data nodes and the key nodes are marked with
separate colors. There are total 20 key bits, which actually affect the value of the first distinguisher bit.
Careful observation reveals that the key set is same for the next three consecutive bits (that is, for the
complete nibble) as well.

Calculation of the Distinguisher Evaluation Complexity: The BFS based key part finding algorithm
actually returns sets of key bits, corresponding to each bit of the distinguisher state. As for most of
the time, we are dealing with m bit distinguisher variables, it is trivial to combine the key bit sets
corresponding to each m bit variable. One should also consider combining the key bit sets corresponding
to the variable sets (if any). While evaluating any of these variables/variable sets, the corresponding keys
must be guessed. At this point, certain other things are to be taken care of. Let us consider a distinguisher
δ i

j = 〈w
i j
1 ,w

i j
2 , ...,w

i j
l 〉. Corresponding to each wi j

z , there exists a set of key bit variables. An obvious
way is to view the relationships as a bipartite graph, as shown in Fig 5. Without loss of generality, we
just consider variables and not the variable sets in this discussion, although the same logic applies to
the later one. Let us denote the key set corresponding to each variable wi j

z as Key Set (KSz). The key
sets, however, may have overlaps. As a concrete example, one may consider the PRESENT case study
depicted in Fig. 4. All 4 consecutive nibbles in the distinguisher at round 30 (shown in the diagram as
layer SB30), depends upon the same 16 round key bits from the 32-th round. Such overlaps are extremely
important from the divide-and-conquer point of view. This is because, the overlaps indicate that all the
difference equations, that can be constructed involving these key bits and the associated variables wi j

z
will share the key variables. As a result they must be evaluated simultaneously. Putting it in a more
simplified manner, if there are overlaps, computation related to all the overlapping variables must be
performed simultaneously. To deal with such cases, we define Maximum Independent Key Sets (MKS),
which are non-overlapping subsets of key variables, constructed by taking the union of overlapping
KSzs. Each MKSh also impose a grouping on the corresponding wi j

z s attached to its component KSs
(note that we have used the term “group” to differentiate it from the variable sets. From this point
onwards, we shall use variable set and variable group to identify these two separate entities. Variable
sets can be members of variable groups.). Intuitively, such groupings in keys and distinguisher variables
imply the sets of independent equations to be solved for the key extraction.

Calculation of the distinguisher evaluation complexity becomes trivial after the above-mentioned
grouping. Let us consider, an MKS as MKSh and the corresponding variable group as V Gh (note that
variable groups may also include variable sets as its elements.). Each V Gh can be evaluated indepen-
dently. Let us assume that we have M such V Ghs along with their corresponding MKShs. The time
complexity of computing each of them is given as T(h) = 2|MKSh|, 1 ≤ h ≤ M. It is quite obvious
that such a search can be performed (and should be) in a parallel manner. As a result, the overall com-
plexity of the distinguisher enumeration algorithm T becomes maxh(T(1),T(2), ...,T(M)). Certain
optimizations are possible in the above mentioned CDG searching scheme, by reducing the number of
BFS traversals corresponding to each distinguisher, through the proper exploitation of the symmetries,
usually present in the cipher constructions. Certain enhancements are also feasible. For example, the
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Figure 5: Illustration of the Relationships between Key and Distinguisher Variables

number of key guesses for a distinguisher can be significantly reduced by reordering the linear layers
of the cipher, and this fact is utilized for certain attacks (see [2] for a concrete example). Although the
proposed framework handles, or can be extended to handle such enhancements, the details are omitted
here to save space.

4.3 Complexity Evaluation of the Remaining Key Space R
The final step in finding a successful DFA is the evaluation of the remaining keyspace size after the fault
injection. Remaining search space complexity R, along with the distinguisher evaluation complexity
T determines the total complexity of a fault attack. Often, the complexity remains beyond the practical
exhaustive search complexity with a single fault injection and as a result, one might require multiple
faulty ciphertexts. Nevertheless, the required number of faults for the successful attack can be estimated
from the remaining space complexity of a single injection, and hence we specifically focus on the re-
maining search space with a single fault. The distinguisher D i

j and the corresponding key parts obtained
in the last two steps can be utilized to figure out the remaining keyspace complexity efficiently. Another
important component of this computation is the differential characteristic of the S-Boxes. Differential
characteristic (DC) of an S-Box S basically reports the average number of solutions an S-Box differen-
tial equation may have. They can trivially be calculated from the Differential Distribution Table (DDT)
of an S-Box. A summary of DC values for different ciphers can be found in [6].

The algorithm for remaining search space evaluation is presented in Algorithm 3. The main idea
in this step is to figure out the probability, with which the distinguishing property occurs during dis-
tinguisher enumeration with random key guesses. This probability is then multiplied with the total key
space in the corresponding MKS, giving the remaining search space complexity. Referring to the algo-
rithm, the input consists of the corresponding distinguisher D i

j, and a set of tuples with cardinality M,
which contains the MKSs and corresponding VGs. As an additional component, the DC characteristic
of the S-Boxes H h

S corresponding to each MKSh, V Gh pair is also supplied. The H h
S is the DC value

corresponding to each (MKSh, V Gh) pair. In some cases, a distinguisher may involve multiple S-Box
layers and as a result H h

S should be multiplied many times for each distinguisher variable (or variable
set) evaluation. To keep things simple we directly provide the algorithm with properly tailored values
within H h

S . Values of the H h
S with above-mentioned tailoring can be trivially obtained from the CDGs

described in the last subsection, just by keeping track of the S-Boxes encountered with the distinguisher.

5 Case Studies: AES and PRESENT
In this section, we provide proof-of-concept evaluations of the proposed framework on two well-known
ciphers – AES-128 (128-bit block size, 128-bit key, 10 rounds, and 8× 8 S-Box) and PRESENT-80
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Algorithm 3 Procedure EVAL SEARCH SPACE
Input: D i

j , {〈MKSh, V Gh,H
h

S 〉}M
h=1

Output: Complexity of the remaining search space R, after one fault injection (|R|).
1: |R| := 1
2: for each V Gh do
3: P[V Gh] := 1
4: for each gh ∈V Gh do
5: if (V S

δ i
j
== φ ) then . D i

j includes no variable sets; so V Gh contains independent variables

6: count := |Rnggh |
7: bc := m
8: else . D i

j includes variable sets; so each V Gh contains variables sets
9: count := |ISgh

δ i
j
|

10: bc :=VarCount(gh) ×m
11: end if
12: P[V Gh] := P[V Gh]× count

2bc
13: end for
14: ksize := BitCount(MKSh) . BitCount returns the number of bit variables in (MKSh)
15: |R|V Gh := 2ksize ×P[V Gh]× (H h

S )|V Gh |

16: |R| := |R|× |R|V Gh
17: end for
18: Return |R|

(64-bit block size, 80-bit key, 32 rounds, and 4×4 S-Box), both of which are Substitution-Permutation-
Networks (SPN). The diffusion layers of the ciphers are significantly different – AES has an MDS
matrix in its diffusion layer, whereas PRESENT uses a simple bit permutation for the diffusion. We
decide 250 as the limit for practical exhaustive search. Using the proposed framework, we analyzed
all possible byte and bit faults up to 6-th round for AES. For PRESENT, bit, nibble, and byte, and 2-
byte faults were analyzed up to 26-th round. The fault locations were assumed to be known, which is
a reasonable assumption for a cipher-evaluator. It was observed that, exploitable faults are limited up
to 7-th round in AES and 28-th round in PRESENT, which agrees with the existing literature. In the
following subsections, we describe three typical DFA use-cases in detail to emphasize the necessity of
each of the components of the framework.

5.1 AES: Fault Injection at the Beginning of the 8-th Round
In this attack, a byte fault of unknown value is injected at the beginning of the 8-th round of AES. Below,
we describe the steps followed by the proposed framework in detecting this attack.

Distinguisher Identification:
The distinguisher identification step identifies all the differential states (total 9) on the fault propagation

path showing some entropy reduction. However, the first 4 from the fault injection point are rejected
due to their excessive evaluation cost, while the last two are rendered useless by the absence of a non-
linear layer between them and the ciphertext. Among the rest, δ 4

9 , which is the output of the 9-th round
MixColumn shows the smallest entropy value and is eventually selected as the potential distinguisher
for the attack. Next, we elaborate the entropy calculation for this state differential. The state differential
δ 4

9 = 〈w49
1 ,w49

2 , ...,w49
l 〉 contains 16 variables, each with bit-width m = 8. The maximum entropy here is

Hmax(δ
4
9 ) = 128. However, the function Miner reveals variable associations. More specifically, there

are 4 variable sets (w49
1 ,w49

2 ,w49
3 ,w49

4 ), (w49
5 ,w49

6 ,w49
7 ,w49

8 ), (w49
9 ,w49

10,w
49
11,w

49
12), and (w49

13,w
49
14,w

49
15,w

49
16)

(variable numbering was done column-wise maintaining the convention in AES), each having 255 item-
sets for them. The joint entropy of each variable set v becomes HAssn(v) = ∑

255
q=1

1
255 log2(255) = 7.99,

which finally results in the state differential entropy of HAssn(δ
4
9 ) = 4×7.99 = 31.96.
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Distinguisher Evaluation Complexity:
Evaluating the time complexity for this attack requires the construction of the CDG and a series of BFS

traversals starting from the distinguisher bits. In this case, the distinguisher consists of 4 variable sets,
containing 4 variables each. Each 8-bit variable in the distinguisher state depends on 8 consecutive key
bits (that is key bytes), and with the existence of variable sets having cardinality 4, one must consider 8×
4 = 32 key bits simultaneously, for guessing. Further, the key bytes associated with each distinguisher
variable set are independent, and hence the VGs will contain only single variable set. Overall, the
complexity becomes 232.

Evaluation of the Remaining Search Space Complexity:
The MKS and VGs, which are the inputs to the Algorithm 3 are 4 in number in this case. Further,

each VG contains a single variable set and 32 key bits corresponding to that. One needs to consider
the number of itemsets corresponding to each variable set (or variable group, as in this case each group
contains a single variable set) in this case. For each of the 4 variable sets, the probability of occurrence
of the distinguishing criterion is P[V Gh] =

255
232 . The DC characteristic of AES S-Box is found to be 1 and

the total number of key possibilities are 232. The remaining keyspace corresponding to each variable set
thus becomes 232×2−24 = 28, leading to a complete remaining search space complexity of (28)4 = 232.
One should exhaustively search this remaining keyspace for the correct key. The total complexity of the
attack, considering both distinguisher evaluation step and the exhaustive search step thus remains 232.

Special Notes on the Two Step Attacks Described in [9]:
Tunstall et. al. presented a 2 step approach for the attack described here, which eventually reduces

the remaining keyspace size to 28. The idea is to complete the attack just described, and then to exploit
another distinguisher δ 4

8 which was previously costly to evaluate on the complete keyspace. However,
one should notice that the attack complexity still remains 232. The proposed mechanism here detects
both the distinguishers. However, the two-step attack requires the existence of the inverted key schedule
equations. The proposed tool can simulate the attack using the similar conditions used by the XFC
framework in this context.

5.2 AES: Fault Injection at the Beginning of the 7-th Round
While XFC is unable to detect this attack, we find that the proposed framework can figure out an impos-
sible differential attack for this case. It is evident from Fig. 1 as well as from the outcome of our tool,
that the fault injection at the 7th round results in impossible differentials at the states δ 4

8 , δ 1
9 ,and δ 2

9
and δ 2

9 is exploited for the attack. Although the state differential δ 2
9 does not possess any association

rules, the RngChk function detects the absence of 0 in each of the variables, and as a result, the entropy
becomes HInd(δ

4
9 ) = 127.90, which makes the state differential qualify as a distinguisher. The distin-

guisher evaluation, in this case, demands some special attention. It is observed that each byte of the
distinguisher depends on 32 key bits from the 10-th round. Note that, the BFS tree obtained from the
CDG will also include the 9-th round keys here. However, the 9-th round keys are discarded following
the rule that there are no S-Boxes between them and the distinguisher. The distinguisher evaluation
complexity becomes 232. Finally, the complexity of the remaining keyspace is evaluated, which in this
case, turns out to be |R|V G1 = 232× ( 255

28 )4 (roughly equal to 232−226). The large size of the remaining
keyspace indicates the need of multiple fault injection. Although, the estimation of the required num-
ber of faults here is slightly nontrivial due to the inequalities involved, it can be estimated using the
construction from [2], and we do not repeat the construction here.

5.3 PRESENT: 2-Byte Fault Injection at the Beginning of the 28-th Round
The third test case is quite distinct from the first two cases, owing to the fact that, PRESENT does
not use any MDS matrix in its diffusion layer. The attack described here is similar to that proposed
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in [5]. The distinguisher identification algorithm, in this case, identify the input state of the S-Box of
the 30− th round (δ 1

30) as the best distinguisher. The RngChk function identifies that the variables in
this state differential can take only 2 values among 16 possible values (although the values may change
depending on the fault locations), and as a result, the entropy becomes HInd(δ

1
30) = 16. As it can be seen

from Fig. 4, each distinguisher bit (actually each nibble) here depends on 20 key bits. However, due to
the overlappings present in different nibble-wise key sets (KSs), the distinguisher evaluation process can
eventually be partitioned into 4 independent (MKS,V G) pairs, each having 32 key bits involved – 16
from the last round and rest from the penultimate round. As a result, the evaluation complexity becomes
232. For each of the 4 (MKSh,V Gh) pair, which involves 232 keys, the probability of occurrence of the
distinguishing criterion is P[V Gh] = (2−3)4 = 2−12, and the remaining key space size is |R|V Gh = 220.
With a single fault injection, thus the remaining keyspace reduces to 280 from 2128 in this case, and
the attack demands the injection of at least another fault (complexity becomes (232× (2−12)2)4 = 232,
which is fairly reasonable).

6 Conclusion
In this paper, we have proposed a completely automated framework for exploitable fault identification in
modern block ciphers. The main idea is to estimate the attack complexity without doing the attack in the
original sense. Moreover, the proposed framework is fairly generic to cover most of the existing block
ciphers, and is better than another recently proposed framework, in terms of its coverage of different
fault cases and degree of automation. Three step-by-step case studies on different ciphers and fault
attack instances were presented to establish the claims. Future works will target further automation
and generalization of the proposed framework as well as comprehensive analysis of different existing
ciphers using it. Some obvious future extensions include the attack automation on key schedule and
round counters. Another extremely important goal could be the detection of integral attacks and MitM
attacks [7, 8] which also seems to be feasible in this data-analysis based framework. Further, automated
design of countermeasures with the assistance from this tool could be another direction of research.
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