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Abstract 

Timely and accurate identification of workers' intentions in construction scenarios is 

crucial for seamless worker-robot collaboration. However, limited worker behavior due 

to varying behavioral styles and difficulties in collecting worker action data limit the 

practical application of existing methods that rely heavily on extensive worker action 

data. This paper addresses the dynamic nature of construction environments by 

proposing a few-shot worker intention recognition method. The proposed approach 

constructs worker intention query features using randomly sampled frame combinations 

and then applies metric learning to develop a few-shot worker intention recognition 

model. To validate the effectiveness of this method, a worker scaffolding installation 

action video dataset was used for the experiments on worker intent recognition. Given 

five categories with five worker action samples, the method achieved an accuracy of 

71% in recognizing workers' intentions. The results demonstrate that the proposed 

method can effectively learn and detect novel worker actions with a minimal number of 

classified action videos, thereby improving model performance while reducing the 

number of required training videos. This approach not only reduces the labor needed for 

data labeling but also enhances the practicality of worker-robot collaboration in 

construction scenarios. 
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1 Introduction 

High-risk construction environments and frequent safety incidents pose significant obstacles to the 

high-quality and sustainable development of the construction industry (Z. Pan & Yu, 2024). These 

accidents subject workers to severe injuries and life-threatening hazards, while poor working 

conditions and safety risks exacerbate labor shortages in the sector. Therefore, there is an urgent need 

to improve safety protocols and address labor shortages. 

Automation and robotics have emerged as critical solutions to these industry challenges (Baduge 

et al., 2022). However, the construction environment is highly unstructured and dynamic, with 

frequent changes even during task execution. Single-task robots lack the flexibility required to handle 

such uncertain workplaces, relying instead on human workers' decision-making and problem-solving 

abilities. To ensure the effective application of robots in this domain, Worker-Robot Collaboration 

(WRC) should be established—a novel collaborative framework that leverages the strengths of both 

workers and robots. WRC technology offers a promising solution to the pressing needs faced by the 

construction industry (Eaves et al., 2016). In the realm of construction, such collaboration can liberate 

construction workers from tasks characterized by repetitiveness and high physical demands, thereby 

enhancing construction safety and productivity, as well as mitigating labor shortages and the aging 

workforce crisis (Cai et al., 2023; Park et al., 2023). To facilitate seamless worker-robot collaboration, 

robots should possess the capability to intelligently perceive, comprehend, and adapt to the intentions 

of workers (Zhang et al., 2022), enabling assistance in task execution within dynamic construction 

environments.  

However, most advanced technologies rely on conventional deep learning methods (S. Li et al., 

2022), which require large amounts of training data with accurately labeled worker intention 

information to develop high-performance vision-based algorithms. Consequently, numerous 

construction scene images must be collected, and worker intention type labels must be annotated for 

each video (Tian et al., 2024). This manual process is time-consuming, costly, and labor-intensive, 

making the development of comprehensive and high-quality robotic perception databases a significant 

challenge (Teizer, 2015). The issue is further complicated by the need to recognize different worker 

intentions that frequently change with construction phases. Each time a new type of worker intention 

arises, the training database must be updated. Due to these factors, the performance of vision-based 

monitoring systems often deteriorates in practice. 

To overcome the challenges of worker intention recognition with limited data, this study proposes 

a limited data-oriented worker intention recognition method in worker-robot collaboration for 

construction, which aims to minimize the required training data and reduce data labeling costs. The 

proposed method focuses on worker intention feature extraction and a feature learning strategy 

tailored to limited data scenarios. To validate the approach, experiments were conducted using a 

dataset of worker scaffold installation actions. Remarkably, even with only five worker action 

samples, the method achieved 71% accuracy in recognizing worker intentions.  

The remainder of this paper is organized as follows: Section 2 provides a literature review of 

existing studies. Section 3 explains the worker intent recognition method under limited data in detail. 

Section 4 presents the recognition performance of the proposed method. Section 5 discusses the 

results, and Section 6 concludes the study. 

 

Limited Data-oriented Worker Intent Recognition in WRC Z. Zhang et al.

1058



2  Literature Review 

2.1 Worker Intention Recognition 

Human-robot collaboration (HRC) research explores the physical and cognitive interactions 

between humans and robots to accomplish shared tasks, such as closely collaborating with 

cooperative robots to safely and effectively complete various joint activities (Semeraro et al., 2022). 

In HRC, robots need to understand the current work status and worker intention (Y. Pan et al., 2023) 

to determine their own tasks and movements. Typical tasks include collaborative assembly (Cunha et 

al., 2020; Grigore et al., 2018)and object handover (Choi et al., 2018; Shukla et al., 2018). For 

instance, in (Cunha et al., 2020), the robot must comprehend the current steps of the assembly process 

and select the appropriate components for assembly. In (Grigore et al., 2018), the robot provides 

assistance based on predictions of human trajectories. For object handover, it is essential for the robot 

to understand human intention, as smooth collaboration requires the robot to accurately interpret the 

object desired by the worker (Shukla et al., 2018). 

In the construction domain, HRC has gained increasing attention as a promising solution to free 

workers from repetitive and physically demanding tasks, thereby enhancing construction safety and 

productivity. It can potentially be applied to various construction activities, such as bricklaying (Y. 

Liu et al., 2021), object handover (Yu et al., 2023), and wooden component assembly (X. Wang et al., 

2023). It is well known that the ability to understand ongoing work progress and interpret human 

intention is crucial for robots to adaptively collaborate and execute required tasks. Existing research 

has developed methods to guide robots in responding and executing tasks based on various sensors 

(e.g., tactile sensors (Yu et al., 2023), cameras (Wu et al., 2023), and electroencephalography (Y. Liu 

et al., 2021)). Specifically, human intention (e.g., target of interest), human posture, or the movement 

of specific body parts (e.g., hands) has been extensively studied through a range of sensory inputs, 

including visual (Z. Liu et al., 2019), accelerometric (H. Liu & Wang, 2017), muscular (W. Wang et 

al., 2022), and neural activities (Lyu et al., 2022). 

2.2 Sample Learning Methods under Limited Data 

Although traditional machine learning algorithms typically require large training datasets, humans 

demonstrate the ability to learn and recognize new objects from only a few examples. To address this 

gap, researchers have explored various few-shot learning algorithms to efficiently acquire 

construction-related knowledge. Few-shot learning has been applied to computer vision tasks, 

including few-shot image classification, few-shot object detection, and few-shot video action 

recognition (Song et al., 2023). Few-shot video action recognition aims to achieve video classification 

capabilities by providing only a limited number of video sequences. Existing studies have effectively 

explored transfer learning (Hu et al., 2022; Khacef et al., 2020; H. Wang et al., 2021), meta-learning 

(Finn et al., 2017; Patacchiola et al., 2020; J. Xu et al., 2020; Zhong et al., 2020), and metric learning 

(Cao et al., 2020; X. Li et al., 2023; Perrett et al., 2021; van der Spoel et al., 2015)for few-shot data. 

Transfer learning algorithms operate on the assumption that knowledge obtained from data in the 

source domain can be transferred to the target domain through model fine-tuning. Meta-learning 

algorithms aim to learn generalizable knowledge by training models on several different classification 

tasks. Metric learning algorithms focus on creating feature embeddings and effective distance 

measures. 

Few-shot action recognition has been validated on public computer vision datasets; however, there 

is a research gap in conducting few-shot action recognition on challenging construction sites. These 

sites are characterized by high dynamism and privacy sensitivity, making it difficult to collect large 

datasets of labeled video sequences. Notably, labeling data related to worker action intentions requires 

substantial expertise and additional time costs. Due to factors such as complex background variations, 
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similarities between different actions, and occlusion of objects on-site, recognizing worker intent 

remains challenging (Zhang et al., 2022). Worker intent may change depending on the construction 

environment and the assembly components involved. Recent studies have applied few-shot learning 

techniques to construction site data. For example, Cui et al. proposed using few-shot classification 

and contrastive learning to identify facade defects (Cui et al., 2022). Xu et al. developed a meta-

learning-based few-shot classifier for recognizing structural damage from images (Y. Xu et al., 2021). 

Kim et al. applied few-shot object detection to learn and monitor emerging targets, such as excavators 

on construction sites (Kim & Chi, 2021). Liang et al. proposed a CLIP-based few-shot learning 

algorithm for temporary object recognition on construction sites (Liang et al., 2024). Wang et al. 

proposes a deep learning-based method to detect fall-related site objects and their associated attributes 

to better capture site conditions for supporting field compliance checking (X. Wang & El-Gohary, 

2024). 

3 Methodology 

The proposed method aims to design a few-shot model for worker intention recognition that can 

learn and classify with only a limited dataset of worker intention. 

As illustrated in Figure 1, the proposed method aims to generate a model that can learn and 

classify worker intention based on a limited amount of video data. First, we define the variables used 

in this study. The objective of this paper is to accurately classify worker intentions that the model has 

not previously encountered. The small amount of labeled data during the model training phase is 

referred to as the 'support set.' We categorize each class in the few-shot scenario into k intention 

categories and n video data, commonly known as a k-way n-shot detection scenario. Let 𝑄 =
{𝑞1, 𝑞2, … , 𝑞𝐹} denote a single query video with F frames. The goal is to classify 𝑄 into one of the 

classes𝑐 ∈ 𝐶. For class 𝑐, its support set 𝑆𝑐 contains K videos, with the 𝑘𝑡ℎ video defined as 𝑆𝑘
𝑐 =

{𝑠𝑘1
𝑐 , 𝑠𝑘2

𝑐 , … , 𝑠𝑘𝐹
𝑐 }. 

3.1 Model Design 

This process designs a few-shot learning model capable of acquiring meta-knowledge from 

training videos labeled with only base classes (i.e., how to learn worker intention from video data) 

and leveraging this knowledge to learn new types of worker intention. The proposed method consists 

of video feature extraction and prediction modules. 

 
 Figure 1: Concept of few-shot learning 
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First, the video feature extraction module learns to extract generalized visual features that can 

represent various worker intentions. These generalized features, referred to as meta-features, delineate 

and elucidate the overall characteristics of worker intention types within the dataset, as shown in 

Figure 2. 

In this study, the module consists of two components. In the first step, convolutional neural 

networks are employed to extract features from individual frames of worker operations. For this 

single-frame image feature extraction, ResNet-34 is utilized for image feature computation. 

In the second step, worker intention may exhibit different feature representations at different 

moments, making it challenging to capture complex features using only single frames. Furthermore, 

due to the complexities and dynamic nature of construction scenes, such as worker occlusion, worker 

intention features may not be fully captured by the robot. This leads to issues of discontinuity in the 

image sequences of worker intention and variations in action speed from the robot's perspective. To 

address the inter-frame sequence feature extraction, this study adopts a method of randomly 

combining two frames from the worker intention video to extract inter-frame sequence features, 

thereby mitigating the impact of discontinuous video sequences on the model. 

Regarding the query video 𝑄, we randomly slice the video frame sequence and set 𝑝 = (𝑝1, 𝑝2). 
The video feature extraction calculation formula is as follows: 

𝑄𝑝 = [Φ(𝑞𝑝1), Φ(𝑞𝑝2)] (1) 

where Φ() represents the convolutional neural network. 

For the support video 𝑆𝑘𝑚
𝑐 , the feature representation is given by: 

 
 Figure 2: The architecture of the proposed few-shot worker intention recognition model. 
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𝑆𝑘𝑚
𝑐 = [Φ(𝑠𝑘𝑚1

𝑐 ), Φ(𝑠𝑘𝑚2

𝑐 )] (2) 

where 𝑚 = (𝑚1, 𝑚2). 

3.2 Similarity Calculation 

Similarity calculation is a crucial algorithm in few-shot models based on metric learning. This 

study aims to learn an appropriate similarity measure that enables better differentiation between 

worker intention types in the original task. Such methods do not rely on extensive parameter updates 

but instead make predictions through a fixed metric approach. They guide the Few-Shot model in 

learning how to (1) extract worker intention image features and inter-frame features from input videos 

using only labeled training data from the support set, and (2) compute their category prototypes when 

provided with some support images, subsequently determining the current worker intention type by 

calculating the distance between the query video and the category prototypes. 

The metric learning-based few-shot worker intention recognition model plays a significant role in 

learning how to obtain an appropriate metric space from video frame images. Therefore, to enhance 

the model's feature generalization performance, during the training phase, the model utilizes 

sufficiently labeled training data to simulate few-shot detection scenarios. The model is then trained 

based on the provided few-shot data. In this study, the worker intention category prototype 𝑆𝑐  is 

obtained using the temporal CrossTransformer computational method (Perrett et al., 2021). Let 𝑄𝑖  

denote the query worker intention features. The distance for each query is taken negatively as the loss 

function for model parameter updates. 

We utilize the Euclidean metric to calculate the distance between support features 𝑆𝑐 and query 

features 𝑄𝑖  : 

𝑑 = ‖𝑄𝑖 − 𝑆𝑐‖
2 (3) 

Based on the distance d, the model's loss function in the C-way K-shot task can be computed as:  

𝑑̂𝑖
𝑐 =

𝑒−𝑑𝑖
𝑐

∑ 𝑒−𝑑𝑖
𝑐𝐶

𝑐=1

(4) 

During the training phase, we minimize the loss function to update the parameters of the proposed 

network, repeating this process across all randomly sampled tasks. 

𝐿 = −
1

𝐶
∑log(𝑑̂𝑖

𝑐)

𝐶

𝑖=1

(5) 

During the testing phase, we first need to configure different video categories, and a limited 

amount of data based on the input, which constitutes the k-way n-shot detection scenario. Using the 

few-shot model parameters obtained during the training phase, we derive the category prototypes for 

k worker intentions. The class with the minimum distance is then selected as the identified worker 

intention type. The worker intention recognition during the testing phase can be expressed as 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

𝑑̂𝑖
𝑐. Unlike the training phase, new worker intention categories do not appear during training; 

they represent entirely new worker intention categories. In the testing phase, the worker intention 

category prototypes for the new classes are calculated solely using the trained model weights. 

4 Experimental Results and Analysis 

To validate the proposed method, two distinct experiments were conducted: one involving few-

shot learning and the other involving traditional supervised learning. Supervised learning is a 

conventional method for recognizing worker intent, utilizing numerous support images for model 

training, while few-shot learning focuses on acquiring general knowledge of worker intent by learning 
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a feature prototype from the provided support video set. This study employed SLOWFAST 

(Feichtenhofer et al., 2019) and X3D (Feichtenhofer, 2020) architectures as baseline models for 

traditional supervised learning. Comparing with the architectures of conventional supervised learning 

allows for a more comprehensive assessment of the impact of few-shot learning. Consequently, the 

authors can confirm the applicability and practicality of few-shot learning and objectively evaluate its 

beneficial effects. 

For the experiments and result analysis, the research team utilized a dataset from the literature, 

which consists of scenes collected from YouTube, involving a worker operating on the same type of 

scaffolding with varying backgrounds and camera angles. In the authors' experiments, a total of 22 

worker operation video data were randomly divided into training and testing datasets. Using this data, 

the research team trained and tested the model in different k-way n-shot scenarios, where the number 

of categories k was set to 2, 3, 4, 5, 10, and 20, and the number of support images n (given for each 

new category) was set to 1, 2, 3, 5, and 10. To minimize the loss function, stochastic gradient descent 

with a batch size of 8 was employed to train the few-shot worker intent recognition model, with a 

total of 30,000 iterations and a learning rate of 0.001. The performance of the trained model was 

evaluated using classification accuracy, which is one of the most widely used metrics for vision-based 

action classification networks. 

4.1 Performance of the Proposed Method 

Table 1 presents the experimental results based on different few-shot detection scenarios 

(k=2,3,4,5,10,20 and n=1,2,3,5,10). The developed model achieved a worker intent recognition 

accuracy of 71% in the 5-way 5-shot scenario. When 10 labeled videos of new worker intent classes 

were provided, the accuracy for these new classes reached 80.6%. Furthermore, as the amount of 

video data for worker intent recognition increased, the accuracy for recognizing new classes 

progressively improved. 

4.2 Performance with and Without Few-Shot Learning 

The authors also observed a significant positive impact of the proposed few-shot learning 

approach from the experiments. As shown in Figure 3, under the 10-way conditions, the recognition 

performance for new classes using few-shot learning consistently outperformed existing supervised 

learning methods (i.e., SLOWFAST and X3D). These results align with the established knowledge in 

computer vision and deep learning, which suggests that complex models cannot be effectively trained 

when training data is limited. The performance gap between few-shot learning and the best-

performing supervised learning model (i.e., X3D) averaged approximately 35.0%, with these 

differences increasing as the values of k and n rise. This may be attributed to the requirement of 

supervised learning methods for a substantial amount of labeled training data across all classes, while 

 1-shot 2-shot 3-shot 5-shot 10-shot 

2-way 71.8 77.9 81.2 87.8 91.3 

3-way 58.8 69.2 72.9 80.9 86.6 

4-way 53.2 62.1 67.8 75.5 82.5 

5-way 47.7 58.1 64 71 80.6 

10-way 36.2 45.7 51.8 60.7 71.3 

20-way 28.5 37.8 44.8 53.2 64.6 

Table 1: Experimental Results of the Proposed Method 
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learning new classes with limited video data poses challenges. In contrast, few-shot learning can 

leverage a few provided samples to "learn how to recognize new classes." These findings indicate that 

few-shot learning not only reduces the amount of training data necessary for generating deep learning 

models but also enables rapid learning for detecting new categories, even with minimal training data. 

Given these advantages, it may be applicable in real construction environments where numerous 

novel and foundational objects coexist. 

5 Results and Discussion 

The research findings indicate that the proposed method can learn meta-knowledge (i.e., how to 

learn target features) from a limited amount of labeled training data and utilize this knowledge to 

detect new worker intents when provided with some support videos. The model performed well 

despite variations in camera positions and viewpoints that presented different worker postures and 

visual features (e.g., color, shape, size). 

Furthermore, this study shows that a promising deep learning model can be constructed using only 

a limited amount of training data. These findings could positively impact the implementation of 

vision-based monitoring in real-world construction sites. Specifically, the proposed few-shot learning 

method can quickly adapt to new human-robot collaboration needs arising at different construction 

stages, enabling the monitoring of new worker intentions without requiring extensive training data. 

This capability allows administrators to reduce the time and effort needed for additional data 

collection and annotation, which can be highly labor-intensive. 

The technical advantages of this approach will be particularly useful during the phased 

development and updating of training databases. On-site managers can implement vision-based 

monitoring more effectively, as the development and updating of datasets represent one of the critical 

barriers to the use of visual systems in their projects. Additionally, the theoretical insights from this 

study can provide valuable guidance and future directions for researchers in the field of vision-based 

human-robot collaboration. 

 
 Figure 3: Comparative analysis for the accuracy of few-shot and supervised learning 
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6 Conclusions 

This study proposes a limited data-oriented worker intention recognition method in worker-robot 

collaboration for construction, aimed at minimizing the amount of training data and the cost of data 

labeling. The proposed method includes worker intention feature extraction and an intention 

classification strategy for limited data. As observed in the experiments, the few-shot model can learn 

meta-knowledge from a limited amount of labeled training data, and meta-learning successfully 

transfers this knowledge to detect new categories when provided with several video samples. In the 

10-way 10-shot scenario, the accuracy for detecting new categories reached 71.3%, whereas the 

performance of supervised learning was limited to 35.5%. This indicates that the proposed method 

can train a more robust worker intention recognition model with the same amount of training data 

compared to existing methods. 

The benefits of the proposed method contribute to the following advancements: First, this research 

introduces a novel technical framework that significantly reduces the number of required training 

images while maintaining performance in vision-based worker intention recognition. Second, the 

framework saves time and costs associated with data labeling, enhancing the practical acceptability of 

vision systems on construction sites. The authors customized few-shot learning for construction 

environments and provided quantitative results demonstrating its technical feasibility. Finally, the 

findings of this study lay the groundwork for future research in vision-based construction human-

robot collaboration, as well as for other research areas, such as model-based construction automation 

monitoring. 
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