
EPiC Series in Computing
Volume 51, 2017, Pages 42–45

ARCADE 2017. 1st International Workshop
on Automated Reasoning: Challenges, Appli-
cations, Directions, Exemplary Achievements

Industrial Use of ACL2:

Applications, Achievements, Challenges, and Directions

J Strother Moore and Marijn J.H. Heule

Department of Computer Science
The University of Texas at Austin
{moore,marijn}@cs.utexas.edu

Abstract

Industrial applications of interactive theorem proving dates back to the eighties. En-
abling and achieving industrial successes has been an important focus of the ACL2 com-
munity. The ARCADE call-for-papers appears to ignore these results and the potential of
automated reasoning in industry in the future. We briefly describe the penetration of the
ACL2 theorem proving system into the microprocessor industry, list some of milestones
achieved, the obstacles standing in the way, and some future research directions.

1 Prehistory

Interactive theorem proving was on the doorstep of industrial application 30 years ago.
In the period 1987 through 1992, the Nqthm [2] prover was used to build a “verified stack,”

a hardware/software hierarchy whose base was a netlist description of a simple 32 bit micro-
processor upon which were built an assembler, linker, loader, operating system, compilers, and
applications: all were verified – and verified to “fit together” – with Nqthm. This was described
in a special issue of JAR in 1989 [1] and later updated (upon fabrication of the chip) in the
book [10].1

Concurrently with this project the same group also formalized about 80% of the machine
code of the Motorola 68020 and then used Nqthm to verify 21 of the 22 programs in the Berkeley
C String Library after compiling them with gcc -o. Three bugs were found. The same approach
was used to verify other programs of practical interest including a C implementation of Hoare’s
in situ quick sort [3].

Shortly after arriving at that “doorstep” 30 years ago, interactive theorem proving stepped
over it, into regular industrial application.

2 ACL2

A major attraction of Nqthm for industrial use was the fact that it supported an executable
programming language as its logic. Prototypes or models of various computational artifacts

1To keep the bibliography of this paper short we have chosen to cite only summary articles. Those articles
contain citations to technical reports and articles giving full details.

G. Reger and D. Traytel (eds.), ARCADE 2017 (EPiC Series in Computing, vol. 51), pp. 42–45



ACL2 Applications, Achievements, Challenges, and Directions J S. Moore and M.J.H. Heule

could be built and tested on examples, but theorems could also be proved. The main prob-
lem holding back the industrial use of Nqthm was the fact that the programming language it
supported was a homegrown Pure Lisp that did not execute fast enough.

In 1989, Boyer and Moore threw out their homegrown Lisp, adopted the first-order functional
subset of ANSI standard Common Lisp as their logic, and implemented an Nqthm-like theorem
prover for it. The resulting programming language, logic, and theorem prover is called ACL2:
A Computational Logic for Applicative Common Lisp. Eventually, Boyer left the project and
Matt Kaufmann joined Moore as the co-author of ACL2.

ACL2 first found industrial use in 1993.
Proof of our contention that ACL2 was in industrial use over 20 years ago can be found in the

paper “ACL2 Theorems about Commercial Microprocessors” [4]. The paper briefly described
the (1) ACL2 formalization in collaboration with Motorola hardware designers, of a commercial
digital signal processor (DSP), called CAP, then under development by Motorola, (2) a demon-
stration that the ACL2 model ran several times faster than Motorola’s SPW engineering model
on actual test suites, (3) the proof that the behavioral-level specification described every well-
defined behavior of the CAP, (4) the definition of an ACL2 function that recognized pipeline
hazards in microcode programs (part of the formalization of “well-defined”), (5) a proof that
when the function approved a piece of microcode the code would run on the design as per the
high-level semantics of the microcode, (6) the verification of the microcode for a finite impulse
response (FIR) filter commonly used in DSPs and written by Motorola engineers, (6) the ver-
ification of the code for a statistical filtering and peak finding algorithm for scanning digital
spectra, also written by Motorola engineers; and (7) the formalization and proof of correctness
of the microcode for floating point division on the Advanced Micro Devices (AMD) AMD5K86
microprocessor (AMD’s then-competitor with the Intel Pentium I), which was done in collab-
oration with the AMD floating-point design team and completed before the AMD5K86 was
fabricated.

These projects, completed before the end of 1995, demonstrated that ACL2 was ready for
prime time in industrial settings. It has been regularly used in such settings ever since. Among
the noteworthy achievements are:

• verification of all elementary floating-point arithmetic on the AMD Athlon, after running
100M test vectors successfully comparing the ACL2 model with the AMD RTL simulator;

• verification of all elementary floating-point arithmetic on the AMD Opteron;

• verification of a silicon implementation of a JVM chip by Rockwell-Collins;

• verification of the Rockwell Collins AAMP7 crypto chip (the basis for obtaining NSA
MILS certification);

• verification of the Greenhills operating system;

• verification of important invariants in the Sun JVM class loader and properties assured
by the Sun byte-code verifier;

• verification of the Centaur Technology, Inc., Verilog design for the VIA Nano floating
point adder which handles 32-bit, 64-bit, and 80-bit additions, is pipelined to deliver 4
results per cycle, has 1074 input signals including 26 clock signals and 374 output signals,
consists of 33,700 lines of Verilog in 680 modules requiring 432,322 transistors;

• checking of a computationally surveyable proof of important properties of an Intel imple-
mentation of the elliptic curve key agreement including that 2255 − 19 is prime and that
the elliptic curve known as Curve25519 is an abelian group;

43



ACL2 Applications, Achievements, Challenges, and Directions J S. Moore and M.J.H. Heule

• verification of floating point designs at Oracle and ARM.

For more details see [7, 9]. In addition to technical matters, [7] describes “soft” aspects of the
ACL2 user community that facilitate industrial penetration, including focusing on the needs
of industry (as opposed to publication), excellent documentation, a liberal license, and very
responsive maintenance.

Some academic research further supports the industrial relevance of ACL2. At the University
of Texas at Austin ACL2 was used to model the x86 instruction set architecture and supports
formal analysis of both user-level and system-level code as well as efficient execution of the
formal model [6]. The same group has recently verified an efficient checker for SAT proofs [5],
which is already in use at Centaur. The verified checker increases the runtime of the tool chain
by only 10% on large proofs. In the coming weeks a proof of 3 petabytes will be checked to
show that any proof can be validated with a verified checker.

3 Reasons ACL2 is Used in Industry

Perhaps the main reason ACL2 has been adopted by industry is that it provides fast and efficient
execution, well-supported (standard Common Lisp) programming and debugging environments
across many hardware/software platforms, and a powerful theorem prover. Because ACL2’s
behavior can be heavily influenced by previously proved lemmas it is possible to develop libraries
of theorems that automate many proofs in some domains. This allows, for example at Centaur,
nightly verification runs of all previously verified modules that were changed during the day.
Centaur devotes about 150 CPUs to this nightly run.

Because it is a general purpose programming language, there are a variety of other tools
written in ACL2, including linters, an RTL design browser, a reverse engineering tool used to
extract clock trees, and a tool to produce understandable reports about synthesized circuits.
All Centaur analysis tools are driven off the same source: an ACL2 object representing the
parsed Verilog design of the entire chip.

In addition, because ACL2 can be extended with new proof techniques coded in ACL2 and
verified by ACL2, industry frequently uses ACL2 to implement special-purpose tools. Among
the most commonly used extensions is a verified mechanism for “bit blasting” using BDDs or
AIGs so that many finite arithmetic problems can be solved without user interaction [11]. The
proof of correctness of this tool establishes that if the bit-blasting algorithm succeeds then the
formula is actually a theorem of ACL2, which means that theorems proved with the tool can
be mixed freely and soundly with other ACL2 theorems. Furthermore, the tool is just an ACL2
function and can be invoked within the ACL2 environment. By so integrating verified bit-
blasting into ACL2, users are able to employ the rest of ACL2’s powerful symbolic techniques
to glue together the results of decision procedures, allowing more sophisticated specifications
to be confidently verified.

4 Industrial Complaints about ACL2

The primary complaints by industry regarding ACL2 are probably not what most researchers
in theorem proving would predict. The most often heard complaint is that ACL2 does not
execute fast enough. The second most heard complaint is that it is inconvenient as a scripting
language. The third is that it does not support visualization and graphics.

Note that these complaints rarely concern more academic matters like expressive limitations
of first-order logic, absence of strong typing, and absence of explicit quantifiers.

44



ACL2 Applications, Achievements, Challenges, and Directions J S. Moore and M.J.H. Heule

5 Future Directions

In [8], ACL2 developers Kaufmann and Moore published a list of theorem proving research
topics they regarded as important. The six areas discussed were analogy, learning and data
mining; open architecture; parallel and collaborative theorem provers (including integration
of decision procedures like SAT); user interface and interactive steering; education (meaning
teaching engineers more about how to specify and verify their digital designs), and building
a verified theorem prover. While this list is 13 years old, we think it still includes valuable
research directions.

However, in light of the fact that it was assembled with ACL2 in mind, we omitted to say that
we believe a useful theorem prover should support an executable programming language with
good debugging tools, compilers, etc. In light of the complaints listed above by the industrial
users of ACL2 we would add to our list: making the logic execute faster, integrating features
from a scripting language, and supporting graphics.

Perhaps the best summary of our experience is: if you want to build a theorem prover used
by industry, listen to what industrial users want.

References

[1] Bevier, W.R., Hunt, Jr., W.A., Moore, J S., Young, W.D.: Special issue on system verification.
Journal of Automated Reasoning 5(4), 409–530 (1989)

[2] Boyer, R.S., Moore, J S.: A Computational Logic Handbook, Second Edition. Academic Press,
New York (1997)

[3] Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used microprocessor. Journal
of the ACM 43(1), 166–192 (January 1996)

[4] Brock, B., Kaufmann, M., Moore, J S.: ACL2 theorems about commercial microprocessors. In:
Srivas, M., Camilleri, A. (eds.) Formal Methods in Computer-Aided Design (FMCAD’96), pp.
275–293. Springer-Verlag, LNCS 1166 (November 1996)

[5] Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: Automated Deduction (CADE-26), pp. 220–236. Springer, LNCS
10395 (August 2017)

[6] Goel, S.: Formal Verification of Application and System Programs Based on a Validated x86 ISA
Model. Ph.D. thesis, University of Texas at Austin (2016)

[7] Hunt, Jr., W.A., Kaufmann, M., Moore, J S., Slobodova, A.: Industrial hardware and software
verification with ACL2. To appear in: Verified Trustworthy Software Systems. vol. 375. The Royal
Society (2017), (Article Number 20150399)

[8] Kaufmann, M., Moore, J S.: Some key research problems in automated theorem proving for
hardware and software verification. Revista de la Real Academia de Ciencias 98(1), 181–196 (2004)

[9] Kaufmann, M., Rager, D. (eds.): Thirteenth International Workshop on the ACL2 Theorem Prover
and Its Applications, vol. 192. EPTCS (October 2015)

[10] Moore, J S.: Piton: A Mechanically Verified Assembly-Level Language. Automated Reasoning
Series, Kluwer Academic Publishers (1996)

[11] Swords, S.: A verified framework for symbolic execution in the ACL2 theorem prover. Ph.D. thesis,
University of Texas at Austin (2016)

45


	Prehistory
	ACL2
	Reasons ACL2 is Used in Industry
	Industrial Complaints about ACL2
	Future Directions

