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Abstract

Benchmark proposal: Safe renewable energy systems are becoming increasingly impor-
tant to combat climate change. Electric utility companies often use conservative approaches
to feed in renewable energy to ensure a safe operation due to a lack of advanced analysis
techniques. So far, mostly simulations are used in practice to safeguard the system against
certain contingencies, which cannot provide guaranties. While so-called direct methods
based on Lyapunov functions potentially provide formal guarantees, they are not really
used in practice due to the difficulty of finding Lyapunov functions of larger models. How-
ever, we believe that reachability analysis can be conveniently used to ensure correctness,
because it can be performed automatically without expert knowledge. To analyze the state
of the art in this important application area, we provide a tool that automatically gener-
ates benchmark problems from a given system description. We also provide problems of
different difficulty and for different types of analysis, namely transient stability analysis,
verifying regions of attraction, and verifying robustness against uncertain power demand
and production. Exemplary solutions of benchmark problems are shown as well.

1 Introduction

The scientific community has long agreed that the transition to a greener future must be accel-
erated. One possibility to accelerate this transformation is to make better use of the existing
production of renewable energies. Besides better storage capabilities, a further possibility is a
less conservative control of power systems—this, however, is often prevented due to conservative
proven-in-use approaches. To establish modern control methods, one could convince decision
makers by providing formal methods to prove that modern approaches ensure all necessary
specifications, such as relevant grid codes. To the best knowledge of the author, we provide the
first benchmarks for the formal verification of power systems to assess the state of the art in this
area. Since power systems are very diverse, we also provide a tool for creating new benchmarks
from standard system descriptions. Unlike existing tools for power systems, we will provide the
explicit model described as differential algebraic equations. The lack of such a possibility to
further improve formal methods becomes evident in the subsequent review of the state of the
art.

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 26–43
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1.1 State of the Art

Non-Formal Methods Even today, most power systems are only analyzed via numerical
simulations [37,47]. Obviously, numerical simulations do not provide any guarantees for power
systems with inherent uncertainties, because they only analyze one possible behavior for an
assumed initial state, an assumed future system input, and under the assumption that the
underlying models are exact. However, in reality, a) the initial state is often not exactly known
since not all state variables can be measured or because measurements are scarce and the state
has shifted in the meantime (see, e.g., [36]), b) inputs are uncertain due to various fluctuations,
such as solar radiation, wind, and consumer behavior, and c) parameters are uncertain due to,
e.g., unmodeled power electronics and aging effects. Even when only considering the smallest
and largest values of n state variables at the initial point in time, m inputs, and o parameters,
we already require 2n+m+o simulations—and these do not even bound all solutions since power
systems have no monotone dynamics in general [9]. Another issue is that it is unclear for
how long a simulation has to be run until the system has been analyzed long enough. The
aforementioned issues are only mitigated by faster simulation using parallelization [11, 14, 18,
27, 44] and by Monte Carlo simulation [7, 50, 51] to address uncertain predictions.

Formal Methods - Direct methods Traditionally, the predominantly-researched formal
methods for the analysis of power systems are so-called direct methods. Instead of explicitly
simulating the behavior for stability analysis, direct methods compute regions in the state space
from which the system state returns to the original operating point [17,41]. A major drawback of
direct methods is that they require Lyapunov functions, which can only be found for simplified
system dynamics [10, 17, 23, 26, 41]. The inability of analyzing realistic models unfortunately
defeats the purpose of formal methods—if a formally verified model does not resemble the
real system, the verification result cannot be transferred to the real system and thus becomes
meaningless. Only when the used models are conformant, properties, such as safety, can be
transferred to the real system [42]. Another disadvantage of direct methods developed so far for
power systems is that they cannot check if phase, voltage, and frequency constraints are met
since they only analyze if a steady state of a disturbed system is eventually reached. Especially
the verification of bus voltage limits is important since violations can trigger protection devices
to disconnect power lines and possibly cause cascading effects leading to a blackout [8].

Formal Methods - Reachability Analysis Reachability analysis can be seen as a set-
based simulation of a system containing all states reachable by all of its possible simulation
runs. Because all reachable states are included, one can prove various system properties, such
as avoiding a set of unsafe states and/or reaching a set of goal states. One can even include
temporal logic specifications by computing the product automaton of the system with a monitor
automaton for the temporal logic specification, resulting in a verification problem with hybrid
(i.e., mixed discrete and continuous) dynamics [4]. Since formal analysis of the nonlinear
dynamics of power systems is undecidable [39], one cannot compute exact reachable sets for
this system class—thus, one aims to compute as tight as possible over-approximations. Early
work for reachability analysis in power systems was only able to analyze small systems [28,29],
because the used approach has an exponential complexity with respect to the system dimension.
The work in [15,16] has a polynomial complexity with respect to the system dimension; however,
the approach requires to linearize the system dynamics so that the results cannot be directly
transferred to the real system. Reachable sets of linear power systems with uncertain system
matrices are presented in [49]. The first work with polynomial complexity with respect to the
system dimension that can handle power systems modeled as differential-algebraic equations
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is [3]; this work was later extended to a compositional approach [1]. Reachability analysis for a
conformant model of a drum-boiler unit of a power plant has been performed in [21] to certify it
for faster changes in power generation. Most other applications of reachability analysis in power
systems use non-conformant models, such as the analysis of microgrids [32], the verification of
voltage ride-through capabilities [48], the verification of grid frequency controllers [35], fault
diagnosis [45], and the joint synthesis and verification of power system controllers [22].

Open-Source Tools for the Analysis of Power Systems Several open-source analysis
tools for power systems exist [34, 38], such as MATPOWER [52], PYPOWER [33], and pan-
dapower [46]. However, none of these tools provide the differential algebraic equations required
for formally analyzing power systems. To the best knowledge of the author, only a few tools ex-
ist that create the differential algebraic equations symbolically, but these files cannot be directly
accessed by formal verification tools. The MATLAB tool VST [12] uses symbolic computations,
but its last update was more than 20 years ago and it does not run on all current operating
systems due to the use of DLL files. A more recent tool using symbolic computations is [19];
however, in its current version, one cannot directly obtain the differential algebraic equations
of the overall system.

1.2 Contributions

While there is an increasing effort to formally verify power systems, there exist no benchmarks
to accelerate the development in this area. Since power systems are complex, one requires tool
support to automatically create models of them. Unlike the simulation of power systems, which
is typically performed by solving power system components locally, formal methods usually
require a state space model of the entire system. To address these issues, we provide the
following contributions:

• We provide the first benchmark suite for the formal verification of power systems.

• For the first time, we convert power system descriptions to models used for formal verifi-
cation, such as SpaceEx [20]. As a byproduct, we generate files of the state space model
consisting of differential and algebraic equations that can be used for further analyses.

• The benchmarks can be composed from given modules, consisting of a case file and a
specification file.

• We provide solutions for selected benchmarks using CORA [2].

1.3 Organization

We first recall the essentials of power system dynamics in Sec. 2. This serves mainly two
purposes: a) Researchers and practitioners from the formal verification community get a concise
introduction into power systems and b) the provided equations will be used to explain the
generation of the state space models. In Sec. 3 we show how to create different benchmarks
from power system cases and specifications. Solutions of selected benchmark problems are
presented in Sec. 4 and we draw conclusions in Sec. 5.
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2 Dynamics of Power Systems

Components of power systems, such as generators, loads, feeders, and transformers, are con-
nected to so-called buses, which in turn are connected through power lines. Within a power
system, the magnitudes of variables can vary significantly so that many values are normalized
by the per unit system [p.u.] instead of using, e.g., the actual voltage. There are different ways
to establish a per-unit system [31, Sec. 3.4]; however, the particular normalization is irrelevant
for the formal verification of power systems, since also the specification is provided in the cor-
responding per-unit system. The variables associated with the ith bus are the magnitude of the
voltage Vi, the relative phase angle of the voltage Θi, active power Pi, and reactive power Qi.
Active power is actually consumed over a complete cycle of the alternating current waveform,
while reactive power oscillates between the source and load in each cycle due to stored energy.

Generators are attached to generator buses and control the power as well as the voltage. The
remaining buses are referred to as load buses, which may also include power generating elements
that cannot control power and voltage, such as, e.g., wind turbines. A bus can be connected
to a generator and a load. Because they share the same voltage and the overall power can
be obtained by adding the negative load power and the positive generator power, those buses
are treated as a generator bus. Since only the relative phase angles of the buses matter, one
defines a generator bus as a reference—the so-called slack bus, which by definition has the
relative phase angle Θi = 0 and the given voltage controlled by the power generating element.
By definition, the slack bus rotates with the designed angular velocity of the grid ωs; e.g., the
grid frequency in Europe is 50 Hz. The slack bus balances the slack between the active and
reactive power generation and use. For convenience, the known variables of each bus type (the
remaining two variables of each bus are unknown) are listed subsequently:

• Slack bus: Vi and Θi = 0 are known.

• Generator bus: Pi and Vi are known.

• Load bus: Pi and Qi are known.

We will use the following symbols to represent the number of different bus types:

• Ng: number of generators buses.

• Nl: number of load buses.

• Nc: number of cut transmission lines to obtain a user-specified subsystem.

The dynamics of power systems mainly originate from two sources: The dynamics of components
and the power flow constraints, which will couple the dynamics of each component. In our
benchmarks, the only dynamic components we consider are generators. We will first address
the generator dynamics followed by the power flow constraints. Finally, we will present how
faults in the power system are modeled and how the state space models are obtained.

2.1 Generator Dynamics

We use the generator dynamics from [15]. Please note that the phase angles of generators are
denoted by δ to distinguish them from the phase angles of buses denoted by Θ. Generator
models consist of the machine and a governor, where the latter is a device regulating the speed
of the machine—in many cases by regulating the inflow of steam through a valve. The generator
model has the subsequently listed state variables, input, and parameters for the ith generator.
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State variables:

• δi = δ̃i−Θs [rad]: generator phase angles relative to the slack bus angle Θs (the generator
phase angle is denoted by δ̃i).

• ωi [rad/s]: angular velocity.

• Pm,i [p.u.]: mechanical power.

Input:

• Pc,i [p.u.]: commanded power production.

• Pg,i [p.u.]: active power of the generator (see (2)).

Parameters:

• Mi [MJ/Hz2]: rotational inertia.

• Di [s/rad]: damping coefficient.

• TSV,i [s]: time constant of the governor.

•
1

RD,i
[-]: proportional gain of the governor.

The dynamic equations of the chosen generator model originate from a second-order machine
model and a first-order governor model. This model is based on [15, eq. 19] and slightly modified
by using power instead of torque as one of the state variables:

δ̇i = ωi − ωs,

ω̇i = −
Di

Mi

(ωi − ωs) +
1

Mi

Pm,i −
1

Mi

Pg,i,

Ṗm,i = −
1

TSV,iRD,i

(ωi − ωs)−
1

TSV,i

Pm,i +
1

TSV,i

Pc,i.

(1)

For simplicity, the same model is used for all generators and synchronous condensers, where
the latter are generators that produce no active power. If no parameter values are specified, we
use the values from [15] shown in Tab. 1 as default values, where RD,i is adjusted to account
for the fact that power instead of torque is used as one of the state variables.

Table 1: Default parameter values of the generators.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs
1

15π 0.04 5 −π
2 1 6π 120π

2.2 Power Flow Constraints

The power flow equations are obtained using standard methods, see e.g. [43, p.174]. The power
flow equations have the following algebraic variables, inputs, and parameters for the ith bus.

Algebraic variables:

• Vi [p.u]: absolute value of the bus voltage.

• Θi = Θ̃i − Θs [rad]: bus phase angles relative to the slack bus angle Θs (the bus phase
angle is denoted by Θ̃i).
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• Pi [p.u.]: active power.

• Qi [p.u.]: reactive power.

• Ei [p.u.]: generator voltage (applies only to generator buses).

Inputs:

• P d
g,i: directly injected active power (e.g., from renewable energy sources).

• Qd
g,i: directly injected reactive power (e.g., from renewable energy sources).

Parameters: The buses are connected via admittances Yij = Yji, where i and j are the
indices of the connected buses. The admittance from the generator to the ith generator bus is
denoted by Yg,i.

• |Yij | [p.u.]: absolute value of the admittance.

• Ψij = ∠Yij [rad]: angle of the admittance.

• |Yg,i| [p.u.]: absolute values of the generator admittance.

• Ψg,i = ∠Yg,i [rad]: angle of the generator admittance.

The active and reactive power of a generator according to [43, eq. 5.10]1 are

Pg,i = EiVi|Yg,i| cos(−Ψg,i − δi +Θi)− V 2
i |Yg,i| cos(−Ψg,i),

Qg,i = EiVi|Yg,i| sin(−Ψg,i − δi +Θi)− V 2
i |Yg,i| sin(−Ψg,i).

Using cos(−α) = cos(α) and sin(−α) = − sin(α), we obtain

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

(2)

In contrast to some other models, we use the most generalized form of power transfer between
any two voltage sources through any connecting admittance. At each bus, the following active
powers are added: The active power Pg,i of the generators according to (2), the directly injected
active power P d

g,i, and the demanded active power Pd,i. Analogously, the reactive powers Qg,i,

Qd
g,i, and Qd,i are added. Obviously, Pg,i = Qg,i = 0 at load buses. The power flow equations

as in [43, p.174] of each bus are

Pi = Pg,i + P d
g,i + Pd,i =

Ng+Nl
∑

j=1

ViVj |Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd
g,i +Qd,i = −

Ng+Nl
∑

j=1

ViVj |Yij | sin(Ψij +Θj −Θi).

(3)

2.3 Power Dropout

For the transient stability analysis in Sec. 3.1.1, we model the power dropout of the ith power
plant by setting the active and reactive power in (3) and (1) to zero (Pg,i = 0, Qg,i = 0). In
addition, the variable Ei is no longer an unknown variable and is replaced by Vi during the
power dropout, since the power plant can no longer control the voltage at the ith bus. This bus
then essentially becomes a load bus during power dropout.

1The reference uses impedance instead of admittance, so that the angle of the admittance Yg,i is negated
compared to that of the impedance.
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2.4 State Space Model

In order to make the power system dynamics amenable to formal verification tools, we rewrite
the above power system model to a state space model. After introducing the vector of differential
variables as x ∈ Rnd , the vector of algebraic variables as y ∈ Rna , and the input vector
as u ∈ Rm, we obtain the following set of time-invariant, semi-explicit, index-1 differential
equations:

ẋ = f(x(t), y(t), u(t)),

0 = g(x(t), y(t), u(t)).
(4)

Since we also want to provide simplified versions of the considered power systems, we make it
possible to only consider a subset of buses behind cut transmission lines. The voltages V̂k and
phase angles Θ̂k at the cut transmission lines will become additional inputs. We introduce the
function k = h(i) returning the bus number k of the ith cut transmission line (i = 1 . . .Nc).

The numbering of the power network buses is renumbered from the original benchmark problems
as follows. In all benchmark problems, we declare the first bus (i = 1) to be the slack bus. The
next buses (i = 2 . . .Ng) are the generator buses, which are in turn followed by the load buses
(i = Ng + 1 . . .Ng + Nl). Due to this renumbering, we can assign the algebraic variables in a
more systematic way as follows:

i = 1 . . .Ng : yi = Ei (generator voltages),
i = 1 . . .Nl : yNg+i = VNg+i (voltages of load buses),
i = 2 . . . (Ng +Nl) : yNg+Nl+i−1 = Θi (phases of all buses, except the slack bus).

(5)

The dynamic variables are

i = 1 . . .Ng : xi = δi (phase of generator),
i = 1 . . .Ng : xNg+i = ωi (angular velocity of generator),
i = 1 . . .Ng : x2Ng+i = Pm,i (mechanical power of generator),

(6)

and the inputs are assigned as follows:

i = 1 . . .Ng : ui = Pc,i (commanded power),
i = 1 . . . (Ng +Nl) : uNg+i = P d

g,i (directly injected active power),
i = 1 . . . (Ng +Nl) : u2Ng+Nl+i = Qd

g,i (directly injected reactive power),

i = 1 . . .Nc, k = h(i) : u3Ng+2Nl+i = V̂k (voltage at cut transmission line),

i = 1 . . .Nc, k = h(i) : u3Ng+2Nl+Nc+i = Θ̂k (phase at cut transmission line).

(7)

By symbolically replacing the variables of the model described in Sec. 2.1-2.3 using (5)-(7),
we obtain the state space form in (4). The state-space models are used in the subsequently
described benchmark problems.

3 Benchmark Creation

We compose benchmarks using the type of verification problem type, the case description case,
and the specification spec. This modularity makes it possible to easily generate a large set of
benchmarks from a smaller set of the above-mentioned components type, case, and spec.
Furthermore, the modularity facilitates comparing the effects of various cases or specifications
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by only changing these components. The benchmark ID is constructed by separating the IDs
of each component by colons in the order

type : case : spec.

For instance, for type=TSA, case=IEEE14-1, spec=MA2014-2, the benchmark ID is

TSA : IEEE14-1 : MA2014-2.

Currently, the IDs of each component are specified within CORA. In the future, we might
provide a separate website. In Sec. 3.1, we will introduce the current types of verification
problems. The case format and the specification format is provided in Sec. 3.2 and Sec. 3.3,
respectively.

3.1 Considered Verification Problems

As of now, we consider the three types of verification problems shown in Fig. 1: Transient
stability analysis (TSA), verifying the region of attraction (RoA), and verifying robustness
against uncertain power demand and production (Rob). We will specify each problem in more
detail subsequently.

final set

pre-fault set

post-fault setx1

x2

(a) Transient stability analysis.

region of attraction

invariant set

x1

x2

(b) Verifying the region of attrac-
tion.

reachable set

frequency/voltage/phase limit

time t

frequency/voltage/phase

(c) Verifying robustness against
uncertain power demand and pro-
duction.

Figure 1: Supported verification problems.

In order to formally define the considered verification problems, we will require the follow-
ing definitions. The initial state of a power system as modeled in (4) is consistent when
g(x(0), y(0), u(0)) = 0. We assume that (4) has a unique solution γ(t, x(0), y(0), u(·)) for all
consistent initial states x(0), y(0) and all piecewise continuous input trajectories u(·), where u(t)
refers to their value at a specific point in time t. The set of consistent initial states is denoted by
[xT (0), yT (0)]T ∈ R(0) and the set of possible input trajectories is U(·) = {u(·)|∀t : u(t) ∈ U(t)},
where U(t) is the set of possible inputs for a given point in time. Please note that depending
on the benchmark, some inputs can be controlled, such as a demanded power production, while
others are uncontrolled, such as disturbances. The exact reachable set for a time ti is

Re(ti) =
{

γ(ti, x(0), y(0), u(·))
∣

∣

∣
[xT (0), yT (0)]T ∈ R(0), u(·) ∈ U(·)

}

.

Because one cannot compute the exact reachable set for nonlinear DAE systems [39], one resorts
to algorithms solving the proposed benchmarks using some form of over-approximation. An
over-approximative reachable set is denoted by R(ti) ⊇ Re(ti). For simplification, we will not
distinguish between exact and over-approximative reachable sets from now on. The reachable
set of a time interval [ti, ti+1] is denoted by R([ti, ti+1]) =

⋃

t∈[ti,ti+1]
R(t).
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3.1.1 Transient Stability Analysis (TSA)

Informally, transient stability of a power system is referred to its capability of reaching an
acceptable operating condition in which the generators are synchronized after a contingency.
The set of possible contingencies that a system has to be resilient to is typically not formally
fixed and is often at the discretion of the responsible engineer or operator; see, e.g., [27].

In our benchmarks, one specifies a power dropout as well as the time when the fault occurs
to > 0 (fault occured) and when it is cleared tc > to (fault cleared). During the fault, the
system dynamics is changed as described in Sec. 2.3. In our benchmarks, we use a stricter
interpretation of transient stability, where we require that the reachable set returns to the set
of initial states after the fault is cleared. To ensure that this is at least possible when no
uncertainties are acting on the system, we require that the reachable set at time to is a subset
of the initial reachable set:

R(0) ⊇ R(to).

Under this condition, one can show transient stability for the given contingency if

∃t > tc : R(t) ⊆ R(0).

3.1.2 Verifying the Region of Attraction (RoA)

The region of attraction (aka the basin of attraction or the domain of attraction) is a set of
states from which the system always reaches a desired operating condition. For instance, if the
reachable set is within the region of attraction after a fault is cleared, one can directly show
transient stability for the considered fault. While a verified region of attraction simplifies many
other verification problems, it is harder to verify since typically a larger set of states has to be
considered compared to analyzing a more specific scenario.

Before we formalize the verification of a region of attraction, we first define an invariant set
S [13, Def 2.2.]:

∀t > 0, ∀u(·) ∈ U(·), ∀[xT (0), yT (0)]T ∈ S : γ(t, x(0), y(0), u(·)) ∈ S.

To distinguish the above invariant set from those without uncertain inputs, one often refers to
them as robust positively invariant sets [13, Def 2.2.]. We now define the region of attraction
as the set

D =
{

[xT (0), yT (0)]T
∣

∣

∣
∀u(·) ∈ U(·) : lim

t→∞

γ(t, x(0), y(0), u(·)) ∈ S
}

.

Most previous works consider the special case where the invariant set is the steady state [30,
p. 314]. This, however, excludes relevant aspects, such as uncertain inputs and limit cycles. If,
in addition, state and input constraints are always fulfilled before reaching the invariant set,
one often calls such a region of attraction a safe set [25]. To verify the region of attraction, we
have to show that for R(0) = D, it holds that

∃t > 0 : R(t) ⊆ S.

3.1.3 Verifying Robustness against Uncertain Power Demand and Production
(Rob)

Another verification problem is to check whether state constraints are met despite uncertain
power demand and production. For instance, one would like to check whether the frequency,
voltage, and phase limits are met despite uncertain power production from renewable sources.
We denote the set of acceptable states as X so that robustness against uncertain power demand
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and production for a user-specified time horizon tf can be formulated as

R([0, tf ]) ⊂ X .

In contrast to verifying transient stability and the region of attraction, the considered time
horizon is typically longer. Thus, this is a good benchmark to evaluate the amount of over-
approximation that accumulates over time.

3.2 Case Format

Each case is a data structure shown in Fig. 2 specifying each component of the power system and
how they are related through the bus system. The data structure contains 1) the specification of
the buses, 2) parameters of the generators, and 3) system-wide specifications (name, demanded
active and reactive power, voltage magnitudes, and the admittance matrix). Input and output
buses are those with cut transmission lines. If the bus is within the considered subsystem, it
is an output bus and an input bus, otherwise. As an example, let us consider the bottom left
subsystem in Fig. 4: Input buses are 5, 6, 14, 15, 16 and output buses are 2, 4, 12.

/

bus (specification of the buses)

fault ∈ N
Ng (vector of bus number with fault)

generator ∈ N
Ng (vector of bus numbers with generators)

input ∈ N
Ng+Nl (vector of bus numbers with cut transmission lines outside the system)

load ∈ N
Nl (vector of bus numbers with loads)

output ∈ N
Ng+Nl (vector of bus numbers with cut transmission lines inside the system)

slack ∈ N (bus number of the slack bus)

genParam (specification of the generator parameters)

omega s ∈ R (angular velocity of the grid)

D ∈ R
Ng (vector of damping coefficients for each generator in bus.generator)

M ∈ R
Ng (vector of rotational inertias for each generator in bus.generator)

Psi g ∈ R
Ng (vector of generator admittance angles for each generator in bus.generator)

R d ∈ R
Ng (vector of inverse gains of the governor for each generator in bus.generator)

T sv ∈ R
Ng (vector of time constants for each generator in bus.generator)

Y g ∈ R
Ng (vector of absolute generator admittances for each generator in bus.generator)

name (name of the case)

Pd ∈ R
Ng+Nl (vector of demanded active power for each bus)

Qd ∈ R
Ng+Nl (vector of demanded reactive power for each bus)

VM ∈ R
Ng+Nl (vector of voltage magnitudes for each bus)

Y ∈ C
Ng+Nl×Ng+Nl (admittance matrix)

Figure 2: Data structure of a case.

3.3 Specification Format

The data structure for each specification is shown in Fig. 3. All types of verification problems
require the set of initial dynamic states R(0) and the set of inputs U . In case the set of inputs
varies over time, one has to specify its change over time. Further values required for different
verification problems are listed in Fig. 3.
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/

t c ∈ R (time of fault clearance; only for TSA)

t f ∈ R (time horizon; only for Rob)

t o ∈ R (time of fault occurrence; only for TSA)

R0 ⊂ R
nd (initial set)

S ⊂ R
nd+na (invariant set; only for RoA)

U ⊂ R
m (input set)

X ⊂ R
nd+na (set of acceptable states; only for Rob)

Figure 3: Data structure of a specification.

4 Numerical Experiments

At this point, we already provide 35 cases and 51 specifications, which can be combined to
various benchmarks. Obviously, cases and benchmarks cannot be combined arbitrarily, but for
different parameterizations of generators, one could reuse the same specification and for the
same case, specifications of varying difficulty can be combined. As an example, we will show
results of one benchmark for each verification type. All computations have been performed on
an Intel Core i7-8565U CPU with 1.80 GHz and 24 GB of memory.

4.1 Automatic Creation of Case Descriptions

In order to conveniently create new benchmarks, case descriptions in well-established formats
can be loaded. So far, we provide the conversion of the PSS/E RAW format [40] and the
MATPOWER format [52] into our data structure shown in Fig. 2. The data structures are
created in CORA [2] by calling

loadPowerSystemCase(casefilename, filename, ’MATPOWER’)

loadPowerSystemCase(casefilename, filename, ’PSSE’),

where casefilename is the filename of the case to be loaded and filename is the filename of the
generated case. Please note that the conversions can only be obtained when MATPOWER [52]
is installed. Unspecified parameters from other formats are handled by providing default values.
For instance, the default values for generator parameters are listed in Tab. 1.

4.2 Automatic Creation of Models

The case specifications according to Fig. 2 cannot be directly used by any current formal verifi-
cation tool. Most tools require state space models so that we provide a method to automatically
create the time-invariant, semi-explicit, index-1 differential equation system in (4) by calling

powerSystem2cora(filename)

in CORA. All equations are automatically generated by symbolic computations to exclude errors
that could be caused by manual implementations. Abstractions to linear ordinary differential
equations and linear differential equations can be performed using the methods provided in
CORA. The mathematical background of these abstractions is provided in [5]. The obtained
models can be exported using the SpaceEx format through

cora2spaceex(obj,filename),
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where obj is the CORA object to be converted and filename specifies the name of the SpaceEx
model. The SpaceEx format is predominantly used by other formal verification tools and in
the ARCH competition [6,24]—the largest competition for the formal verification of continuous
and hybrid systems.

4.3 Transient Stability Analysis

Verifying transient stability is demonstrated for the benchmark TSA:IEEE30-1:MA2014-30-1.
As the case ID suggests, it is the IEEE 30-bus benchmark shown in Fig. 4, where each generator
is parameterized by the values listed in Tab. 1. Bus 1 is declared as the bus where the power
dropout will occur. Next, let us introduce 0 as a vector of zeros of appropriate size and [−1, 1]p

as the p-ary Cartesian product of intervals [-1,1], i.e., a p-dimensional unit box. The values of
the specification are as follows:

• t c = 0.13 s

• t o = 0.1 s

• R0 = x0 +
[

0.005[−1, 1]6 × 0.1[−1, 1]6 × 0.001[−1, 1]6
]

, x0 = [0.6199, 0.0087, −0.1236,
− 0.1756, −0.2219, −0.2512, 120π, 120π, 120π, 120π, 120π, 120π, 2.6, 0.4, 0, 0, 0, 0].

• U = 0

The reachable sets of this problem are computed by abstracting the system dynamics to linear
differential inclusions on-the-fly. Because the computation of the abstraction error consumes
most of the time and the main coupling of the dynamics is already considered by the linear
abstraction, the abstraction error is computed compositionally as presented in [1]. The regions
for the compositional computation of the abstraction error are shown in Fig. 4.

The transient stability of this benchmark could be verified in 405 s using the machine specified
above. Selected projections of the reachable set are shown in Fig. 5.

4.4 Verifying the Region of Attraction

One of the standard examples in the literature for verifying the region of attraction of power
systems is the single-machine-infinite-bus (SMIB) system. The identifier of this benchmark is
RoA:SMIB-1:MA2022-1-1. In contrast to the demonstration of larger benchmarks, the dynamics
follows directly from neglecting the torque dynamics in (1) and inserting Θi = 0 as well as
Ψg,i = −π/2 in (2):

ẋ1 = x2,

ẋ2 =
1

M
(Pm − E V |Yg| sin(x1)−Dx2).

The parameter values are taken from Tab. 1 and the differential and algebraic variables that
became constants due to the above simplifications are chosen as Pm = E = V = 1 [p.u.].
Thus, the equilibrium point becomes x0 = [arcsin(1/|Yg|), 0]

T . Using the CORA notation for
an ellipsoid, the values of the specification are as follows:

• R0 = x0 + 0.7[−1, 1]2, x0 = [arcsin(1/|Yg|), 0]
T .

• S = ellipsoid(Q, x0), Q =

[

+0.0201 −0.0249
−0.0249 +4.9999

]

.

• U = 0.
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Figure 4: IEEE 30-bus benchmark system. Gray lines show subsystem borders and a circle
around the letter G indicates a generator.

By using CORA, the provided region of attraction can be verified within 6.9 s. The reachable
set as well as the initial set and the invariant set are shown in Fig. 6.

4.5 Verifying Robustness against Uncertain Power Demand and Pro-

duction

As an example for verifying the robustness against uncertain power demand and production,
we show results of the benchmark Rob:IEEE14-2:MA2014-14-2. As the case name suggests, we
use the IEEE 14-bus benchmark depicted in Fig. 7. Renewable energy production is modeled by
directly injecting active power at bus 13 and 14 (see [15]), where ∀t ∈ [0, 5] s : P d

g,13(t), P
d
g,14(t) ∈

{ t
5P

∗|P ∗ ∈ [0.04, 0.06] [p.u.]} modeling that the production uncertainty grows linearly over
time. The conventional power plants produce only active power at bus 1 and 2: Pc,1 = 2 [p.u.]
and Pc,2 = 0.4 [p.u.]. The verification problem is specified as follows:

• t f = 5 s

• R0 = x0+
[

0.005[−1, 1]5× 0.1[−1, 1]5× 0.001[−1, 1]5
]

, x0 = [0.3333, −0.0192, −0.2221,
− 0.2482, −0.2332, 120π, 120π, 120π, 120π, 120π, 2.0, 0.4, 0, 0, 0].

• U is chosen according to (7) with P d
g,13(t), P

d
g,14(t) ∈

t
5P

∗, where P ∗ ∈ [0.04, 0.06] [p.u.].

• X = x0 +
[

π[−1, 1]5 × 0.5π[−1, 1]5 × 0.03[−1, 1]5.
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Figure 5: Selected projections of reachable sets for transient stability analysis. Black lines show
random simulations, gray areas show reachable sets, and white boxes show initial sets. Dark
gray represents pre-fault and post-fault sets, while light gray represents fault-on sets. Algebraic
variables jump when switching to and from the faulty operation.

We could verify the specification in CORA using reachability analysis within 207 s. As for the
30-bus benchmark, we computed the abstraction errors compositionally using the two subsys-
tems as indicated in Fig. 7. Selections on reachable sets over time for the time interval [0, 5] s
are presented in Fig. 8 together with random simulations for which a constant input is changed
every 0.2 s, causing jumps of algebraic variables.

5 Conclusions

We presented the first benchmark suite for the formal verification of power systems. Be-
cause power systems have complicated dynamics, whose manual derivation is error-prone, we
also provide a method to automatically generate the dynamics in the form of time-invariant,
semi-explicit, index-1 differential equations. Our conversion supports the widely used formats
PSS/E RAW and MATPOWER. Further details can be found in the CORA manual. This
benchmark suite will hopefully facilitate research in the area of formal methods for power
systems—an area, where formal methods can contribute to combating climate change.
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