
Anatomy of Alternating Quantifier Satisfiability

(Work in progress)

Anh-Dung Phan1, Nikolaj Bjørner2 and David Monniaux3

1 Technical University of Denmark
2 Microsoft Research

3 Verimag

Abstract

We report on work in progress to generalize an algorithm recently introduced in [10]
for checking satisfiability of formulas with quantifier alternation. The algorithm uses two
auxiliary procedures: a procedure for producing a candidate formula for quantifier elimina-
tion and a procedure for eliminating or partially eliminating quantifiers. We also apply the
algorithm for Presburger Arithmetic formulas and evaluate it on formulas from a model
checker for Duration Calculus [8]. We report on experiments on different variants of the
auxiliary procedures. So far, there is an edge to applying SMT-TEST proposed in [10],
while we found that a simpler approach which just eliminates quantified variables per
round is almost as good. Both approaches offer drastic improvements to applying default
quantifier elimination.

1 Introduction

Can formulas with nested quantifiers be checked effectively for satisfiability? Several algorithms
exist in the context of Quantified Boolean Formulas that handle alternation of quantifiers [12, 1].
They are specialized for eliminating variables over Booleans. An algorithm for alternating quan-
tifier satisfiability was given in [10] for the case of linear arithmetic over the Reals. It integrates
tightly an All-SMT loop and projection based on Fourier-Motzkin elimination or Chernikov pro-
jection. A question arises whether the ideas lift to other projection procedures. Also, are there
reasonable alternatives to All-SMT and how do they compare? This ongoing work presents a
generalized algorithm of that presented in [10] which abstracts the auxiliary procedures. We
instantiate the generalization to projection functions based on virtual substitutions, i.e. substi-
tution methods that replace quantifiers by disjunctions of bounded variables. The specialization
is for Linear Integer Arithmetic based on Cooper’s procedure and used for formulas that arise
from Duration Calculus Model Checker (DCMC).

Linear Integer Arithmetic (LIA) or Presburger Arithmetic, introduced by Mojzaesz Pres-
burger in 1929, is a first-order theory of integer which accepts + as its only operation. A classic
example of representing some amount of money by 3-cent coins and 5-cent coins appears in LIA
as follows:

∀z (z ≥ 8→ ∃x ∃y (3x + 5y = z))

After Presburger proved decidability of LIA [14], LIA attracted a lot of attention due to
applications in different areas. Cooper’s algorithm [4] is a substitution-based decision procedure.
The Omega Test is a projection-based decision procedure for LIA and employed in dependence
analysis of compilers [13]. A variant that integrates elements from both Cooper’s method and
the Omega Test is implemented in Z3 [2]. While Z3 can handle non-trivial LIA problems,
applications from DCMC also expose limitations of using quantifier elimination alone. The
time complexity of all procedures for Presburger Arithmetic is high. Let n denote the length of

120 P. Fontaine, A. Goel (eds.), SMT 2012 (EPiC Series, vol. 20), pp. 120–130



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

a LIA formula; running time of any decision procedure is at least 22
cn

for some constant c > 0

[6]. Moreover, Oppen proved a triply exponential upper bound 22
2cn

for worst-case running
time of Cooper’s algorithm [11].

This paper is organized as follows. Section 2 presents the generalized algorithm with a few
supporting procedures. Section 3 presents different methods for producing candidate formulas.
Section 4 instantiates the algorithm with a concrete procedure for virtual substitutions. We
discuss implementation details and benchmarks in Section 5 and Section 6 concludes the paper.

2 Alternating Quantifier Satisfiability

This section develops an algorithm that is an abstraction of the alternating quantifier satisfiabil-
ity algorithm presented for Linear Real Arithmetic in [10]. The abstraction is formulated such
that various quantifier elimination methods can be plugged in, including virtual substitutions.

2.1 Definitions

The algorithm being developed relies on two procedures for extrapolation and projection. We
first describe the requirements for these procedures and discuss the main algorithm later.

Definition 1 (Extrapolant). Given two formulas A and B, a formula C is an extrapolant of
A and B if the following conditions are satisfied:

A ∧B is unsat then C = false
A ∧B is sat then A ∧ C is sat, ¬B ∧ C is unsat

We use 〈A, B〉 to denote an extrapolant.

Extrapolation is typically understood as finding new data points outside a set of existing
points. Intuitively, C has empty intersection with ¬B and non-empty intersection with A.
There are many possible extrapolants for each pair of formulas, and the definition here does
not specify how to compute an extrapolant. An example of a trivial extrapolant is described in
the following procedure: when A ∧B is satisfiable we can take B as an extrapolant, otherwise
take false.

Definition 2 (Projection πx.(C|M)). Let M and C be quantifier-free formulas where variable x
only occurs in C (x /∈ FV (M) where FV (M) denotes the set of free variables in M). Assume
C ∧ M is satisfiable. A projection procedure πx.(C|M) computes a quantifier-free formula
satisfying the conditions:

1. FV (πx.(C|M)) ⊆ FV (C) \ {x}

2. πx.(C|M) is sat

3. (M ∧ πx.(C|M))→ ∃x C

Similar to extrapolation we only gave the conditions that projection functions have to satisfy
for the developing algorithm to be sound. There is a choice of algorithms for implementing
πx.(C|M). A possible way is to use virtual substitutions, where we derive a quantifier-free
formulas by substituting variables by one or more disjunctions. Virtual substitutions will be
presented with more details in Section 4.

121



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

Algorithm 1: QT (i, C, x, M)

if C ∧M i is unsat then
return (false, M)

end
if i = n then

return (〈C, M i〉, M)
end

(C ′, M ′)←
QT (i+ 1, 〈C, M i〉, x, M);
if C ′ = false then

return (〈C, M i〉, M ′)
end

M ′′k ← M ′k, ∀ k 6= i;
M ′′i ← M ′i ∧ ¬(πxi.(C

′|M ′i));
return QT (i, C, x, M ′′);

Algorithm 2: QE(x, Fn)

Mk ← true, ∀ k < n;
Mn ← Fn;
C ← false;
C ′ ← true;
while C ′ 6= false do

(C ′, M)← QT (1, ¬C, x, M);
C ← C ∨ C ′;

end
return C;

2.2 Quantifier Test: algorithm QT

QT is defined as a recursive function in Algorithm 1. The four arguments of QT can be
explained in the following way: C is a context formula which reflects collected information at
current iteration; x and M are vectors of quantified variables and formulas respectively, and i
is the index to access current elements in the above vectors. We use the notation M i to refer
to the i-th element of vector M and imply the same notation for other vectors.

Given any nested quantified formula F 1 in the form of Q1x
′
1Q2x

′
2...Qkx

′
k F

′ where Qi ∈
{∀, ∃} and F ′ is a quantifier-free formula, we can convert F 1 into a form of ∀x1¬∀x2...¬∀xn¬Fn
where Fn is also quantifier-free. This leads to a sequence of formulas F i such that: F i ≡
∀xi¬F i+1 for i < n. Before QT is called, the initial values of M i are initialized to true for
i < n and Mn is initialized to Fn, The final value of M1 is false if and only if F 1 is unsatisfiable.

Theorem 1 (Partial Correctness). Assume C is satisfiable. The algorithm QT (i, C, x, M)
returns a pair of the form (C ′, M ′) where C ′ is an extrapolant of 〈C, F i〉.

We do not provide a detailed proof, but we briefly discuss correctness and the invariant F i V
M i, that are mutually inductive. The main idea is that F i VM i holds for the initialization step
for QT, and F i ⇒ ¬(πxi.(C

′|M i)) also holds for each QT iteration; therefore, we strengthen
M i in the end of QT and preserve the invariant at the same time. The if branches of QT
return 〈C, M i〉 when M i cannot be strengthened any more. Moreover, QT also ensures that
〈C, M i〉 ∧ F i is unsat. Therefore, the last 〈C, M i〉 (corresponding to the strongest version of
M i) is also an extrapolant of 〈C, F i〉.
Termination: Algorithm QT does not terminate for arbitrary instantiations of projection and
extrapolation. The projection and extrapolation operators we examine here are well-behaved
(with respect to termination) in the following sense: (1) The extrapolation procedures do not
introduce new atoms, so there will be only a finite number of new extrapolants one can make.
(2) The projection procedures are also finitary: they produce only a finite set of projections for
the case of linear arithmetic.

122



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

2.3 Quantifier Elimination: algorithm QE

A quantifier-free version of F 1 is obtained by executing QT until saturation in Algorithm 2.
The algorithm initializes a vector of formulas M and strengthens these formulas as much as
possible in a loop.
The intuition of QE is described as follows:

• Run QT (1, ¬false, x, M), we obtain a formula C1 where C1 V F 1.

• Execute QT (1, ¬C1, x, M), we get C2, a disjoint formula of C1, where C2 V F 1.

• Run QT (1, ¬(C1 ∨ C2), x, M), we obtain a next formula C3 where C3 V F 1.

• When QT (1,¬C, x, M) returns false, we get C as a disjunction of disjoint formulas
where C ≡ C1 ∨ C2 ∨ ... ∨ Ck and C V F 1.

2.4 Algorithm QT by example

We use a small example to illustrate the algorithm QT :

∀y ∃z (z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ −y − z + 1 ≥ 0)) (1)

The formulas corresponding to (1) are:

F 1 = ∀y ¬F 2, F 2 = ∀z ¬F3, F 3 = z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ −y − z + 1 ≥ 0)

and quantifiers are:
x1 = y, x2 = z

Algorithm QT also maintains formulas M1,M2 and M3 that are initialized as follows:

M1 = true, M2 = true, M3 = F 3 = z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ −y − z + 1 ≥ 0)

It maintains the invariants:

F i VM i, FV (M i) ⊆ {x1, . . . , xi−1} for i = 1, 2, 3 (2)

Finally, the algorithm propagates a context formula Ci between levels. The context formula is
updated during propagation. When Ci is propagated from level i to i+ 1 or i− 1, it results in
a formula (Ci+1 or Ci−1) that has non-empty intersection with Ci and is implied by M i. This
formula is an extrapolant of Ci and M i as defined in Definition 1. The extrapolant Ci on level
i satisfies:

FV (Ci) ⊆ {x1, . . . , xi−1} (3)

It contains only variables that are free above level i.
Let us run QT on the sample formula. In the initial state, vector M = 〈true, true, F 3〉, C1 =

true, i = 1.

1. C1∧M1 is true ∧ true. It is satisfiable, so let us choose an extrapolant C2 for C1 and M1.
C2 := true is an extrapolant because C1 ∧C1 is satisfiable and ¬M1 ∧C2 is unsatisfiable.
Set i := 2.

123



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

2. C2 ∧M2 is also satisfiable and similarly we set C3 := true, i := 3.

3. C3 ∧M3, which is C3 ∧ F 3, is satisfiable as well. In this case we will propagate back to
level 2 a formula that intersects with C3 and implies F 3. So let us return C3 := z ≥
0 ∧ x ≥ 0 ∧ y ≥ 0 and update the level i := 2.

4. Now F 2 ≡ ∀z.¬F 3 implies that ∀z.¬C3 ≡ ¬∃z.C3. So we can strengthen M2 with the
negation of any formula that implies ∃z.C3. This is a projection as denoted by the notation
πz.(C3|M2) in Definition 2. It can take the current state of M2 into account. In this case
we set πz.(C3|M2) to x ≥ 0 ∧ y ≥ 0 and update M2 := ¬(x ≥ 0 ∧ y ≥ 0).

5. C2∧M2, which is ¬(x ≥ 0∧y ≥ 0), remains satisfiable. Let us set C3 := ¬(y ≥ 0), i := 3.
C3 satisfies the conditions for being an extrapolant.

6. C3∧M3 (= C3∧F 3) is still satisfiable. We return the extrapolant C3 := z ≥ 0∧−y−z+1 ≥
0 and set i := 2.

7. The formula y ≤ 1 implies ∃z.C3 (they are actually equivalent), so we can update M2 :=
M2 ∧ ¬(y ≤ 1) and maintain the invariant F2 VM2. Let us simplify M2, ¬(x ≥ 0 ∧ y ≥
0) ∧ ¬(y ≤ 1), to x < 0 ∧ y > 1.

8. At this point M2 implies x < 0. So the next extrapolant C3 will also imply x < 0.
However, M3 cannot be satisfiable with C3. We are done with level 3 and return false to
level 2. In response, level 2 propagates the extrapolant C2 := (x < 0 ∧ y > 1) up to level
1.

9. Similar to step 4, F 1 ≡ ∀y.¬F 2 implies that ∀y.¬C2 ≡ ¬∃y.C2. So if we take πy.(C2|M1)
to be x < 0, then we can update M1 := ¬(x < 0), which is x ≥ 0.

10. At this point let us check the levels below using x ≥ 0. Then M2 ∧ x ≥ 0 is unsatisfiable,
so there is no refinement under this assumption. Return false to level 1. Level 1 is done,
and we conclude the formula is satisfiable and an output quantifier-free formula is x ≥ 0.

3 Extrapolation

A trivial extrapolant has been described in Section 2.1. We will here discuss two other versions
of computing extrapolants 〈A,B〉.

3.1 SMT-TEST

The approach used in [9, 10] is to enumerate conjunctions of literals that satisfy A ∧ B. Sup-
pose L := `1, . . . , `n are the literals in the satisfying assignment for A ∧ B. An extrapolant
is the intersection of L and an unsatisfiable core of L ∧ ¬B. Our implementation of SMT-
TEST extrapolation is using a single satisfiability check to extract a (not necessarily minimal)
unsatisfiable core.

3.2 NNF strengthening

124



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

Algorithm 3: NNF extrap-
olant
C ← NNF (B);
foreach literal ` ∈ C do

C ′ ← C[l/ false];
if A ∧ C ′ is sat then

C ← C ′

end

end
return C

NNF strengthening is a process of deriving a stronger
formula by replacing literals by false. We start with a
formula C which is a transformation of B to NNF. For
each literal in C in order, replace that literal by false and
check the conditions for extrapolation so that ¬B ∧ C
is unsat and A ∧ C is sat. The first check is redun-
dant (which holds by construction) and the second is not
redundant. An extrapolant C = 〈A, B〉 is computed
according to Algorithm 3. NNF strengthening gives us
stronger formulas which potentially help reduce the num-
ber of iterations in procedure QT. We currently check
satisfiability in each round during NNF strengthening.

Another approach is to evaluate C[l/ false] using a model for C.

4 Projection specialized to Linear Integer Arithmetic

We are here interested in LIA since LIA decision procedure is used as the core of DCMC and
plays a central role in feasibility of the model-checking approach [8]. Duration Calculus (DC)
is an extension of Interval Temporal Logic with the notion of accumulated durations allowing
succinct formulation of real-time problems. Chop (_) is the only modality appearing in DC;
however, the model-checking problem in DC is transformed to satisfiability-checking of a LIA
formula in size exponential to the chop-depth [7].

Cooper’s algorithm for Presburger Arithmetic corresponds to quantifier elimination using
virtual substitutions, and besides SMT-TEST for extrapolation we also consider strengthening
formulas in negation normal form (NNF) by replacing literals by false. Virtual substitution
methods work directly on formulas in NNF, so SMT-TEST is potentially not required.

4.1 Virtual substitutions

Virtual substitutions on LIA are performed by means of Cooper’s algorithm. The algorithm
removes quantifiers in the inside-out order using the following transformation:

∃x. φ ⇐⇒ φ[>/ax < t, ⊥/ax > t] ∨
δ∨

i=1

∨
ax<t

φ[t + i/ax] ∧ δ′ | t + i

where δ is the least common multiple of all divisors d in divisibility constraints d | t and δ′ is
the least common multiple of all coefficients a in comparison constraints ax ./ t where a > 0
and ./ ∈ {<,≤,=,≥, >}.

A quantified formula is transformed to a disjunction by a series of substitution steps. The
disjunction can be represented symbolically (it corresponds to an existential quantifier over a
finite domain) and may contain redundant disjuncts. The new divisibility constraint δ′ | t + i
could be replaced by many divisibility constraints of small divisors a in each substitution. In
this setting, smaller divisors of inner formulas lead to fewer number of case splits for the next
quantifier alternation.

125



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

Algorithm 4: CS(ϕ)

if ϕ is unsat then
return false

end
let M be a model for ϕ;
let p be a fresh propositional
variable;
assert p 6= ϕ;
return CS(ϕ,M, p)

Algorithm 5: Auxiliary algorithm CS(ϕ,M, p)

if (p =M(ϕ)) is unsat in current context then
return M(ϕ)

end
foreach immediate subformula ψi in
ϕ[ψ1, . . . , ψk] do

push;
let pi be a fresh propositional variable;
assert ϕ[ψ1, . . . , ψi−1, pi, ψi+1, . . . , ψk] = p;
ψi ← CS(ψi,M, pi);
pop;

end
return ϕ[ψ1, . . . , ψk]

4.2 Contextual simplification

Our projection procedure πx.(C|M) admits using a context M when processing C. The sim-
plification depends on the strength of M and it helps to trim down unnecessary cases in a
virtual substitution method later. This process is called contextual simplification which is easy
to implement in an SMT solver. Algorithm 4 contains a procedure for contextual simplification
of formula ϕ. It works with a logical context, asserts that ϕ is unequal to p and recurses over
sub-formulas of ϕ to replace them by true or false.

The approach also applies to non-Boolean domains (although this generalization is not
required for QT ): the auxiliary algorithm then takes terms of arbitrary types and checks if
the terms are forced equal to the value provided in the model M. Instead of recursing on
sub-formulas it can recurse on sub-terms of arbitrary types. When ϕ is represented as a DAG
and has exponentially many sub-formulas, the result can in fact get much larger than the
input. A practical implementation of CS should therefore impose limits on how many times a
sub-formula is traversed.

Contextual simplification is used in STeP [3] for simplifying formulas produced from veri-
fication condition generators and [5] develops a routine that works on formula trees in NNF,
where it is used to speed up abstract interpreters that propagate formulas. Algorithm 4 is used
in Z3 with the observation that a modelM for ϕ can be used to prune checks for value forcing
and it applies to subterms of arbitrary type. Z3 also contains cheaper contextual simplification
routines that rely on accumulating equalities during a depth-first traversal. While this cheaper
algorithm can replace sub-terms by constants, it is not necessarily an advantage to use in con-
text of SMT solving: a non-constant sub-term can be much more useful for learning general
purpose lemmas during search.

5 Evaluation

We implemented different combinations for the instantiated algorithm in the preview version
of Z3 4.0. Projection procedures have been used including (A) - full quantifier elimination
and (B) - partial quantifier elimination. There are three variants of extrapolation: (0) - trivial
extrapolation, (1) - NNF strengthening and (2) SMT-TEST. Furthermore, we also implemented
(X) - contextual simplification and (Y) - no contextual simplification. These components in order
constitute 12 different combinations which are named in short as aix where a ∈ {A, B}, i ∈

126



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

{0, 1, 2} and x ∈ {X, Y }. For example, A0Y denotes a combination of trivial extrapolation,
full quantifier elimination and no contextual simplification.

We attempt to compare our algorithm (from now on called AQS algorithm) with Z3’s quan-
tifier elimination algorithm. Non-random benchmarks are collected from DCMC. Not only is
the huge size (exponential to the chop-depth of DC formulas) of LIA formulas problematic, the
nested nature between universal and existential quantifiers makes the problems even harder [8].

We divided benchmarks into two sets. Set 1 consists of 32 easy formulas having from
56 to 94 quantifiers with file sizes ranging from 15KB to 33KB in SMT-LIB format. Z3’s
quantifier elimination can process these formulas within a few seconds. They are chosen for the
purpose of recognizing incompetent candidates in 12 combinations above. Set 2 have 64 hard
instances with 69-768 quantifiers and take 50-500KB in SMT-LIB format. They are beyond
the scope of Z3’s quantifier elimination algorithm. We use them to test scalability of different
combinations. Benchmarks and experimental results are available on the Z3 website 1. The
benchmark sets have some specific characteristics: coefficients are quite small and constraints
are sparse (consisting of a few variables). These features help limit the number of disjunctions
in virtual substitutions.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

CP
U
 T
im

e 
(s
ec
on

ds
)

Number of problems solved

A0X
A0Y
A1X
A1Y
A2X
A2Y
B0X
B0Y
B1X
B1Y
B2X
B2Y
Z3

Figure 1: Accumulated running time of AQS vs. Z3 on benchmark set 1

1http://research.microsoft.com/projects/z3/qt2012.zip

127

http://research.microsoft.com/projects/z3/qt2012.zip


Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

Figure 1 summarizes the running time of different configurations of AQS as well as Z3’s
quantifier elimination algorithm. Each benchmark is given a 30-second timeout. The graph
shows the accumulated running-time for solving all 32 problems. The winner is the configuration
A0Y which means running AQS with projection implemented as full quantifier elimination and
using trivial extrapolation. This configuration solves all benchmarks within 20 seconds. The
configuration A2Y (using SMT-TEST instead of trivial extrapolation) is a close runner-up. It
also solves all benchmarks, but requires 35 seconds. This benchmark set is simply too small to
draw clear conclusions between these approaches. Partial quantifier elimination (configurations
with prefix B) is bad on all configurations. The experiments also suggest that strong context
simplification is pure overhead in all configurations. In an earlier prototype outside of Z3,
however, strong context simplification was an advantage. We attribute this to how constraints
get simplified and subsumed when being passed between AQS and Z3’s quantifier elimination
procedure. Z3’s built-in quantifier elimination procedure has a slower ramp up time and is able
to solve all problems within 175 seconds.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

CP
U
 T
im

e 
(s
ec
on

ds
)

Number of problems solved

A0X

A0Y

A1X

A1Y

A2X

A2Y

Figure 2: Accumulated running time of AQS on benchmark set 2

Experiment 2 was performed on Set 2 for all configurations of AQS with timeout of 300
seconds. Experimental results are shown in Figure 2. We omit running time for configurations
with partial quantifier elimination, they solve almost no problems, and we also omit running
time for the default quantifier elimination routine that also does not solve any problem. The

128



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

experimental results indicate that AQS algorithm performs well on formulas with many blocks
of nested quantifiers. We have gained an order of magnitude speedup for Duration Calculus
application. The A2Y (using full projection and SMT-TEST ) configuration scales well on our
benchmarks although A0Y (using full projection and trivial extrapolation) comes intriguingly
close.

6 Conclusions

We presented an anatomy of the algorithm proposed in [10] for checking satisfiability of for-
mulas with alternating quantification. We proposed a set of generalizations, applied them to
Presburger Arithmetic, and evaluated the generalizations to benchmarks from a model checker
for Duration Calculus. So far the experience has been that the satisfiability algorithms, when
instantiated with SMT-TEST (and to some extent trivial extrapolation) perform orders of
magnitude better than general purpose quantifier elimination. We are currently investigat-
ing additional alternatives to the algorithms presented here. One alternative is to instantiate
quantifiers incrementally using virtual substitutions. The idea is similar to how quantifiers are
instantiated using E-matching in SMT solvers. SMT solvers create a propositional abstraction
of formulas, including quantifiers. If there is a satisfying assignment to the abstracted formula
that does not depend on the quantified sub-formulas, then the formula is satisfiable. Otherwise,
quantified formulas are model-checked with respect to the current model and only instantiated
(by axioms of the form “(∀xϕ[x])⇒ ϕ[t]”) when the interpretation for free variables cannot be
extended to an interpretation that satisfies the quantified formulas.

Acknowledgments

This work grew out of a course on SMT solving organized by Flemming Nielson and Hanne R.
Nielson. We are grateful for valuable comments and permission of using DCMC benchmarks
from Michael R. Hansen. Anh-Dung Phan is supported by the IDEA4CPS project granted by
the Danish Research Foundation for Basic Research.

References

[1] Armin Biere. Resolve and Expand. In Holger H. Hoos and David G. Mitchell, editors, SAT
(Selected Papers, volume 3542 of Lecture Notes in Computer Science, pages 59–70. Springer, 2004.

[2] Nikolaj Bjørner. Linear Quantifier Elimination as an Abstract Decision Procedure. In Jürgen
Giesl and Reiner Hähnle, editors, IJCAR, volume 6173 of Lecture Notes in Computer Science,
pages 316–330. Springer, 2010.

[3] Nikolaj Bjørner, Anca Browne, Edward Y. Chang, Michael Colón, Arjun Kapur, Zohar Manna,
Henny Sipma, and Tomás E. Uribe. STeP: Deductive-Algorithmic Verification of Reactive and
Real-Time Systems. In Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume 1102 of
Lecture Notes in Computer Science, pages 415–418. Springer, 1996.

[4] D. Cooper. Theorem proving in arithmetic without multiplication. In Machine Intelligence, 1972.

[5] Isil Dillig, Thomas Dillig, and Alex Aiken. Small formulas for large programs: On-line constraint
simplification in scalable static analysis. In Radhia Cousot and Matthieu Martel, editors, SAS,
volume 6337 of Lecture Notes in Computer Science, pages 236–252. Springer, 2010.

[6] Michael J. Fischer and Michael O. Rabin. Super-Exponential Complexity of Presburger Arithmetic.
In Proceedings of the SIAM-AMS Symposium in Applied Mathematics, 1974.

129



Anatomy of Alternating Quantifier Satisfiability A.-D. Phan, N. Bjørner, D. Monniaux

[7] Martin Fränzle and Michael R. Hansen. Efficient Model Checking for Duration Calculus? Int. J.
Software and Informatics, 3(2-3):171–196, 2009.

[8] Michael R. Hansen and Aske Wiid Brekling. On Tool Support for Duration Calculus on the basis
of Presburger Arithmetic. In Carlo Combi, Martin Leucker, and Frank Wolter, editors, TIME,
pages 115–122. IEEE, 2011.

[9] David Monniaux. A Quantifier Elimination Algorithm for Linear Real Arithmetic. In Iliano
Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of Lecture Notes in
Computer Science, pages 243–257. Springer, 2008.

[10] David Monniaux. Quantifier Elimination by Lazy Model Enumeration. In Tayssir Touili, Byron
Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages
585–599. Springer, 2010.

[11] Derek C. Oppen. A 222
pn

Upper Bound on the Complexity of Presburger Arithmetic. J. Comput.
Syst. Sci., 16(3):323–332, 1978.

[12] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability procedure for quantified
Boolean formulae. Discrete Applied Mathematics, 130(2):291–328, 2003.

[13] William Pugh. The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, Supercom-
puting ’91, pages 4–13, New York, NY, USA, 1991. ACM.

[14] Ryan Stansifer. Presburgerś Article on Integer Airthmetic: Remarks and Translation. Technical
report, Cornell University, Computer Science Department, September 1984.

130


	Introduction
	Alternating Quantifier Satisfiability
	Definitions
	Quantifier Test: algorithm QT
	Quantifier Elimination: algorithm QE
	Algorithm QT by example

	Extrapolation
	SMT-TEST
	NNF strengthening

	Projection specialized to Linear Integer Arithmetic
	Virtual substitutions
	Contextual simplification

	Evaluation
	Conclusions

