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Abstract

The twin plant method is central in every research whose focus is checking the diagnos-
ability of discrete-event systems (DESs). Although the property of diagnosability has been
extended over time, and several proposals have been advanced to perform a distributed
analysis, diagnosability checking still relies on the exploitation of the twin plant method.
However, the twin plant structure is redundant, which is a drawback, above all if the con-
sidered DES observation is uncertain: in such a case, several distinct twin plants have to
be built in order to check the diagnosability for increasing levels of uncertainty. A higher
uncertainty level requires a twin plant of larger size. The paper first gives some preliminary
thoughts to the reduction of the twin plant size. Next, on the ground that no contribution
in the literature has altered the original state-based representation of the twin plant, the
paper shows how to transform such a representation into a transition-based one. Finally,
it reports some investigations aimed at reducing the effort needed to produce each twin
plant: a twin plant inherent to a higher uncertainty level can be produced by incrementing
the twin plant relevant to the lower level.

1 Introduction

A Discrete-Event System (DES) [1] is a conceptual model of a dynamical system, where the
system behavior is described by transitions over a finite set of states and each transition is asso-
ciated with an event out of a finite set of events. Some state transitions are observable outside
the system, that is, the DES usually exhibits a partial observability. Model-based diagnosis of
DESs is a task that takes as input the complete DES model (i.e. a model encompassing both
normal and abnormal state changes) of a (natural or man-made) system along with a relevant
observation. The task produces as output a diagnosis, i.e. some pieces of information explaining
whether what has been observed is consistent either with a normal behavior or an abnormal
one. There are several notions of diagnosis of DESs in the literature featuring different levels
of abstraction. According to a common notion, the diagnosis of a DES is a set of candidates,
each candidate being a set of faults, where a fault is an undesired state transition. The defi-
nition of a candidate requires that the faults included in a candidate are consistent with both
the DES model and the given observation. However, distinct candidates may bring conflicting
information. This is the case, for instance, when according to a candidate the system is free
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of faults while according to another it is affected by some faults. A DES that is repeatedly
diagnosed while it is being monitored (that is, a new set of candidates is produced every time
a new observable event is processed) is diagnosable if such an ambiguity can be removed once
a finite sequence of observable events have taken place.

The property of diagnosability of DESs was defined in the diagnoser approach [2], where a
necessary and sufficient condition is proposed to check diagnosability based on the construction
of a so-called diagnoser. However, the most famous approach to checking whether this property
holds for a given DES is the twin plant method [3], whose time complexity is polyomial. A
similar approach to diagnosability checking, whose complexity is still polynomial, is presented
in [4]. Finding out whether the condition for diagnosability expressed by the twin plant method
holds was formulated also as a model-checking problem [5, 6] or a satisfiability problem [7].

Research on diagnosability of DESs has been quite active for several years, and the in-
terest in the topic is going to increase, possibly for DES techniques can be applied to the
diagnosability analysis of hybrid systems [8]. Moreover, while both the original notion of DES
diagnosability and the traditional twin plant method assume that faults are permanent, a new
definition of diagnosability relevant to intermittent faults and a consequent adaptation of the
twin plant method can be found in [9]. Another research line is aimed at performing distributed
diagnosability analysis [10, 11], based on a distributed modeling of the considered DES.

Most of existing works are focused on how to verify the intrinsic diagnosability of a DES
and assume that candidates are computed by an exact diagnostic algorithm that takes as
input a completely certain observation. As remarked in [12], the diagnosability property can
be exhibited even when some incomplete or approximate diagnostic algorithms are used, i.e.
algorithms that do not perform a complete search of the behavioral space of the DES. The
ability to disambiguate DES candidates for a diagnosable system with uncertain observations is
discussed in [13]. The uncertainty is measured by a parameter, which allows to study the level
of noise that can affect the observation without impacting the performance of diagnosis. The
diagnosability analysis is still performed by adopting the twin plant method (or a variant).

The twin plant is a finite automaton (FA), resulting from the product of an FA, representing
the DES observable behavior, by itself. The two operands can be regarded as a pair of twin
FAs, say the left one and the right one. The result of such a synchronization is redundant as
a pair of distinct observationally identical paths are synchronized twice, that is, both assigning
the former path to the left twin and the latter to the right twin and vice versa. The claim here
is that an asymmetric handling, such that a faulty path is assigned just to the left twin, would
reduce the size of the twin plant.

In all the contributions in the literature, the representation of the twin plant is state-based: a
DES model is represented in a state-based fashion if the set of its states is explicitly partitioned
into two parts, one containing the normal states, the other the faulty ones. When faults are
assumed to be persistent, a state-based representation of a DES can equivalently be replaced by
a transition-based (or event-based) one [6]. This paper transforms the notion of the twin plant in
a transition-based one, and updates the condition for diagnosability straightforwardly. Finally,
it reports some investigations aimed at reducing the effort needed to produce each transition-
based twin-plant. The considered scenario assumes that faults are persistent, the DES model is
monolithic and is endowed with a single initial state, the observations are temporally uncertain,
and the diagnostic processing is exact.

79



Asymmetric Diagnosability Analysis of Discrete-Event Systems Marina Zanella

A B

C

D

E

F

c

c

b f ′

v

a

d

u

f

f ′′

Figure 1: DES behavioral model

2 Background

2.1 Diagnosis of Discrete-Event Systems

A DES diagnosis problem consists in a DES D and a (finite) observation O, the latter rep-
resenting what has been observed while D was running during a time interval of interest. A
(partially observable) DES D is a 4-tuple (Σ, L, obs,flt) where Σ is the finite set of events that
can take place in the system; L ⊆ Σ∗ is the behavior space, which is a prefix-closed and live, i.e.
deadlock-free, language that models all (and only) the possible sequences of events, or traces,
that can take place in the system. Function obs associates each trace τ with an observation
obs(τ) ∈ Σ∗o and is defined as the projection of τ on the subset Σo ⊆ Σ of observable events.
The length of the sequence of events in obs(τ) is denoted |obs(τ)|. The prefix-closed observable
language relevant to L, denoted as obs(L), is assumed to be live. The set of unobservable faulty
events, or faults, is denoted as Σf where Σf ⊆ Σ \Σo. Function flt associates each trace τ with
the sequence flt(τ) ∈ Σ∗f of faulty events that appear in the trace itself.

Language L of DES D = (Σ, L, obs,flt) can be represented by a finite automaton (FA)
G = (X,Σ, δ, x0), called the behavioral model, where X is the set of states and δ ⊆ X ×Σ×X
is the set of state transitions. Each x ∈ X represents a state that D can be in, and each
triple (x, σ, x′) ∈ δ represents a possible state change. State x0 ∈ X is the initial one, i.e. the
state of the system at the moment when we have started to observe its evolution. A path in
automaton G is a sequence of transitions starting at the initial state, concisely represented as
x0

σ1−→ x1
σ2−→ · · · σn−−→ xn where n ≥ 1. A trace is a projection of a path on Σ, e.g. σ1. · · · . σn.

Figure 1 displays the behavioral model G of a DES D that will be used as a running
example throughout this paper. Such a model encompasses three faulty events (f, f ′, and f ′′),
two further unobservable events (u and v), and four observable ones (a–d). A possible path is

A
b−→ B

v−→ A
a−→ C

d−→ E
f−→ F

c−→ F , corresponding to the trace b. v. a. d. f. c, where . is the
concatenation operator.

Given a diagnosis problem (D,O), a diagnosis candidate is a pair (x, ϕ) ∈ X × 2Σf where x
represents the state that system D has reached by a path generating O and ϕ represents the set
of faults along this path. The diagnosis is the set of all the candidates relevant to the diagnosis
problem (D,O). The diagnosis relevant to our sample system D in Figure 1 and observation
O = b. a. d. c is {(F, {f})}. Such a diagnosis consists of just one candidate, meaning that, once
observation O has been perceived, the state of D is certainly F and fault f has necessarily
occurred.
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2.2 Temporally Uncertain Observations

In observation O = b. a. d. c used in the previous section the occurrence order of the observable
events is known. This observation is depicted in the top graph of Figure 2, where the order
is represented by the arrows between observed events. Implicit arrows, e.g. from b to d, are
not displayed. We say that the observation is certain. However, the temporal order of the
observable events that have occurred within the DES is not always known [14], in particular
when they occur in a short time span. The bottom graph of Figure 2 shows a temporally
uncertain observation O′ where the order between observable events a and d is unknown. Since
we do not know which sequence, i.e. either b. a. d. c or b. d. a. c, actually occurred, an exact
diagnostic algorithm has to take into account both of them. The pair of observable events a
and d can altogether be considered as a temporally compound event a//d, which cumulatively
represents both sequences a. d and d. a. We can describe the temporally uncertain observation
as a sequence O′ = b. a//d. c.

Definition 1 (Temporally compound observable event [13]). A temporally compound observ-
able event of level ` (with ` ≥ 1) is a multiset of ` reciprocally temporally unrelated instances
of observable events. When ` > 1, not all the ` instances are identical. A temporally compound
event of level 1 is a single observable event.

The collection of multisets of Σo of cardinality ` and of cardinality ` or less are denoted as((
Σo
`

))
and

((
Σo
≤`

))
, respectively. Notice that

((
Σo
≤`

))
=
⋃
i≤`

((
Σo
i

))
.

Definition 2 (Temporal uncertainty level [13]). A temporally uncertain observation is a se-
quence of temporally compound observable events. The temporal uncertainty level of a tempo-
rally uncertain observation O is the maximum level of the compound observable events that O
includes.

The lowest temporal uncertainty level of an observation is 1, corresponding to a certain
observation. The temporal uncertainty level of the observation in the bottom graph of Figure
2 instead is 2, since events a and d are reciprocally temporally unrelated.

Definition 3 (Extension of a certain observation [13]). Given a value ` of the temporal uncer-
tainty level, and a certain observation O, the extension ||O||//` of the observation is the set of
certain and temporally uncertain observations that O could produce up to the given level, where
O ∈ ||O||//`.

In our example, given the trace τ whose certain observation is obs(τ) = b. a. d. c, the
extension of such an observation to the second temporal uncertainty level is ||obs(τ)||//2 =

b a d c

b a

d

c

Figure 2: Certain (top) and temporally uncertain (bottom) observations
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{b. a. d. c, b. a. c//d, b. a//d. c, a//b. d. c, a//b. c//d}. In other words, ||obs(τ)||//2 includes all the
ways the sequence obs(τ) of observable events generated by the DES can be perceived if the
occurrence order of whichever pair of consecutive observable events may be unknown.

2.3 Diagnosability under Uncertainty

Following [2], if, for whichever path that has preceded the occurrence of the fault, and for
whichever sequence of transitions (generating k observable events or more) that has followed
it, all the traces that are consistent with such an observation include the fault, then such a
fault is certain (and it is said to be diagnosable) as it belongs to the intersection of all the
candidate sets of faults. We denote Lf = (Σ∗fΣ∗)∩L the set of traces that include fault f and
L̄f = (Σ∗f) ∩ L the set of traces that end with fault f .

Definition 4 (Diagnosability [2]). Given a DES D = (Σ, L, obs,flt) whose set of faults is
Σf ⊆ Σ, a fault f ∈ Σf is diagnosable if

∀τ1 ∈ L̄f ,∃k ∈ N,∀τ2 : τ1. τ2 ∈ L, |obs(τ2)| ≥ k ⇒

(∀τ ∈ L), (obs(τ) = obs(τ1. τ2)⇒ (τ ∈ Lf )).

System D is diagnosable if all its faults are diagnosable.

DES D of our example in Figure 1 is diagnosable with k = 1 since the occurrence of faults
f , f ′, and f ′′ is precisely detected once event c has been perceived after having perceived either
d or b or a, respectively.

The above definition of diagnosability implicitly assumes that, if a DES follows a trace τ ,
the observation O processed by the diagnostic engine is certain, that is, it equals obs(τ). Such a
limitation is overcome by the following definition of diagnosability [13] relevant to a DES with
an observation affected by a temporal uncertainty up to level `, denoted ‖//`. According to this
generalized definition, that subsumes the former, a faulty behavior, in order to be diagnosable,
should always eventually produce an observation that cannot be mistaken for an observation
produced by a nominal behavior.

Definition 5 (‖//`-Diagnosability [13]). Given a DES D = (Σ, L, obs,flt) with a set of faults
Σf ⊆ Σ and temporal uncertainty ‖//`, a fault f ∈ Σf is ‖//`-diagnosable if

∀τ1 ∈ L̄f ,∃k ∈ N,∀τ2 : τ1. τ2 ∈ L, |obs(τ2)| ≥ k ⇒

(∀τ ∈ L),
(
||obs(τ1. τ2)||//` ∩ ||obs(τ)||//` 6= ∅ ⇒ (τ ∈ Lf )

)
.

System D is ‖//`-diagnosable if every fault f ∈ Σf is ‖//`-diagnosable.

System D in Figure 1 is ||//2-diagnosable. Indeed, fault f is identified by observing d and
c; changing the order of two consecutive observed events does not eliminate the fact that d
will be observed. Analogously, fault f ′ is identified if events b and c are observed, whichever
their order. Finally, fault f ′′ is identified if a and c are observed, independently of their order.
However, the system is not ||//3-diagnosable since observation a//b//d. c∗ is relevant to a pair
of distinct faulty traces, one including fault f and the other fault f ′.

Notice how the generalized definition of diagnosability is well-behaved w.r.t. increasing
uncertainty. If uncertainty ||′′ is more permissive than ||′, i.e. ||O||′′ ⊇ ||O||′ for any certain
observation O, then ||′′-diagnosability implies ||′-diagnosability. Since temporal uncertainty is
increasingly more permissive for increasing values of the uncertainty level, we can conclude that
the sample DES D in Figure 1 is not ||//`-diagnosable for any ` > 2.
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Figure 3: (State-based) verifier of level 1 for fault f of the DES in Figure 1

2.4 Twin Plant Method

The most popular approach to DES diagnosability analysis is the so-called twin plant method
[3], which was originally conceived for permanent faults and certain observations, assuming an
exact diagnostic processing.

Given a (nondeterministic) FA G = (X,Σ, δ, x0), representing the behavioral model of a
DES, where Σf ⊆ Σ is the set of faulty events and Σo ⊆ Σ is the set of observable events, the
twin plant method draws from G a completely observable (nondeterministic) FA Go, whose set
of events is Σo. Each state of Go is a pair (x, φ), where x is either the initial state x0 of G or
a state in G that is the target of an observable transition, and φ is a set of faults. If x = x0,
then φ = ∅, that is, it is assumed that G is initially free of faults, the same as in the diagnoser
approach [2]. Each transition from a pair (x, φ) to a pair (x1, φ1) in Go represents a path in
G from state x to state x1, where the only observable transition in such a path is the last one.
Set φ1 is the set-theoretic union of φ with all the faults corresponding to the transitions on the
path from x to x1 in G. Thus the constraint holds that φ1 ⊇ φ.

Intuitively Go is a (nondeterministic) FA generating the observable language of G, hence
each state (x, φ) in Go includes the set φ of all the faults that manifest themselves along a path
(at least) in G that produces the same sequence of observable events as a path in Go from the
initial state (x0, ∅) to state (x, φ).

Once Go is available, the product [1] of Go by itself (Go ⊗ Go) is computed, and denoted
Gd. Thus each state in Gd is a pair of pairs, ((x1, φ1); (x2, φ2)).

Finally, an algorithm checks whether in Gd there exists a cycle that includes an ambiguous
state ((x1, φ1); (x2, φ2)), that is, a state such that φ1 does not equal φ2: if this condition holds,
G is not diagnosable.

As already remarked, given a transition (x, φ) → (x1, φ1) in Go, the constraint holds that
φ1 ⊇ φ. Hence, in Go the set of failure types is the same for all the states belonging to the same
cycle. Consequently, in Gd, if a cycle includes a state ((x1, φ1); (x2, φ2)), all the other states in
the same cycle are ((−, φ1); (−, φ2)), that is, they include the same sets of faults. Thus, if in
a state in a cycle in Gd such sets are different from each other, the system is not diagnosable
since it may indefinitely produce the observable events relevant to the cycle, in which case we
cannot decide within a finite delay which faults have occurred.

The complexity of the whole method isO(|X|424|Σf ||Σo|), which is exponential in the number
of faults. However, it can be reduced to O(|X|4|Σo||Σf |), which is polynomial in the number
of faults, by noticing that a system is diagnosable with respect to all the faults if and only
if it is diagnosable with respect to each individual fault. In other words, one can apply the
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algorithm iteratively (a number of times that equals the number of distinct failures), for testing
the diagnosability with respect to each singleton set of faults. In case an individual fault f ∈ Σf
is considered (and every transition in G that is affected by any other type of fault is simply
reckoned as an unobservable transition), the set of faults within each pair (x, φ) of Go is either
φ = {f}, which can conveniently be denoted as F , or φ = ∅, which is denoted as N . Automaton
Go can be referred to as the verifier of fault f . A state of the twin plant Gd is ambiguous if
it matches the pattern ((x,N); (x′, F )) or ((x, F ); (x′, N)). As already remarked, if a state in
a loop is ambiguous, then all the states in the same loop are ambiguous. A loop of ambiguous
states betrays the existence of a critical pair, this being a pair of evolutions of the DES, one
normal and the other faulty, that are indefinitely observationally identical.

Figure 3 represents the verifier relevant to fault f of the DES whose behavioral model is
shown in Figure 1.

In [13], the twin plant method was adapted to DESs with temporally uncertain observations.
The ||//`-verifier relevant to fault f is nothing but the classical twin plant verifier where the

alphabet of observable events, instead of being Σo, is Σ
//`
o =

((
Σo
≤`

))
, i.e. the alphabet of

all temporally compound observable events up to a given level `. Hence Σ
//1
o = Σo and the

||//1-verifier is Go.
Once the ||//1-verifier has been built, it has to be synchronized with itself, which results

in the twin plant of level 1. ||//1-diagnosability of fault f holds if no loop in such a twin
plant includes ambiguous states. If ||//1-diagnosability of fault f holds, as it is the case in the
running example, we can assess the successive level of diagnosability. This requires building the
verifier of level 2 relevant to fault f , then synchronizing it with itself, controlling whether the
diagnosability condition holds, and so on.

The ||//2-verifier for our sample DES D in Figure 1 is depicted in Figure 4. Instead of
displaying all the transitions having the same source and target nodes, just one is shown, which
is labeled by all the events marking these transitions, where + is a separator. So, for instance,
label c + b//c from state (B, N) to state (D, N) means that, when the DES is in state B and
fault f has never occurred and either c or b//c is perceived, then the DES has reached state
D and fault f has not occurred. In fact, in the behavioral model in Figure 1, if c is perceived

starting at state B, this means that path B
f ′

−→ D
c−→ D has been followed. If, instead, b//c is

perceived starting at state B, this means that path B
v−→ A

b−→ B
f ′

−→ D
c−→ D has been followed.

3 Twin Plant Method Revisited

The previous sections have briefly surveyed the original twin plant method and its generalization
in order to deal with temporally uncertain observation of any level. Since a temporally uncertain
observation of level 1 is actually a certain observation, and the ||//1-verifier is indeed a verifier
for certain observation (that is, the traditional Go), the generalized twin plant method for
temporally uncertain observations subsumes the original one, and any remark relevant to the
former applies also to the latter.

3.1 State-based Representation

The first remark is about the size of the twin plant. The original construction of the twin plant
is such that (i) each path represents a pair of evolutions of the considered DES (and, conse-
quently, of the relevant candidate diagnoses) that can produce the same (possibly uncertain)
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Figure 4: (State-based) ||//2-verifier for fault f of the DES in Figure 1

observation, and (ii) every pair of distinct evolutions that can produce the same (possibly un-
certain) observation is represented by a path in the twin plant. Point (i) can be understood by
observing that (a) the initial state of the twin plant is a pair of candidate diagnoses according
to which the DES is in its initial state and it is free of faults, and (b) each transition in the
twin plant brings to a new pair of candidate diagnoses, relevant to a pair of evolutions that
are driven by the same perception of a new (compound) observable event. Such an evolution
is compliant with the ||//`-verifier, which in turn is compliant with the behavioral model of the
DES.

The twin plant representation is not only complete but also redundant, as the same pair of
distinct evolutions t1 and t2 of the ||//`-verifier (that is, of Go in the original twin plant method)
is compared in the twin plant both as a sequence of pair of states where the former belongs to
t1 and the latter to t2 and, vice versa, as a sequence of pair of states where the former belongs
to t2 and the latter to t1. We can say that the twin plant method is symmetric.

A reduction of the number of pairs to be compared can be achieved by replacing the product
of two identical verifiers of level ` with the product of such a verifier (called bad twin as it allows
also for abnormal behaviors) with a good twin, this being the verifier deprived of any abnormal
behavior.

Definition 6 (Bad twin of level `). Let D = (Σ, L, obs,flt) be a DES, where Σo ⊆ Σ and
Σf ⊆ Σ are the sets of observable and faulty events, respectively. Let G = (X,Σ, δ, x0) be an FA
generating L. The bad twin of level ` relevant to a fault f ∈ Σf is the ||//`-verifier relevant to
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the same fault. In [13] such a verifier is defined as an FA B//` = (X//`,Σ//`, δ//`, x
//`
0 ), where:

• X//` = X × {N,F} and x
//`
0 = (x0, N);

• Σ//` = Σ
//`
o ; and

• δ//` = {((x, φ), w, (x′, φ′)) ∈ X//` × Σ//` ×X//` | ∃ a path in G : x
σ1−→ . . .

σn−−→ x′,
n ≥ 1, σn ∈ Σo, w ∈ ||obs(σ1. · · · . σn)||//`, (φ′ = N ⇔ φ = N ∧ f 6∈ {σ1, . . . , σn})}.

The good twin G//` of level ` is obtained by removing from B//` all the faulty states, along
with their entering and exiting transitions.

Definition 7 (Good twin of level `). Let D = (Σ, L, obs,flt) be a DES, where Σo ⊆ Σ and
Σf ⊆ Σ are the sets of observable and faulty events, respectively. Let G = (X,Σ, δ, x0) be
an FA generating L. The good twin of level ` relevant to a fault f ∈ Σf is an FA G//` =

(X̄//`,Σ//`, δ̄//`, x
//`
0 ) defined as follows:

• X̄//` = X × {N} and x
//`
0 = (x0, N);

• Σ//` = Σ
//`
o ; and

• δ̄//` = {((x, φ), w, (x′, φ′)) ∈ X̄//` × Σ//` × X̄//` | ∃ a path in G : x
σ1−→ . . .

σn−−→ x′,
n ≥ 1, σn ∈ Σo, w ∈ ||obs(σ1. · · · . σn)||//`, f 6∈ {σ1, . . . , σn}}.

Notice that the set of states and the set of transitions of the good twin of level ` are subsets
of those of the bad twin of the same level, that is, X̄//` ⊆ X//` and δ̄//` ⊆ δ//`.

The product of the bad twin by the good twin will generate an FA with a reduced number
of paths with respect to the product of the bad twin by itself. In particular, each pair of
observationally identical evolutions, the former including some faulty states, the latter no faulty
state, will be represented by just one path in B//` ⊗ G//`, while it is represented by two in
B//` ⊗ B//`. We can summarize this difference by saying that the product of the bad twin by
the good twin is an asymmetric twin plant. In the following we will consider just asymmetric
twin plants. Notice that the (necessary and sufficient) condition for ‖//`-diagnosability relevant
to the asymmetric twin plant is the same as for the symmetric twin plant. In fact, a fault
is diagnosable if there are no critical pairs in the symmetric twin plant. Each critical pair is
replicated in the symmetric twin plant while there is just one instance of it in the asymmetric
twin plant. However, in both cases the property of ‖//`-diagnosability holds iff there are no
(infinite) critical pairs.

Another remark is worthwhile here. In the diagnosability check, we have to take into account
only infinite paths of the twin plant, while the paths relevant to the product of two FAs can
also be finite. Let us denote as Live() an operator that, as applied to an FA, removes from it
all the parts that generate a language that is not live.

Theorem 1. Let BG//` = B//` ⊗ G//` be the asymmetric twin plant of level ` relevant to a
fault f , and Live(BG//`) be its live part. Fault f is ‖//`-diagnosable iff Live(BG//`) does not
include any ambiguous state.

Proof outline: Live(BG//`) represents all the observationally identical infinite evolutions of
the considered DES, since, by construction, all of them are represented by the asymmetric twin
plant BG//`. The liveliness of Live(BG//`) guarantees that each state in it either belongs to a
loop or is followed (within a finite number of transitions) by a loop.
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Figure 5: TB bad twin (top) and TB good twin (bottom) of level 1 for fault f of the DES in
Figure 1

(→) The assumption that f is ‖//`-diagnosable implies (according to the necessary and
sufficient condition for ‖//`-diagnosability) that there are no cycles of ambiguous states in the
symmetric twin plant BB//` = B//` ⊗ B//`. This in turn implies that there are no ambiguous
states within any cycle in B//` ⊗G//`, and, hence, within any cycle in Live(BG//`). Moreover,
this implies that Live(BG//`) does not include any ambiguous state outsides its cycles. In
fact, assume, by contradiction, that Live(B//` ⊗ G//`) includes an ambiguous state that does
not belong to a loop, then such a state is necessarily followed by an ambiguous loop, which
contradicts the hypothesis.

(←) If Live(BG//`) does not include any ambiguous state, then it does not include any cycle
of ambiguous states, which implies that the asymmetric twin plant BG//` does not include any
cycle of ambiguous states, which in turn implies that the symmetric twin BB//` = B//` ⊗B//`
does not include any cycle of ambiguous states, hence the fault is ‖//`-diagnosable since the
condition for ‖//`-diagnosability of the symmetric twin plant holds. 2

The purport of this theorem is that the (necessary and sufficient) condition for diagnosability
to be checked in a live asymmetric twin plant is weaker than the condition to be checked in an
asymmetric twin plant whose observational language is not live. However, the saving involved
in assessing a weaker condition may be paid beforehand in handling the asymmetric twin plant
so as to remove from it all the parts that generate a language of the observations that is not
live. In case an algorithmic implementation is adopted, if the algorithm that generates the
asymmetric twin plant (which is indeed an algorithm for computing the strict product of two
FAs) can instead be replaced with an algorithm that generates a live FA without any additional
temporal burden, or such that the total time needed to build the live asymmetric twin plant
and to check the diagnosability is less than the total time needed when the asymmetric twin
plant is not live, this option could be interesting.
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Figure 6: TB asymmetric twin plant of level 1 resulting from the synchronization of the twins
in Figure 5

3.2 Transition-Based Representation

While the previous section has introduced the notions of bad twin, good twin, and asymmetric
twin plant by adopting a state-based representation (as in the original method), in this section
the corresponding transition-based (TB) concepts are presented.

Definition 8 (TB Bad twin of level `). Let D = (Σ, L, obs,flt) be a DES, where Σo ⊆ Σ
and Σf ⊆ Σ are the sets of observable and faulty events, respectively. Let G = (X,Σ, δ, x0)
be an FA generating L. The TB bad twin of level ` relevant to a fault f ∈ Σf is an FA

B` = (XB` ,ΣB` , δB` , xB`
0 ) defined as follows:

• XB` = X and xB`
0 = x0 and ΣB` = Σ

//`
o ; and

• δB` = {(x,w, φ, x′) ∈ XB` × ΣB` × {N,F} ×XB` | ∃ a path in G : x
σ1−→ . . .

σn−−→ x′,
n ≥ 1, σn ∈ Σo, w ∈ ||obs(σ1. · · · . σn)||//`, (φ = N ⇔ f 6∈ {σ1, . . . , σn})}.

Notice that the number of states of the TB bad twin is lower than that of the state-based
bad twin (and hence also of the verifier of the original method), it can possibly be reduced to
a half. In our running example, the TB bad twin of level 1 (top of Figure 5) includes 6 states
while the state-based bad twin (Figure 3) includes 7 states.

According to the next definition, the TB good twin of level ` is obtained by removing from
the TB bad twin of level ` all the faulty transitions (and all the states that become unreachable).

Definition 9 (TB Good twin of level `). Let B` = (XB` ,ΣB` , δB` , xB`
0 ) be the TB bad twin of

level ` relevant to a fault f ∈ Σf . The TB good twin G` of level ` relevant to the same fault is

the accessible part of an FA (XG` ,ΣG` , δG` , xG`
0 ) defined as follows:

• XG` ⊆ XB` and xG`
0 = xB`

0 and ΣG` = ΣB` ; and

• δG` = δB` \ {(x,w, φ, x′) ∈ δB` | φ = F}.

The TB good twin of level 1 relevant to fault f of the DES in Figure 1 is shown on the
bottom of Figure 5.

Definition 10 (TB Asymmetric twin plant of level `). Let B` and G` be the TB bad and good
twin of level `, respectively, relevant to a fault f ∈ Σf . The TB asymmetric twin plant of level `
relevant to the same fault, denoted BG`, is given by the product B`⊗G` on the set of temporally
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compound observable events Σ
//`
o , where the value of parameter φ of each transition ranges over

the set {N,A}, value N being assigned to a transition resulting from the synchronization of two
normal transitions, value A being assigned to a transition resulting from the synchronization of
a faulty transition (of B`) with a normal transition (of G`).

In the asymmetric TB twin plant, a transition whose value of parameter φ is A is ambiguous.
Figure 6 displays the TB asymmetric twin plant of level 1 relevant to fault f of the sample
DES. The value of parameter φ (which is omitted from the figure) is N for all its transitions.

Theorem 2. A fault f is ||//`-diagnosable iff the relevant TB asymmetric twin plant of level `
contains no ambiguous transition that either precedes a cycle or belongs to a cycle.

Proof outline: (→) If fault f is ||//`-diagnosable, then the state-based (a)symmetric twin
plant of level ` does not include any ambiguous cycle. This implies that in the TB asymmetric
twin plant neither there is any cycle that includes an ambiguous transition nor any cycle that is
preceded by an ambiguous transition (as such a cycle would correspond to a cycle of ambiguous
states in the state-based representation).

(←, by contradiction) Every path t relevant to the TB asymmetric twin plant of level ` has
a corresponding path t′ relevant to the state-based asymmetric twin plant of the same level.
We consider separately the case when a path t contains an ambiguous transition that precedes
a cycle and the case when t contains an ambiguous transition that belongs to a cycle.

If path t contains an ambiguous transition that precedes a cycle, in t′ the target of such a
transition is an ambiguous state and all its following states in t′ are ambiguous too as in t there
is no transition that results from the synchronization of two faulty transitions. Hence, all the
states in the cycle in t′ are ambiguous.

If path t contains an ambiguous transition that belongs to a cycle, then in t′ the target of
such a transition is an ambiguous state and all its following states in t′ are ambiguous too. Since
there is a cycle in t, there is a corresponding cycle also in t′ whose states are all ambiguous
(since they belong to the same cycle as the ambiguous state).

In both the above cases the condition for ||//`-diagnosability relevant to the state-based
(a)symmetric twin plant does not hold, hence fault f is not ||//`-diagnosable, which contradicts
the hypothesis. 2

Theorem 2 expresses a necessary and sufficient condition for ||//`-diagnosability, which,
unfortunately, is heavier to check than the necessary and sufficient condition relevant to the
state-based twin plant. The following ones are instead three sufficient conditions for ||//`-
diagnosability.

Condition 1. The TB asymmetric twin plant of level ` does not include any ambiguous tran-
sition.

Condition 1 trivially comes from Theorem 2. It holds for the TB asymmetric twin plant of
level 1 in Figure 6.

Condition 2. The TB bad twin of level ` is observationally deterministic, that is, all the
transitions exiting from the same state are marked with a distinct (compound) observable event.

(Notice that, if the TB bad twin of level ` includes a pair of transitions exiting from the same
source and marked with the same compound observable event, one with φ = N and the other
with φ = F, then such a bad twin is not observationally deterministic). Condition 2 can be
understood by considering that, it the TB bad twin of level ` is observationally deterministic,
then also the TB good twin of level ` is deterministic. The resulting TB asymmetric twin
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plant of level ` is such that each state is a pair of identical states and each transition is the
composition of two transitions that are not only observationally identical but also identical as
far as parameter φ is concerned. Therefore, no transition is the result of the synchronization of
an F transition with an N transition, hence there is no ambiguous transition in the asymmetric
twin plant of level `, that is, sufficient Condition 1 holds. Condition 2 holds for the TB bad
twin of level 1 in Figure 5 (and, in fact, the TB asymmetric twin plant in Figure 6 does not
include any ambiguous transition).

Condition 3. @((x,w, φ, x′) ∈ δB` , (x1, w, φ1, x
′
1) ∈ δB`) s.t. (φ = N ∧ φ1 = F ).

Condition 3 requires normal and faulty transitions of the TB bad twin of level ` not to share
any (compound) observable event. The rationale is that, if this condition holds, no ambiguous
transition can be created in the TB twin plant of level ` as no faulty transition of the TB bad
twin of level ` can be synchronized with a normal transition of the TB bad twin of level `.
Hence, the fulfillment of this condition implies that sufficient Condition 1 holds. Condition 3
does not hold for the bad twin on the top of Figure 5, as observable event c is shared.

The following properties are quite interesting for the construction of the TB bad twin.

Property 1. Let D = (Σ, L, obs,flt) be a DES, where Σo ⊆ Σ and Σf ⊆ Σ are the sets of
observable and faulty events, respectively. Let G = (X,Σ, δ, x0) be an FA generating L. Let
B` = (XB` ,ΣB` , δB` , xB`

0 ) be the TB bad twin of level ` relevant to a fault f ∈ Σf . For the

TB bad twin of level `+ 1, B`+1 = (XB`+1 ,ΣB`+1 , δB`+1 , x
B`+1

0 ), relevant to the same fault, the
following equalities hold:

1. XB`+1 = XB` and x
B`+1

0 = xB`
0 ;

2. ΣB`+1 = ΣB` ∪
((

Σo
`+ 1

))
; and

3. δB`+1 = δB` ∪ {(x,w, φ, x′) ∈ XB` ×
((

Σo
`+ 1

))
× {N,F} × XB` | ∃ a path in G : x

σ1−→

. . .
σn−−→ x′, n ≥ 1, σn ∈ Σo, w ∈ ||obs(σ1. · · · . σn)||//`+1, (φ = N ⇔ f 6∈ {σ1, . . . , σn})}.

Proof outline: Equality 1 trivially comes from Definition 8. As to equality 2, based on

Definition 8, ΣB` =

((
Σo
≤`

))
and ΣB`+1 =

((
Σo

≤(`+ 1)

))
. Since

((
Σo

≤(`+ 1)

))
=

((
Σo
≤`

))
∪((

Σo
`+ 1

))
, the equality is proven. Equality 3 is drawn from the definition of the transition

function in Definition 8. Since ||obs(σ1. · · · . σn)||//`+1 ⊇ ||obs(σ1. · · · . σn)||//`, then δB`+1 ⊇ δB` .
All the transitions to be added to δB` in order to obtain δB`+1 are necessarily relevant to
compound events of level `+ 1, which proves the equality. 2

Lemma 1. δB`+1 = δB` ∪ {(x,w, φ, x′) ∈ XB` ×
((

Σo
`+ 1

))
× {N,F} × XB` | ∃ a path in

B` : x
w1,φ1−−−−→ x1

w2,φ2−−−−→ x′,

(
w1 ∈

((
Σo
m

))
, w2 ∈

((
Σo

`+ 1−m

)))
,m ∈ [1 . . . `], w = w1//w2,

(φ = N ⇔ (φ1 = N ∧ φ2 = N))}.

Proof outline: This lemma just asserts that each transition marked with a temporally com-
pound observable event of level `+1 to be added to δB` in order to obtain δB`+1 can be obtained
by considering a sequence of two transitions in B`, one marked with a temporally compound
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observable event w1 ∈
((

Σo
m

))
and the other with a temporally compound observable event

w2 ∈
((

Σo
`+ 1−m

))
. In fact, the composition of w1 and w2 yields a temporally compound

event of level `+ 1. 2

According to Property 1, given the TB bad twin B` of level ` relevant to a fault, the TB
bad twin of level `+1 relevant to the same fault can be obtained by adding to B` all (and only)
the transitions relevant to the temporally compound observable events of level `+1. The above
lemma underlines that, starting at each state of B`, each transitions to be added in order to
build B`+1 can be obtained by considering a sequence of two transitions in B`. This opens the
way to an incremental construction of the TB bad twin and consequently of the TB asymmetric
twin plant, as asserted by the next lemmas.

Lemma 2. Let G`+1 be the TB good twin of level ` + 1 relevant to a fault. The TB asym-
metric twin plant of level ` + 1 relevant to the same fault can be obtained by adding to the
TB asymmetric twin plant of level `, BG` = B` ⊗G`, all (and only) the following transitions:

{((xB , xG), w, φ, (x′B , x
′
G)) ∈ (XB` ×XG`)×

((
Σo
`+ 1

))
×{N,A}× (XB` ×XG`) | ∃ a transition

in B`+1 : xB
w,φB−−−→ x′B ,∃ a transition in G`+1 : xG

w,φG−−−→ x′G, w ∈
((

Σo
`+ 1

))
, (φ = N ⇔ φB =

N)}.

Proof outline: According to Property 1, the TB bad twin of level ` + 1 can be obtained by
adding to B` all (and only) the transitions relevant to the compound observable events of level
` + 1. Analogously, the TB good twin of level ` + 1 can be obtained by adding to G` all (and
only) the normal transitions relevant to the compound observable events of level ` + 1. By
definition, the TB asymmetric twin plant of level ` + 1 is given by the product B`+1 ⊗ G`+1.
The TB asymmetric twin plant of level ` includes all the synchronizations of the transitions of
the twins relevant to compound observable events up to level `, and the twins of level ` + 1
do no include any new transition relevant to compound observable events up to level ` w.r.t.
the twins of level `. Hence, the only new transitions in the TB asymmetric twin plant of level
` + 1 w.r.t. those included in the TB asymmetric twin plant of level ` are those obtained by
synchronizing the transitions marked with compound observable events of level ` + 1 in the
twins of level `+ 1. 2

Lemma 2 states that, in order to build the TB asymmetric twin plant of level `+ 1, we have
to add to the TB twin plant of level ` the transitions obtained by synchronizing the pair of
transitions marked with compound events of level `+ 1 in the TB twins of level `+ 1. The next
lemma gets us free from building such twins. In other words, the only TB asymmetric twin
plant to be built as a product is that of level 1, while any other TB asymmetric twin plant of
increasing level can be build by incrementally adding some transitions, where such transitions
can be built by exploiting the information already included in the twin plant of level `.

Lemma 3. The TB asymmetric twin plant of level `+ 1 can be obtained by adding to the TB
asymmetric twin plant BG` of level ` all (and only) the following transitions: {((xB , xG), w,

φ, (x′B , x
′
G)) ∈ (XB`×XG`)×

((
Σo
`+ 1

))
×{N,A}×(XB`×XG`) | ∃ a path in BG` : (xB , · )

w1,φ1−−−−→

(x1
B , · )

w2,φ2−−−−→ (x′B , · ),
(
w1 ∈

((
Σo
m

))
, w2 ∈

((
Σo

`+ 1−m

)))
,m ∈ [1 . . . `], w = w1//w2,∃ a path

in BG` : (· , xG)
w̄1,φ̄1−−−−→ (· , x1

G)
w̄2,φ̄2−−−−→ (· , x′G),

(
w̄1 ∈

((
Σo
µ

))
, w̄2 ∈

((
Σo

`+ 1− µ

)))
, µ ∈ [1 . . . `],
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w = w̄1//w̄2, (φ = N ⇔ (φ1 = N ∧ φ2 = N))}.

Proof outline: The TB asymmetric twin plant of level ` includes all the transitions marked
with compound observable events with level from 1 to `. This means that it includes all the
information contained in the TB asymmetric twin plant of level 1, which in turn includes all the
information contained in the verifier of level 1, from which we can draw all the TB asymmetric
twin plants of higher levels. However, instead of resorting to the raw knowledge contained in
the verifier of level 1, we can exploit the compiled knowledge in the TB asymmetric twin plant
of level `, that includes all the transitions marked with compound events up to level ` drawn
from it. Hence, either transition in each pair of observationally identical transitions marked
with events of level ` + 1 belonging to the twins of level ` + 1 to be synchronized is actually
given by the sequence of two transitions in the TB asymmetric twin plant of level `, where the
sum of the levels of their compound observable events is `+ 1. 2

Further properties that can make the diagnosability check faster (in particular, the assess-
ment of the sufficient conditions for diagnosability) hold, although they are not dealt with here.
We also skip the equivalent of Theorem 1 for the TB representation of the twin plant; however,
the reader can easily understand that a diagnosability condition weaker than that expressed by
Theorem 2 is bound to exist when the TB asymmetric twin plant is live.

4 Conclusion

This paper deals with diagnosability analysis of DESs. Its goal is to provide a preliminary
theoretical basis for an experimental activity. In fact, the paper shows that the size of the
twin plant can be reduced by transforming it from a symmetric structure into an asymmetric
one, both in its original state-based representation and in an equivalent transition-based rep-
resentation. However, the necessary and sufficient condition for diagnosability relevant to the
transition-based representation of the twin plant is heavier to check. The paper shows also that
generating a twin plant that does not include any finite path leads to a weaker condition for
diagnosability. However, the question is: does these findings pay? The answer can be given just
by providing an implementation of the new version of twin plant method, and experimentally
trying it.

In addition, the paper proposes to check the diagnosability of a DES for increasing levels
of temporal uncertainty of the observations this way: first the (reduced) twin plant of level 1
(corresponding to no uncertainty) is built and diagnosability of level 1 is checked. If such a
diagnosability holds, the twin plant of the next higher level is produced by updating the current
twin plant, by exploiting only pieces of information that are already included in the current
twin plant, and so on. Moreover, some sufficient conditions for diagnosability are listed. The
efficiency of this incremental method, and the possible advantages brought by such sufficient
conditions, should be tested via an extensive experimentation.

As to the reduction of the size of the twin plant, one could object that, in order to minimize
the number of pairs to be compared in order to carry out the diagnosability analysis, we should
synchronize an FA that represents the language of all (and only) the normal traces of the
DES with another that represents the language of all (and only) the faulty traces. However,
generating the latter FA requires performing a reachability analysis, which instead is not needed
in the reduction envisaged in this paper. All the same, this is a topic for future research.
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