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Abstract

The Limited Relative Error algorithm is an alternative statistical method for data
evaluation. Through online result analysis it continuously requests more samples until it
deems the evaluation confident enough. With this it allows researchers to hand over the
control of simulation time to the algorithm, and through a-priori configuration the target
result resolution is set so that arbitrarily rare events can be investigated. We provide a
new description of the method as well as a stand-alone implementation and an integration
of the algorithm into the OMNeT++ simulator.

1 Introduction

A crucial part of stochastic simulation is the statistical evaluation of the result data. To make
an objective statement about the accuracy of one’s results, the quantity of data or equivalently
the simulation time must be taken into account.

The popular Batch Means evaluation method is, according to [1], deficient as it attempts to
eliminate correlation by forming “quasi-independent, quasi-normally distributed batch-random
variables”. The replication method eliminates correlation through the repetition of the same
scenario with varying random number generator seeds. This suffers from having to eliminate the
warmup period of each repetition. Both methods have the disadvantage of having to estimate
the required simulation time a-priori. Akaroa2, presented in [2], aims to solve this problem by
running distributed, statistically independent simulations on isolated hosts or processes, which
report their progress to a central analyser, which in turn requests the hosts to stop once it
deems the results confident enough.

The lesser-known Limited Relative Error (LRE) algorithm will be reviewed in this paper,
which estimates an unknown cumulative distribution function (CDF) function corresponding
to the observations made during simulation. The algorithm does an online analysis of the
simulation results during simulation, and so controls the simulation length until the relative
error d has been decreased past the target error d ≤ dmax by requesting more observations. d
is a function of the observation correlations and so, in contrast to Batch Means, LRE monitors
the observed correlation and adapts the simulation time according to it.
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In contrast to Akaroa2, the distribution of a statistic in question is evaluated, as opposed to
the mean. Therefore LRE tackles a different problem and is especially suitable for applications
in reliability analysis, where the user knows a-priori that a system should not exceed some
performance boundaries; say Voice over IP (VoIP) applications should not experience packet
delays exceeding 150 ms, and the researcher aims to find out how likely it is to violate this
boundary. On the other hand, analysis methods for mean values based on confidence intervals
are better suited to establish a picture of the range of some statistic.

In certain applications, very rare events want to be investigated. Very long simulation runs
are required to obtain a sufficient number of observations, and time constraints make this a
difficult problem, especially if emulators instead of simulators are used. Estimating the required
simulation time to obtain a sufficient number of observations is especially difficult in this case.

The paper is organized as follows. In Section 2 a brief history of the LRE algorithm is given.
Section 3 attempts to describe the algorithm in detail. Section 4 gives a quick example of the
application of the algorithm on work conducted using the OMNeT++ simulator, and Section 5
concludes the document.

2 Related Work

The LRE algorithm evolved over the span of more than a decade. In 1984 Schreiber published
the first version in [3], where a sequence of observations was assumed to be independent. In
1988, Schreiber published an extension in [4], where the correlation of the observations was
considered. In 1996, Schreiber and Görg published the third iteration of the algorithm in [1],
which is further discussed in Görg’s habilitation in [5]. In [6] it is evaluated for reliability, while
[7] gives an analysis of the algorithm from the perspective of sojourn times, where a disadvan-
tage of inaccurate confidence is highlighted in certain cases, as well as doubt raised about the
modelling of samples through a memoryless Markov chain, which may be unrealistic. However
the advantage of not having to estimate the simulation time may outweigh this disadvantage.

LRE-III is a simplified version that requires the observations to be discrete, while the earlier
versions were able to also cope with continuous and mixed continuous-discrete observations.

3 Limited Relative Error algorithm

This section covers the functionality of the LRE algorithm as taken from the various publications
by the authors in [1], [3], [4] and [5].

3.1 Assumptions and Goals

Given a chronological sequence of observations (α1, α2, . . . , αn) that stem from a random pro-
cess X, the following assumptions are typically made for the field of communication networks,
from [5]: (a) the samples are correlated, (b) the random process X is stationary ; that is, a
time-independent CDF FX(x) is associated with the sample sequence and (c) the type of the
random process is unknown; that is, all of FX(x) as well as correlations are not known a-priori.

The goal of the LRE algorithm is therefore to (a) find F̃X(x) as an approximation of the
unknown FX(x), (b) make statements about the correlation of the sample sequence, (c) deter-
mine an error function which can be reduced by adding more samples into the sequence until
an error bound is met.
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0 . . . i− 1 x i . . . k

G(x) = P (in state i, i+ 1, . . . , k)

Figure 1: Graphical visualization of G(x) in Equation 1. i is the first state that corresponds to
a sample whose value is larger than x.

3.2 Complementary cumulative distribution function

We can order our observations into (α′1, α
′
2, . . . , α

′
n) with α′i ≤ α′i+1. For every x we can

now easily find a left and right subvector containing only smaller and equal, or greater values.
(α′1, α

′
2, . . . , α

′
n) corresponds to a discrete (k + 1)-state Markov chain, where each state cor-

responds to observing a particular sample, and state k corresponds to the observation of the
largest observed sample.

For this Markov chain, the complementary cumulative distribution function (CCDF) can be
found as

G(x) = Gi = P (X > x) =

k∑
j=i

Pj for i− 1 ≤ x < i, i = 1, 2, . . . , k

with G0 = 1 and Gk+1 = 0

(1)

G(x) in Equation 1 corresponds to the probability of being in any state that corresponds
to the random variable X taking on a value larger than x, which corresponds to the CCDF, as
shown in Figure 1.

3.3 Markov Chains

For every position x in the (k + 1)-state Markov chain, a 2-state Markov chain as in Figure 2
can be obtained, where the first state corresponds to the random variable X taking on values
X ≤ x and the second state to X > x.

The transition probabilities p0(x), p1(x) can be found as follows:

p0(x) =
1

F (x)

i−1∑
r=0

Pr

k∑
j=i

prj for i− 1 ≤ x < i, i = 1, 2, . . . , k

p1(x) =
1

G(x)

k∑
r=i

Pr

i−1∑
j=0

prj for i− 1 ≤ x < i, i = 1, 2, . . . , k

(2)

3.4 Local Correlation Coefficient

The covariance normalized by the standard deviation is the correlation coefficient ρ:

ρXY = Corr(X, Y ) =
Cov(X, Y )

σXσY
(3)
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Figure 2: A local x-based 2-state Markov chain obtained from a (k + 1)-state Markov chain.
From [5].

where −1 ≤ ρ ≤ 1.
While ρ considers all values of the random variables X, Y , the local correlation coefficient

ρ(x) is a function of x, and therefore depends on this position x. Considering 2-state Markov
chains, their global correlation coefficient ρ corresponds to the local correlation coefficient ρ(x)
of the underlying (k + 1)-state Markov chain at the respective position x.

The local coefficient can be found as ρ(x) = 1− [p0(x) + p1(x)], where for p0(x) + p1(x) < 1
a positive correlation is found according to [5]. In other words, this means that there is a larger
probability that once either state is entered, the process will remain in that state for one or
more iterations, than if the state has not been entered. This corresponds to burstiness of for
example packet delays, where it is likely to observe more large delays once a single large delay
has been observed. With this, the state probabilities P0(x), P1(x) for the 2-state Markov chain
of being in state S0(x), S1(x) respectively are

P0(x) =
p1(x)

1− ρ(x)

P1(x) = 1− P0(x) =
p0(x)

1− ρ(x)

(4)

3.5 Procedure

The algorithm aims to determine – through simulation – the CCDF G(x) of a (k + 1)-state
Markov chain where k is given a-priori, and where transition probabilities pji are not known.

To do this, we count how many times each state i has been entered after n transitions in
the chain. We save this number in the counter variable hi, from which we can find the state
frequency

vi =

k∑
j=i

hj for i = 0, 1, . . . , k with v0 = n (5)

that tells us how many times the right state S1(x) with i − 1 ≤ x < i of the 2-state Markov
chain has been entered – for reference see Figure 2. ri = n− vi handles the left state S0(x) and
is implicitly counted.

The transition frequency ci, i = 1, 2, . . . , k counts how many times the transition S1(x) →
S0(x) across the dividing line of x has happened. Frequencies vi and ci and the corresponding
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counterparts ri = n− vi and ai ≈ ci belong to the equivalent x-based 2-state Markov chain.
An overview is given in Figure 3.

Figure 3: An overview of the transformation from a (k+ 1)-state to a 2-state Markov chain, as
well as counters ai, ci, ri, vi and the association with Gi. From [5].

Next, after having measured vi, ci from n samples, the large sample conditions are checked:

n ≥ 103 require “many” samples; makes sure the transient phase has been left

(ri, vi) ≥ 102 at least 100 samples left and right of state i

ci, ai ≥ 10 at least 10 transitions from state i

vi − ci ≥ 10 have at least 10 more visits than leaves (sometimes remain in state)

and if met, we can determine (a) the measured CCDF G̃(x) = G̃i = vi
n , (b) the

measured state average α̃ = 1
n

∑k
i=1 vi, (c) the measured local correlation coefficient

ρ̃(x) = ρ̃i = 1 − ci/vi
1−vi/n , (d) the corresponding correlation factor c̃f(x) = c̃f i = 1+ρ̃i

1−ρ̃i and

(e) the relative error dG(x) = di = σG(x)/G̃(x) =

√(
1−vi/n
vi

· c̃f i
)

.

Here σG(x) is the standard deviation of P1(x) in the 2-state Markov chain, which was found
in [7] and [8] to be normally distributed. As the transitions are counted in ci, not only the
local correlation coefficient ρ̃(x) but also the relative error dG(x) as a function of ρ̃(x) can
be found. This allows the algorithm to continuously increase the number of trials n until the
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error condition di ≤ dmax is met, where dmax is an a-priori maximum error. The standard
deviation σG(x) gives an absolute error, which is made relative to the probability of being
in state ≥ i of the Markov chain by dividing with the value of the CCDF at the respective
position G̃(x). The correlation coefficient becomes large for a large, positive correlation, and
so increases the relative error. A large correlation corresponds to many transitions from a state
to itself (e.g. burst errors resulting in a long sojourn time in the large-error-state), and so the
algorithm demands more observations in this case to ensure that the transition probabilities
between states are accurately modelled.

3.6 Executing the algorithm

Parameters for a simulation supervised by LRE are dmax, xmin, xmax, xstep. The sequence of
samples x1, x2, . . . , xn is mapped to the (k + 1)-state Markov chain, and n is increased until
di ≤ dmax for all i. At runtime an index s corresponds to that state in the Markov chain whose
error ds shall be checked next, and it is initialized at s = 1.

Algorithm 1 LRE Algorithm; adapted from [5]

1: procedure lre simulation(maximum error dmax, bounds of evaluation range xmin, xmax,
interval size xstep)

2: k = (xmax − xmin)/xstep . largest state index
3: for i = 0, . . . , k do
4: hi = 0; ci = 0 . initialize counters

5: x = 0; n = 0; s = 1
6: while s 6= k do . iterate through states 1 . . . k
7: ω = x . remember old value
8: generate new observation x
9: increment counter hx

10: increment number of samples n
11: if x < ω then . transition to left of ω
12: for i = x+ 1 to ω do
13: increment ci . state transition to smaller value

14: calculate ρ̃s and relative error ds
15: if ds ≤ dmax then . target error reached?
16: increment s . go to next state

17: for i = 1, . . . , k do
18: calculate sum frequencies vi from Equation 5
19: calculate result values G̃i, ρ̃i, di

4 Application

A standalone LRE implementation is available on GitHub in [9], which is also used for our
OMNeT++ integration available in [10]. The novel LRE OMNeT++ entity subscribes to a
signal specified by the user. When enough signal emissions were captured and LRE deems
results confident enough, the simulation is ended. The intended usage therefore foresees setting
no simulation time, but configuring the LRE entity so that it can take over controlling the
simulation time.
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Configuration of the entity is done through setting NED parameters. The output corre-
sponds to the measured probability of the CCDF at all x-positions, as well as the relative
error d(x), local correlation coefficient ρ(x), standard deviation σ(x), number of samples and
transitions per state n(x), t(x).

4.1 Example

An example use case is included in the implementation in [10]. A simple network with one
sender and one receiver is modelled. The sender draws the time it waits until sending the
next packet from an exponential distribution with a mean of 150 ms. We quantise the packet
interarrival times measured at the receiver into intervals of size xstep = 100 ms and observe
the range xmin = 0 ms ≤ x ≤ xmax = 1000 ms. We repeat the LRE runs for the maximum
errors dmax ∈ [0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05] to see how the target error
affects the required number of observations.

This simple approach is chosen so that it is easily understood and imitated by new users of
the LRE method. As all code required to replicate the exact results is part of the open-source
code release in [10], it shall provide easy access to understanding how the LRE method is used
in OMNeT++.

(a) Number of observations LRE requested for different
dmax.

(b) CCDF LRE computed for different dmax.

Figure 4: Number of observations requested and CCDF measured by the LRE for OMNeT++
integration of packet interarrival times measured at the receiver.

Figure 4a shows that the number of observations increases strongly as the maximum allowed
error dmax decreases. In our test case, when dmax = 1 % then the number of observations
is 27 times larger than the number of observations for dmax = 5 %. Figure 4b shows the
corresponding CCDF, where the three cases of dmax correspond to measured probabilities
that differ in the range of 0.1 %. The largest packet interrarival times occur at probability
P (X > 1000 ms) ≈ 10−3.

We can conclude that the LRE algorithm successfully controls the number of observations
it requires and so the simulation time. When a more rigid analysis is required, dmax is set to a
stricter limit. In our simple scenario the difference in the CCDF is marginal. When a different
range of the statistic in question is required, then this is also easily configured through the
algorithm input.
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5 Summary, Conclusion, and Outlook

In this paper we have demonstrated a lesser-known but useful statistical method for result
evaluation that is capable of deciding when a simulation shall end automatically, ensuring that
an a-priori target confidence level is met. The LRE algorithm can be configured so that the
intended resolution of some statistic is measured – so if the user is interested in rare events,
then the target resolution is easily configured, and the algorithm will ensure that a confident
statement can be made afterwards.

We have provided a new description of the LRE algorithm which dates back to the eighties
and nineties. An OMNeT++ network module is implemented that provides the algorithm func-
tionality to the simulator. Through simple network configuration the algorithm is configured,
and when the simulation time is unset or set to a very large value, the LRE entity will handle
simulation termination when the results have reached the target confidence level. This allows
the easy analysis of arbitrarily rare event statistics in OMNeT++. Events that occur with a
very small probability can not be investigated more quickly as the simulation time may still be
prohibitively long; so far the gain is the automatic on-line evaluation and termination when the
target confidence is met. The LRE method was combined in [11] with the RESTART method,
first published in [12], to significantly decrease the required simulation time. An implementation
of this in OMNeT++ could prove useful to many researchers.

We have made available both the standalone implemenation in [9] as well as the OMNeT++
integration in [10]. The network model that generates the data shown in this paper is part of
the release in [10].
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