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Abstract

Machine verification of formal arguments can only increase our confidence in the cor-
rectness of those arguments, but the costs of employing machine verification still outweigh
the benefits for some common kinds of formal reasoning activities. As a result, usability
is becoming increasingly important in the design of formal verification tools. We describe
the AARTIFACT lightweight verification system, designed for processing formal arguments
involving basic, ubiquitous mathematical concepts. The system is a prototype for investi-
gating potential techniques for improving the usability of formal verification systems. It
leverages techniques drawn both from existing work and from our own efforts. In addition
to a parser for a familiar concrete syntax and a mechanism for automated syntax lookup,
the system integrates (1) a basic logical inference algorithm, (2) a database of propositions
governing common mathematical concepts, and (3) a data structure that computes con-
gruence closures of expressions involving relations found in this database. Together, these
components allow the system to better accommodate the expectations of users interested
in verifying formal arguments involving algebraic and logical manipulations of numbers,
sets, vectors, and related operators and predicates. We demonstrate the reasonable per-
formance of this system on typical formal arguments and briefly discuss how the system’s
design contributed to its usability in two case studies.

1 Introduction

In research efforts involving mathematical rigor, as well as in mathematical instruction, there
exist many benefits to adopting a formal representation that is amenable to machine verification.
These benefits include reusability, automatic evaluation of examples, and the opportunity to
employ machine verification. Machine verification can offer anything from detection of basic
errors, such as the presence of unbound variables or type mismatches, to full confidence in an
argument because it is consistently constructed using the fundamental principles of a particular
mathematical logic. There exists a variety of such machine verification systems, and some have
been surveyed and compared along a variety of dimensions [39].

Unfortunately, the costs of employing machine verification still outweigh the benefits in a
variety of formal reasoning activities. While it is by restricting a user to correct arguments
that a machine verifier serves its purpose, such restrictions can inhibit even an expert user’s
productivity when they are reflected in the machine verifier’s interface. To date, broad accessi-
bility and quality interface design have not been a priority in the design of machine verification
systems. On the contrary, a researcher hoping to enjoy the benefits of formal verification is
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presented with a variety of obstacles, both superficial and fundamental. One author, comment-
ing on designing an interface for representing proofs, opines that “we seem to be stuck at the
assembly language level” [37]. While employing machine verification systems can improve the
accuracy of a user’s formal reasoning activities, the systems’ counterintuitive or cumbersome
interfaces may impair the capacity and productivity of the user.

1.1 Mathematical Reasoning with Common Concepts

Introduce P, m.
Assume P is a finite set, P is non-empty, and P C N.
Assume for all n € N, if n is prime then n € P.

Assume m = Fy ... Plp|_1.
Assert m € N.

Assert for any p € N,
if p is a prime factor of m + 1 then
p is not a factor of m,

p is prime,

peEP,

p is a factor of m,
there is a contradiction.

Figure 1: An example of a proof of the infinitude of primes.

Even if one considers a small collection of mathematical concepts, a practicing mathemati-
cian is familiar with a large number and a great variety of propositions that describe relation-
ships between the concepts in such a collection. To illustrate this, Figure 1| presents a very
short proof of the infinitude of primes. This short proof contains explicit references to finite
sets, natural numbers, prime numbers, products, and factors. It also contains many implicit
references to the properties of these concepts, and to the relationships between them.

Any system that aims to support the kind of formal reasoning activity users employ in
constructing such a proof must have several characteristics. The system must provide a natural
syntax that corresponds to the conventions that prevail in the target community of users. The
designers of Scunak mathematical assistant [7] echo this in positing a need for “naturality” in a
system’s concrete representation. It must also provide some basic infrastructure for assembling
logical arguments using typical logical constructs (i.e. conjunction, disjunction, quantification).
Most importantly, it must not only incorporate an extensive library containing many concepts,
properties, and relationships that a user will want to employ, it must allow the user to employ
many of these without explicit reference (i.e. it must not require the user to name results, or
refer to them by name). The designers of the Scunak system [7] refer to this as “[retrievability]
... by content rather than by name.” Likewise, the designers of the Tutch system posit that an
“explicit reference [to an inference rule] to [humans] interrupts rather than supports the flow
of reasoning” [I].
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1.2 A User-friendly Tool for Verifying Basic Mathematical Reasoning

The AARTIFACT! system is a lightweight verifier for formal arguments [16]. The system provides
a familiar concrete syntax for common mathematical concepts that overlaps with English, Medi-
aWiki markup, and BTEX. The system’s flexible parser allows the user to employ a selection of
ITEX constructs for mathematical notation, to use predicates represented as natural language
phrases, and to introduce her own constants and infix operators. When a user submits to the
system a formal argument for processing, it is the system’s responsibility to recognize whether
the particular manipulations in the argument are valid based on its ability to refer to a large
database of logical propositions involving common mathematical concepts.

2 Design of the Lightweight Verification System

The AARTIFACT verification system allows the user to employ a familiar syntax for formal
arguments that is based on ITEX and English. We discuss the concrete syntax insofar as
it is useful to introduce the system’s user interface. However, we are primarily interested in
discussing three essential underlying components of the system:

(1) a basic logical inference algorithm;
(2) a database of definitions and propositions ( “static context”) involving common concepts;

(3) a dynamic data structure (“dynamic context”) for computing congruence closures of ex-
pressions.

In this section we motivate and describe the design of each of these components.

2.1 Syntax, Parser, and Interface

The AARTIFACT system processes formal arguments in the form of ASCII text files. The earlier
example presented in Figure [I] can be processed by the AARTIFACT system in the form pre-
sented.? To present another example that involves more extensive algebraic manipulation, we
consider a plain text (interpreted by IWTEX) formal argument that V/2 is irrational, as seen in
Figure [2l The argument is made by assuming the negation of the hypothesis, and concluding
with a contradiction.

The AARTIFACT syntax is defined in full detail in an earlier report [I6]. The syntax is
simple, and is backward- and forward-compatible. That is, it supports only mathematical
syntax, and no special syntax that can aid or direct a verification process; it also conforms to
many conventions already followed by the target community of users. In adopting such a syntax,
this work shares the motivations behind the adoption of similar syntaxes by the designers of
the Fortress programming language [2], Scunak mathematical assistant system [7], the QMEGA
proof verifier [34], and the Tutch proof checker [I].

Furthermore, the syntax allows the user to construct her formal argument in any order
without any of the restrictions of an interactive proof assistant. As has been observed before [IJ,
an interactive proof assistant that directs the user is actually an inconveniently rigid framework.
The user is required to learn how to direct the interactive system, cannot easily “jump around”

ISource code (for a Haskell implementation) and a demonstration version of the general-purpose auto-
mated assistant, integrated with the MediaWiki online content management system, is available at http:
//vww.aartifact.org.

?The figure itself contains the output produced by IATEX, not the ASCII text source.

96


http://www.aartifact.org
http://www.aartifact.org

User-friendly Support for Common Concepts in a Lightweight Verifier Lapets

Assert for any n,m € Z,

if m #£0,
n and m are relatively prime, and
V2=n /m then

m-v2=m-(n/m),
m-V2=n,
(m-v/2)% =n?,

2.9 _ 2
n? =m?2- 2,
n? =2.-m?2,
n? is even,

m* is even,

m is even,
GCF(m,n) > 2,
GCF(m,n) =1, and
there is a contradiction.

Figure 2: Another example of a verifiable formal argument involving algebraic manipulations.

while constructing a proof, and cannot resort to a lightweight approach under which only
some parts of the proof are formal and correct. Furthermore, this discourages designers of
verification and content management systems from adopting the interface and discourages users
from employing the interface as a communication medium.

To illustrate that the chosen concrete representation facilitates integration with a variety
of environments and systems, AARTIFACT has been integrated with the MediaWiki content
management system.? Figure [3| provides a screenshot of a user interacting with this system:
the left-hand side of the webpage displays the user’s working formal argument, while the right
side displays the same argument after it has been processed. In the processed argument, blue
text is used for expressions that have been verified, while red text is used for expressions that
could not been verified.

2.2 “Lightweight” Logical Inference Rules

The AARTIFACT system’s verification capabilities are based on a collection of inference rules cor-
responding to those found in a typical definition of higher-order logic [I5] (i.e. those governing
conjunction, disjunction, negation, and quantification), and variants thereof found in common

3 Available at http://www.aartifact.org.
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Figure 3: A screen capture of the web interface. The equations highlighted in red in the panel
on the right represent unverifiable expressions. They are highlighted because an error has been
introduced into the proof (the equation m~2 \cdot 2 = n ~3 should be m"2 \cdot 2 = n
~2).

sequent calculus formulations [I0]. The logical inference rules of the system and its validation
procedure are presented in more detail in a relevant report [I6]. In this section, we briefly
discuss the manner in which the rules are used within the system, as well as the motivation
behind this approach.

The system relies on a small collection of inference rules of the typical form; for example,
the inference rule governing the introduction of conjunction is:

A;dFe; A;dFes

A-Int
[ IlI‘O] A;PFeg Nes

In each rule, A represents the set of bound variables and ® represents an assumption context,
the definition and implementation of which is discussed in Section below. The validation
procedure uses some specified subset of this collection of rules (as determined by the logical
system the user wishes to employ) and recursively traverses an argument, expanding A and ®
as necessary. It is similar to validation procedures in related work, such as the proof checking
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algorithm of the Tutch system [I]. The distinguishing feature of our procedure is the more
sophisticated assumption context, described in Section [2.4
To consider an example, the inference rule for the introduction of implication is

A;closure(® U {e1}) F eo

-1 0)
[: NTR] A;(I)F€11>62

When the recursive validation procedure encounters an expression of the form “e; implies es”
within some context represented by A and &, it first checks whether “e; implies es” is itself
contained within the context ® (a simple lookup in the dynamic context data structure), and
also checks whether a single application of an inference rule to some collection of entries in ®
can be used to derive this expression. If either of these checks succeeds, then this subexpression
is valid. If neither apply, the procedure adds e; to ®, computes its closure as described in
Section [2.4] and applies itself recursively to es.

The verification capabilities provided by the AARTIFACT system are “lightweight” in that no
guarantee is made about the logical completeness of the validation process. That is, if the system
is unable to verify an assertion, the user can only be certain that the system was unable to find
a derivation (even with access to the database of propositions described below in Section .
The user cannot be certain that the assertion is false. Furthermore, only a relative guarantee of
consistency is provided. That is, if the system verifies an assertion as true, this only means that
a derivation for the assertion exists, and that this derivation uses the assumptions supplied by
the user within the argument together with zero or more propositions drawn from the database
of propositions described below in Section [2.:3] Neither the user’s assumptions nor the database
of propositions are necessarily restricted to those that are consistent with a particular logic.
However, the system’s verification capabilities can be made sound with respect to a specific
logic by restricting what portion of the database and which inference rules are used by the
validation procedure. The ability of the system to ensure relative consistency with respect to a
particular logic has been demonstrated for propositional logic and first-order logic.

While it is often desirable to establish the consistency of the inference rules of a system
(for example, to accommodate users looking for a strict verification of their arguments with
respect to a particular logical system), some users may value usability and flexibility over such
consistency. The AARTIFACT system can provide less strict validation capabilities, such as
detection of unbound variables and incorrect symbolic manipulations. Users who do not wish,
or do not have the expertise, to select a particular logical system for their arguments can still
benefit from these features. Furthermore, extending the system is then much easier because it
is only necessary to add new propositions to the database described below in Section It is
also easier to add propositions involving abstract, high-level concepts that cannot (without a
great investment of effort) be expressed in a sound manner within a particular logical system.

Such an approach is not without precedent. Recent work on verification systems offers a
notion of correctness called “ontological correctness” [36] that deals only with syntax, bound
variables, and appropriate use of functions. Alloy [I2] provides a finite state space search
capability that may not always find a counterexample to an assertion where one might exist,
which makes its verification capabilities necessarily inconsistent for some models.

2.3 Static Context: Database of Propositions

The static context is a relational database of simple definitions and propositions involving
common mathematical concepts such as numbers, sets, relations, maps, graphs, and so forth.
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All of these propositions are of the form
W, Tl(ﬂl) VANPRAN Tn(ﬂn) = Tn+1(ﬂn+1)

where T represents a list of variables, r1,...,7,41 are common relations (such as < as well as
English predicate such as “X is a set”), and the entries uy, ..., u,4+1 are either constants or
variables drawn from the list T.

There exists a simple web form that allows an expert designer (or a group of such design-
ers) to submit new formulas or manage the existing formulas within the database. It also
allows users to browse and search for formulas by the constants, operators, and predicates they
contain. While a formula is implicitly associated with particular disciplines in part by the
constants, operators, and predicates that it contains, the database includes a simplistic tagging
mechanism to better accommodate categorization of formulas. In particular, it is possible to
label a formula with the logical system(s) with respect to which the formula is sound. While
the consistency of the overall database is never checked or maintained, this capability allows
portions of the database that are consistent with a particular logic to be assembled and to be
employed exclusively by the validation procedure.

This database is converted into a component of the AARTIFACT system that is utilized by
the dynamic context, described below.

2.4 Dynamic Context: Data Structure of Common Relations

The dynamic context is a data structure that can keep track of all the relevant expressions
within an individual argument, as well as all the relationships between the expressions as im-
plied by the static context. It is represented as a hypergraph in which the nodes correspond
to equivalence classes of argument expressions, and in which the hyperedges represent com-
mon mathematical relations, both low-level (e.g. “<”) and high-level (e.g. “is a perfect
matching corresponding to a bijective map”).

The dynamic context is a data structure that can be represented as a tuple ® = (E, Q, R):

E ... the set of all expressions and subexpressions found in a formal argument up to a certain point
@ ... aset of equivalence classes over E
R ... a hypergraph of labelled relations over the set of nodes @

Notice that the set E should be relatively large for any given argument (but bounded by O(n?)
where n is the length of the argument). If the expression “z +y > 2” is encountered within a
formal argument, then

{z, vy, x+vy, z, >} CE.

The set E can contain terms, atoms, and formulas. It is also worth noting that if both “1 + 27
and “2 4+ 17 are encountered within an argument, these are stored separately.*

The operation used by the validation procedure for introducing a new logical expression e
into the dynamic context ® is denoted by ®U{e}. This operation extends E and @ with all the
subexpressions found in e. It may also extend R, depending on the form of e. For example, if e
is of the form “1 < 2”7, the set E is extended to include the expressions “17, “2” and “1 < 2”7 if
it does not already contain them, and R is extended with the entry (<, 1,2). The data structure

4Note that if appropriate propositions representing the commutativity of “+” are found in the static context,
the corresponding equivalence classes in @ of “142” and “2+4 1" will be merged once the closure of the dynamic
context is computed.
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is also accompanied by a closure operation closure(®) that computes the closure of an entire
hypergraph ® with respect to the propositions found in the static context. For example, if we
have the dynamic context

E = {172a3}
Q = {1,2,3}
R = {(<,1,2),(<,2,3)}

and the static context contains the proposition
forall z,y,z. <y ANy<z = z<z,

then the closure operation would add (<, 1,3) to the dynamic context. The set of equivalence
classes @ is updated whenever two equivalence classes must be merged. This can occur in two
ways. It can occur if an expression of the form “e; = e5” is introduced into the context by the
validation procedure. In this case, if e; and e; were in separate equivalence classes ¢; and ¢
in @, closure(® U {e; = es}) produces a new dynamic context in which ¢; and g2 have been
merged. It can also occur if the static context contains a proposition whose conclusion contains
an equivalence; for example, consider

forallz,y. <y ANy<z = zxz=y.

In this case, merely computing closure(®) can cause equivalence classes to be merged.

The dynamic context and its accompanying closure operation are very similar to the data
structures and algorithms found in work on congruence closures [4]. The contribution of this
work is to apply this technique to purely symbolic expressions involving constructs that can
correspond to highly abstract but still common mathematical concepts (e.g. perfect matching,
acyclic graph, etc.) Furthermore, the closure is computed with respect to a large collection of
both low-level (e.g. “<”) and high-level (e.g. “is a perfect matching corresponding to
a bijective map”) relations.

As mentioned in Section the closure computation is integrated into the validation pro-
cedure corresponding to the logical inference rules. This means that the dynamic context is
extended (and the closure computation is performed) once for every subexpression encountered
by the validation procedure as it recursively processes an expression. Consequently, the closure
operation must be efficient, and the growth rate of the dynamic context hypergraph must be
manageable. The latter issue is discussed in Section A full description of the definitions
and implementations of the dynamic context and the associated closure algorithm can be found
in an earlier report [18].

As a note on usability, it is worth mentioning that by placing a special marker expression
anywhere within an argument, the user can retrieve a list of expressions that represents the
contents of the hypergraph as it exists when the validation procedure reaches the marker ex-
pression. A client-side JavaScript application allows the user to filter this list interactively by
using keywords, making more manageable the process of examining the contents of the hyper-
graph. However, the hypergraph can grow large, which can make impractical its delivery from
the verification server over the network back to the user. Further work is required to improve
the feasibility of this interactive feature.
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3 Performance and General Evaluation

3.1 Growth of the Dynamic Context

Because the dynamic context assembles a hypergraph that can have as a node every single
subexpression found in a formal argument, it is natural to consider the growth rate of this data
structure during the validation of an argument. We have found that for the formal arguments
we have encountered so far in practice, the dynamic context’s growth rate is linear. The graph
in Figure[d]is produced by measuring the sizes of the components of the dynamic context as the
system processes the formal argument presented in Figure[I] Figures[5] [0} and [7] present such
graphs for three more examples. Figure[f] corresponds to a linear algebra homework assignment
completed by students (as part of the deployment discussed further in Section below).
Figure [7] represents a very large formal argument: the proof of soundness of the NetSketch
formalism [6 T9]. The sizes of the components shrink at certain points because premises can
fall out of scope during the validation process. For example, consider the following sequence of
statements:
“Assert if x > y then y < . Assert 1 =17

b

The premise “x > y” no longer applies once the first “Assert” statement is verified.

350 I T T \ T

R| ——

Bl - x
300 {Q f
250 f

size 200 -

150 f
100 M T
50 | | | | |

0 2 4 6 8 10 12
expression in sequence

Figure 4: the number of primes is infinite

The linear growth rate in this data suggests that the approach is feasible for many practical
applications of a size and complexity that is commensurate with that of the examples we have
considered. Further work is needed to identify and mitigate potential worst-case scenarios,
however. For example, a sequence of assumptions of the form

ap <ag, az <as, ..., asg < aqQ.
leads to quadratic growth in the size of the dynamic context components, as illustrated in
Figure
3.2 Usability in Research Applications
We have utilized [19] the AARTIFACT system in defining and reason about a novel compositional

formalism underlying a typed domain-specific language [6]. This formalism can be used to model
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Figure 6: R is a vector space = R? is a vector space

and assemble networks, and to reason about and analyze constraints on flows through these
networks. We assembled a verifiable proof that this formalism is sound with respect to its
semantics.

This exercise demonstrated some of the advantages of the design of the AARTIFACT system.
We were able to define the semantics for our formalism in a machine-readable representation
that is also highly accessible to humans. We were able to use BTEX syntax and to introduce
user-defined infix operators thanks to the support provided by the flexible interface and parser.
We were also able to take full advantage of the system’s support for reasoning about concepts in
set theory (provided by a large collection of propositions in the database that deal with sets and
related concepts) by employing, without explicit references, laws that govern the relationships
between common operations on sets.

Despite the fact that only lightweight verification was employed, the formal assembly process
led to the discovery of a few minor errors, and to the simplification of a few side conditions
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Figure 7: soundness of the NetSketch formalism
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Figure 8: complete graph for “<”

and definitions. The lightweight approach was actually beneficial in allowing us to easily move
around verified chunks of an argument without concern for context, something that would
be difficult to do when using an interactive theorem proving environment. The lightweight
approach also allowed us to introduce and utilize a few lemmas without an explicit proof.

3.3 Usability in Classroom Instruction

The AARTIFACT system has been deployed within two undergraduate courses: an advanced un-
dergraduate course on functional programming [17], and an introductory undergraduate course
in linear algebra.® These deployments served as a means both for evaluating the usability of

5The courses in question were: the fall 2009 iteration of “Concepts of Programming Languages” and the
spring 2010 iteration of “Geometric Algorithms”. Both are required Computer Science curriculum courses for
undergraduates within the Computer Science Department at the Boston University College of Arts and Sciences.
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the AARTIFACT system and for identifying necessary improvements to the system’s capabilities.

We observed a few pedagogical advantages to using our formal reasoning system within
classroom instruction. The presence of an application that provides direct feedback about
formal arguments makes it possible to easily present and reinforce a precise list of valid formal
manipulations. The use of a parser combinator library in the implementation of the formal
reasoning system’s parser (as discussed briefly in previous work [16]) makes it possible to support
multiple parsing regimes, including one that corresponds almost exactly to the syntax of the
particular programming language in which the formally analyzed code is written. Admittedly,
the Parsec parser combinator library we employed [21] was designed with a functional language
in mind, but we believe its flexibility would make it similarly easy to adjust the system for
formal reasoning exercises involving other functional programming languages.

One frequent concern about any sort of automated search or inference done by a formal
reasoning system is that the user will become frustrated because she cannot predict what
the system might be inferring, or what the system’s limitations are. However, within this
deployment we have found that no such frustration occurs when the system’s capabilities are
intuitive and can be described in a succinct and straightforward manner. The syntax of the
AARTIFACT system did not present much difficulty to the students in either course. For the
functional programming course, the mathematical syntax of AARTIFACT was augmented with
typical Haskell operators and looked very similar to Haskell syntax. For the course on linear
algebra, the syntax used was a subset of IXTEX and was natural enough that many students were
able to utilize by consulting nothing more than an example of an argument. As can be seen in
more detailed data from the linear algebra course, presented in a related report [20], at least 10
of 16 students were able to complete at least 80% of the required automatically verifiable proofs
under these conditions. It is also worth noting that some students used the AARTIFACT syntax
in writing their pencil and paper exam solutions (without access to the verifier). It is debatable
what this might indicate about their understanding of the formal reasoning techniques they
employ, but it does demonstrate that the syntax is not too cumbersome to be used manually
(most likely because it corresponds closely to the syntax humans naturally use).

The implicit manipulations that could be verified thanks to the dynamic context were under-
stood by many students without any explicit guidance beyond the presentation of an example.
This indicates that the semantics of the system corresponded well to the existing expectations
of students who had already been introduced to the mathematical conventions governing the
concepts involved.

4 Related Work

The accessible interface of the automated assistant utilized in this work reflects the design prin-
ciples of other formal verification systems such as Tutch [I] and Scunak [7]. The need for nat-
ural interfaces (both superficial and functional) in automated verification has been recognized
to varying degrees by the designers of the Tutch proof checker [I], the Scunak mathematical
assistant system [7], the ForTheL language and SAD proof assistant [36], the EPGY Theorem-
Proving Environment [23], the QMEGA proof verifier [34], the ProveEasy system [§], in the
work of Sieg and Cittadini [33], and in the work of Hallgren and Ranta [II]. The ontology-
oriented, lightweight verification capabilities of the automated assistant are inspired by work in
the assembly of large-scale formal and semi-formal ontologies [29] [22].

Relevant work on retrieval and application of propositions by structure has been done within
the context of Haskell in the development of search tools that allow users to retrieve and browse
expressions within a context by their type [14], and there exists an online search tool called

105



User-friendly Support for Common Concepts in a Lightweight Verifier Lapets

Hoogle for exploring the Haskell libraries [24]. Matita [3] is a proof assistant the automation
of which is heavily based on an integrated search engine. Developing a robust and extensive
construct with these kinds of capabilities within the context of formal reasoning is essential,
and could even lead to support for reasoning by analogy. As observed by others working in this
area [I], this would be beyond the current state of the art.

Our notion of a dynamic context is a variant of a congruence closure [4]. A congruence
closure can be used to implement a context-directed inference algorithm for finite collections
of concepts or expressions introduced by the user. This is achieved by considering whether
logical expressions are equivalent to the constant term representing “true”. Work exists on
the efficiency of algorithms for computing congruence closures [25, 26]. Related work in the
construction of SMT solvers [27], and especially general-purpose, multi-domain SMT solvers
[Bl @] is also relevant. Such systems integrate multiple algorithms and techniques within a
single tool. This allows them to provide some verification and computation capabilities for
formulas that involve predicates and operators from undecidable theories.

More widely, there exist other efforts to create interfaces and systems for practical formal-
ization of mathematics. The MathLang project [I3] is an extensive, long-term effort that aims
to make natural language an input method for mathematical arguments and proofs. There
also exist a variety of tools for formal representation and machine verification of proofs, and
many of these have been surveyed and compared along a variety of dimensions [39]. Some of
these tools provide a way to construct proofs by induction, such as Coq [30], PVS [28], and
Isabelle [31] [32]. However, these systems usually require users to consult documentation and
to have some understanding of logic and formal systems before they can verify even the basic
mathematical arguments we aim to support in our work. Interfaces for a system like Coq usu-
ally require the user to work within a rigid interactive framework and to assemble proof scripts
that do not necessarily reflect the style of presentation employed by mathematics textbooks.
Our work shares some of the motivations underlying the design of both Isabelle/Isar [38] and
Mizar [35]. In particular, Isabelle/Isar is designed to be relatively independent of any particular
underlying logic, and both systems are designed with human readability in mind.

5 Conclusion and Future Work

We have described the AARTIFACT lightweight verification system, as well as some of the mo-
tivation behind its design. A verification system can provide a familiar, friendly syntax that
is independent of the strategies used by the underlying verifier, and a lightweight verifier can
be augmented with a data structure for computing congruence closures to further enhance
its usability. We have demonstrated that such a system can have reasonable performance on
real-world examples of formal arguments and discussed the implications of the system’s char-
acteristics in actual applications.

Further extensions to the static and dynamic contexts are possible. In particular, it should be
possible to extend support to slightly more complex propositions, particularly those involving at
least one existential quantifier, or even those containing higher-order predicates. Ensuring that
the defined algorithms converge under such a scheme would make for an interesting challenge.
It is also necessary to better characterize “typical” formal arguments, and perhaps even to
detect unusual arguments that can cause the dynamic context to grow to an unmanageable
size. Better facilities for interacting with a dynamic context in real time (without waiting for
the validation procedure to process an argument) would greatly enhance the user experience.
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