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Abstract
Verification of machine learning models used in Natural Language Processing (NLP) is

known to be a hard problem. In particular, many known neural network verification methods
that work for computer vision and other numeric datasets do not work for NLP. Here, we
study technical reasons that underlie this problem. Based on this analysis, we propose practical
methods and heuristics for preparing NLP datasets and models in a way that renders them
amenable to state-of-the-art verification methods. We implement these methods as a Python
library called ANTONIO that links to the neural network verifiers ERAN and Marabou. We
perform evaluation of the tool using an NLP dataset R-U-A-Robot suggested as a benchmark for
verifying legally critical NLP applications. We hope that, thanks to its general applicability, this
work will open novel possibilities for including NLP verification problems into neural network
verification competitions, and will popularise NLP problems within this community.

1 Introduction
Deep neural networks (DNNs) are adept at addressing challenging problems in various areas, such as
Computer Vision (CV) [24] and Natural Language Processing (NLP) [29, 10]. Due to their success,
systems based on DNNs are widely deployed in the physical world and their safety and security is
a critical matter [3, 4, 7].

One example of a safety critical application in the NLP domain is a chatbot’s responsibility to
identify itself as an AI agent, when asked by the user to do so. Recently there has been several pieces
of legislation proposed that will enshrine this requirement in law [14, 15]. For the chatbot to be
compliant with these new laws, the DNN, or the subsystem responsible for identifying these queries,
must be 100% accurate in its recognition of the user’s question. Yet, in reality the questions can
come in different forms, for example: “Are you a Robot?”, “Am I speaking with a person?”, “Hey,

∗Large portion of work undertaken whilst at University of Edinburgh

N. Narodytska, G. Amir, G. Katz and O. Isac (eds.), FoMLAS2023 (Kalpa Publications in Computing, vol. 16),
pp. 59–70



ANTONIO: Generating NLP Benchmarks for Verification Casadio, M et al.

Figure 1: An example of ϵ-balls (left), convex-hull (centre) and hyper-rectangle (right) in 2-dimensions.
The red dots represent sentences in the embedding space from the training set belonging to one class,
while the torquoise dots are embedded sentences from the test set belonging to the same class.

are you a human or a bot?”. Failure to recognise the user’s intent and thus failure to answer the
question correctly can have legal implications for the chatbot designers [14, 15].

The R-U-A-Robot dataset [9] was created with the intent to study solutions to this problem, and
prevent user discomfort or deception in situations where users might have unsolicited conversations
with human-sounding machines over the phone. It contains 6800 sentences of this kind, labelled as
positive (the question demands identification), negative (the question is about something else) and
ambiguous. One can train and use a DNN to identify the intent.

How difficult is it to formally guarantee the DNN’s intended behaviour? The state-of-the-art
NLP technology usually relies on transformers [30] to embed natural language sentences into vector
spaces. Once this is achieved, an additional medium-size network may be trained on a dataset that
contains different examples of “Are you a Robot?” sentences. This second network will be used to
classify new sentences as to whether they contain the intent to ask whether the agent is a robot.

There are several approaches to verify such a system. Ideally we would try to verify the whole
system consisting of both the embedding function and the classifier. However, state-of-the-art
transformers are beyond the reach of state-of-the-art verifiers. For example the base model of
BERT [6] has around 110 million trainable parameters and GPT-3 [18] has around 175 billion
trainable parameters. In contrast, the most performant neural network verifier AlpaBetaCrown [31]
can only handle networks in the range of a few hundred of thousand nodes. So, verification efforts
will have to focus on the classifier that stands on top of the transformer.

Training a DNN with 2 layers on the R-U-A-Robot dataset [9] gives average accuracy of 93%.
Therefore there is seemingly no technical hurdle in running existing neural network verifiers on it [12, 27,
31]. However, most of the properties checked by these verifiers are in the computer vision domain. In
this domain, images are seen as vectors in a continuous space, and every point in the space corresponds
to a valid image. The act of verification guarantees that every point in a given region of that space is
classified correctly. Such regions are identified as “ϵ-balls” drawn around images in the training dataset,
for some given constant ϵ. Despite not providing a formal guarantee about the entire space, this result
is useful as it provides guarantees about the behaviour of the network over a large set of unseen inputs.

However, if we replicate this approach in the NLP domain, we obtain a mathematically sound
but pragmatically useless result. This is because, unlike images, sentences form a discrete domain,
and therefore very few points in the input space actually correspond to valid sentences. Therefore,
as shown in Figure 1, it is highly unlikely that the ϵ-balls will contain any unseen sentences for values
of ϵ that can actually be verified. And thus, such verification result does not give us more assurance
than just measuring neural network accuracy!

There is clearly a need in a substantially different methodology for verification of NLP models.
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Our proposal is based on the following observations. On the verifier side, the state-of-art tools based
on abstract interpretation are still well-suited for this task, because they are flexible in the definition
of the size and shape of the input sub-space that they verify. But considerable effort needs to be
put into definitions of subspaces that actually make pragmatic sense from the NLP perspective. For
example, as shown in Figure 1, constructing a convex hull around several sentences embedded in
the vector space has a good chance of capturing new, yet unseen sentences.

Unfortunately, calculating convex hulls with sufficient precision is computationally infeasible for
high number of dimensions. We resort to over-approximating convex hulls with “hyper-rectangles”,
computation of which only takes into consideration the minimum and maximum value of each
dimension for each point around which we draw the hyper-rectangle. There is one last hurdle to
overcome: just naively drawing hyper-rectangles around some data points gives negative results, i.e.
verifiers fail to prove the correctness of classifications within the resulting hyper-rectangles.

There is no silver bullet to overcome this problem. Instead, as we show in this paper, one
needs a systematic methodology to overcome this problem. Firstly, we need methods that refine
hyper-rectangles in a variety of ways, from the standard tricks of reducing dimensions of the embed-
ding space and clustering, to geometric manipulations, such as hyper-rectangle rotation. Secondly,
precision of the hyper-rectangle shapes can be improved by generating valid sentence perturbations,
and constructing hyper-rectangles around (embeddings of) perturbed, and thus semantically similar,
sentences. Finally, based on the refined spaces, we must be able to re-train the neural networks
to correctly fit the shapes, and this may involve sampling based on adversarial attacks within the
hyper-rectangles. This final step is in line with other literature in this domain; an approach that
couples verification with property-driven training is also known as continuous verification [13, 5, 28].

The result is a comprehensive library that contains a toolbox of pre-processing and training
methods for verification of NLP models. We call this tool ANTONIO - Abstract domaiN Tool fOr
Nlp verIficatiOn (see Figure 2). Although in this tool paper, we evaluate the results on just one
R-U-A-Robot dataset, the methodology and libraries are completely general, and should work for
any NLP dataset and models of comparable sizes. We envisage that this work will pave the way
for including NLP datasets and problems as benchmarks into DNN verification competitions and
papers, and more generally we hope that it will make NLP problems more accessible to the neural
network verification community.

2 ANTONIO and Existing Trends in NLP Verification
This paper expands upon the area of NLP verification, this is a nascent field which has only just
recently started to be explored.

In their work Zhang et al. [37] present ARC, a tool that certifies robustness for word level substi-
tution in LSTMs. They certify robustness by computing an adversarial loss and, if the solution is <
0, then they prove that the model is robust. However, this tool has limitations such as it certifies only
LSTMs that are far below the current state-of-the-art for NLP in terms of size, it uses word embeddings
and it is dataset dependant. Huang et al. [11] verify convolutional neural networks using Interval Bound
Propagation (IBP) on input perturbations. However, they only study word synonym and random char-
acter replacements on word embeddings. Ye et al. [35] focus on randomised smoothing for verification
of word synonym substitution. This approach allows them to be model-agnostic, however they are still
limited by only 1 type of perturbation and word/sub-word embeddings. Lastly, Shi et al. [25] propose a
verification method for transformers. However, their verification property is ϵ-ball robustness and they
only demonstrate their method on transformers with less than 3 layers claiming that larger pre-trained
models like BERT are too challenging, thus the method is not usable in real life applications.

We can see that although new approaches are being proposed, we have yet to have a consensus
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NLP Data Set
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Figure 2: Flow-chart for the tool ANTONIO, showing five main blocks of methods: 1. NLP attacks
(“data set curation"); 2. geometric pre-processing of data, 3. definition of suitable verifiable regions
(“transformations"), 4. training models using adversarial training relative to different kinds of attacks,
and 5. evaluation of success rates achieved by verifiers and attackers for the trained models.

on how to approach the verification, and more importantly scalability is a huge issue. This dictated
our exploration of different verification spaces and our focus on filter models as a useful real world
verification opportunity. Geometric shapes, and especially ϵ-balls and ϵ-cubes, are widely used
in verification for computer vision to certify robustness properties. In NLP, the aforementioned
verification approaches also make use of intervals and IBP, abstract interpretation [37, 11, 35] and
ϵ-ball robustness on word/sub-word embeddings. However, to the best of our knowledge, there is
no previous work on geometric/semantic shapes on sentence embeddings.

Table 4 summarises differences and similarities of the above NLP verification approaches. Despite
their diversity, most NLP verification approaches make use of a similar methodological pipeline:

• Generate “semantic” perturbations on sentences (e.g. the IBP papers tend to use word synonym
substitutions, ANTONIO does word, character and sentence level perturbations).

• Embed them into continuous spaces (the cited IBP papers use the word embedder GloVe [22],
ANTONIO uses more modern Sentence-BERT [23]).

• Use geometric bounds (literally bounds in IBP papers or “hyper-rectangles” of different kinds
in ANTONIO) to:

– Verify the networks’ behaviour within those geometric bounds (IBP papers use IBP
algorithms to do it, ANTONIO uses off-the shelf tools Marabou and ERAN) and

– Influence neural network training within those input regions. (Custom algorithm is used
in IBP papers, ANTONIO uses PGD on defined input space regions).
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Method Datasets NLP
attacks

Embeddings Models Training
algo-
rithm

Verification
algorithm

ANTO
NIO

RUA
Robot,
Medical

General
purpose:
char, word
and sen-
tence per-
turbations

Sentence:
Sentence-
BERT

Works with
any model
handled by
the verifier

PGD-
based

Works with
any SoA
verifier
(Marabou,
ERAN)

Jia et al.
(2019)

IMDB,
SNLI

Word sub-
stitution

Word:
GloVe

LSTM,
attention-
based, CNN,
BoW (2 and
3 layers)

IBP-
based

IBP-based

Huang et
al. (2019)

AGNews,
STT

Char and
word sub-
stitution

Word:
GloVe

CNN (3 and
4 layers)

IBP-
based

IBP-based

Shi et al.
(2020)

YELP,
STT

ϵ-ball Word: not
specified

Transformers
(max 3 layers)

- Abstract
interpretation-
based

Zhang et
al. (2021)

IMDB,
STT,
STT2

Word per-
turbations

Word: not
specified

LSTM IBP-
based

IBP-based

Table 1: Summary of the main features of the existing NLP verification approaches. In bold are
SoA methods.

In the cited IBP papers, the main purpose is to develop a new tailored IBP based method that
works for NLP. In it, input region definition is an internal feature of the new IBP algorithms for
verification and training. In contrast, in ANTONIO we deliberately disentangle the issues of algorithm
design and the problem of input region analysis. This allows us to use state-of-the-art verifiers and
training algorithms in a modular fashion; and opens a way for generating benchmarks uniformly.

To contrast to verification literature, there is a wide body of work on improving adversarial
robustness of NLP systems [36, 32, 33, 16, 38, 39, 8]. The approaches previously mentioned make
use of data augmentation and adversarial training techniques. ANOTNIO in the future could be
extended with diverse sets of attacks for its defined input regions.

3 ANTONIO’s Overall Design
We now outline the design of the tool ANTONIO (github.com/ANTONIONLP/ANTONIO). AN-
TONIO covers every aspect of the NLP verification pipeline, as shown in Figure 2. It is modular,
meaning that you can modify or remove any part of the NLP verification pipeline, which usually
consists of the following steps:

1. selecting an NLP data set and embedding sentences into vector spaces;
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Figure 3: A 2-dimensional representation of the original data (left) and its eigenspace rotation (right).

2. generating attacks (word, charcter, sentence attacks) on the given sentences, in order to use
them for data augmentation, training, or evaluation;

3. standard machine learning curation for data (e.g. dimensionality reduction) and networks
(training, regularisation);

4. verification, that usually comes with tailored methods of defining input and output regions
for networks.

ANTONIO is designed to provide support at all of these stages (detailed below):

Dataset Here we experiment with the R-U-A-Robot dataset, however the user can pick any NLP
dataset that can be used for classification.

Semantic attacks and dataset curation ANTONIO can create additional augmented datasets
by perturbing the original sentences. By incorporating state-of-the-art attacks by [19, 34], ANTONIO
implements several character-level, word-level, and more sophisticated sentence-level perturbations
that can be mixed and matched to create the augmented datasets. Examples of character and word
level perturbations can be found in Tables 2 and 3.

Dataset preparation This block can be considered as geometric data manipulations. First of
all, we need an embedding function. ANTONIO utilises SentenceBERT [23] as a sentence embedder.
The model implemented within ANTONIO produces embeddings in 384 dimensions. The user can,
however, substitute SentenceBERT with any embedding function they prefer. The original part of
ANTONIO implements data rotation to help the hyper-rectangles to better fit the data (as shown
in Figure 3). Lastly, we use PCA for dimensionality reduction [21]. This helps verification algorithms
to reduce over-approximation and speeds up training and verification by reducing the input space.
These last two data manipulations can be arbitrarily omitted or modified and the user can insert
other manipulations of their choices that might help.

Hyper-rectangles The original core of ANTONIO as a tool is the code producing hyper-rectangles
for given sentences (and their semantic attacks). We implemented several ways to create and refine the
hyper-rectangles to increase their precision. Figure 4 (left) shows how a naive hyper-rectangle, that
contains all the inputs from the desired class, might also contain inputs from the other class. That is
why we implemented a method to shrink the hyper-rectangle to exclude the undesired inputs (centre)
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Method Description Original sen-
tence

Altered sentence

Insertion A character is randomly selected
and inserted in a random position.

Are you a robot? Are yovu a robot?

Deletion A character is randomly selected
and deleted.

Are you a robot? Are you a robt?

Replacement A character is randomly selected
and replaced by an adjacent
character on the keyboard.

Are you a robot? Are you a ronot?

Swapping A character is randomly selected
and swapped with the adjacent
right or left character in the word.

Are you a robot? Are you a rboot?

Repetition A character in a random position
is selected and duplicated.

Are you a robot? Arre you a robot?

Table 2: Character-level perturbations: their types and examples of how each type acts on a given
sentence from the R-U-A-Robot dataset [9]. Perturbations are selected from random words that have
3 or more characters, first and last characters of a word are never perturbed.

Method Description Original sen-
tence

Altered sentence

Deletion Randomly selects a word and
removes it.

Can u tell me if you
are a chatbot?

Can u tell if you
are a chatbot?

Repetition Randomly selects a word and
duplicates it.

Can u tell me if
you are a chatbot?

Can can u tell
me if you are a
chatbot?

Negation Identifies verbs then flips them
(negative/positive).

Can u tell me if
you are a chatbot?

Can u tell me
if you are not a
chatbot?

Singular/ plu-
ral verbs

Changes verbs to singular form,
and conversely.

Can u tell me if
you are a chatbot?

Can u tell me if
you is a chatbot?

Word order Randomly selects consecutive
words and changes the order in
which they appear.

Can u tell me if
you are a chatbot?

Can u tell me if
you are chatbot a?

Verb tense Converts present simple or contin-
uous verbs to their corresponding
past simple or continuous form.

Can u tell me if
you are a chatbot?

Can u tell me if
you were a chatbot?

Table 3: Word-level perturbations: their types and examples of how each type acts on a given sentence
from the R-U-A-Robot dataset [9] .
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Figure 4: An example of hyper-rectangle (left), shrunk hyper-rectangle (centre) and clustered
hyper-rectangles (right) in 2-dimensions. The red dots represent sentences in the embedding space
of one class, while the blue dots are embedded sentences that do not belong to that class.

and a method for clustering and generating multiple hyper-rectangles around each cluster (right).
Furthermore, to increase precision, ANTONIO can create a third type of hyper-rectangles (Figure 2
(3C)) by attacking the inputs (as described in the data augmentation part) and then drawing the hyper-
rectangles around each input and its perturbations. Finally, for comparison purposes, we also imple-
mented the creation of ϵ-cubes. These hyper-rectangles will be used both for training and verification.

Training We implemented three methods for training: base training, data augmentation, and
adversarial training The base models are trained with a standard cross-entropy loss on the original
dataset. The data augmentation models are still trained with a standard cross-entropy loss but on
the augmented datasets. For adversarial training, instead, we are using Projected Gradient Descent
(PGD) [17] to calculate the worst case perturbation for each input on each epoch and we are adding
those perturbations when calculating the loss. Usually, PGD perturbations are projected back into
the given ϵ-cube. ANTONIO projects within the given hyper-rectangles instead. The user can choose
any combination of training methods, hyper-rectangles, and attacks to train the models or they can
implement new ones as well. Section 4 will illustrate this modular usage of the tool.

Evaluation and Verification For the evaluation, ANTONIO implements mainly three metrics.
Firstly it simply calculates the standard accuracy of the model, as it is important to not have a
significant drop in accuracy when you train a model for robustness. Secondly, it computes robustness
to attack (accuracy on adversarial test samples), which is obtained by generating several perturbations
of the test set and by calculating accuracy on those. Finally, ANTIONIO calculates the percentage
of verified hyper-rectangles. For testting purposes we connected ANTONIO to two state-of-the-art
verifiers: ERAN [27, 26] and Marabou [12]. Thanks to VNN-COMP, the annual neural network
verification competition [20], the community developed common neural network verification standards,
that require ONNX format for neural networks [2] and VNNLIB format for verification queries [1].
ANTONIO automatically performs translation of neural networks into ONNX, and specifications
of hyper-rectangles in Python – into the VNNLIB format. Furthermore, ANTONIO implements
methods for generating queries, retrieving the data and calculating the statistics on them. The user
can connect and use any verification tool that they prefer and also add any other metric of choice.
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Verifier Model H∗
ϵ=0.05 H∗

char H∗
word

Marabou

Nbase 1.79 4.88 11.69
Nϵ=0.05 18.46 21.99 41.93
Nchar−adv 7.37 30.41 41.93
Nword−adv 12.17 25.82 45.12

ERAN

Nbase 0.00 0.87 1.80
Nϵ=0.05 0.12 4.18 10.16
Nchar−adv 0.00 4.43 8.97
Nword−adv 0.04 4.05 10.75

Table 4: Example how ANTONIO-generated networks and input shapes form a uniform benchmark
for two verifiers.

4 Example of Benchmarking with ANTONIO

We now show how to use ANTONIO for verification benchmarking, using the R-U-A-Robot dataset
as an example.

Following the pipeline described in Section 3, ANTONIO generates a set of character, word and
sentence perturbations for the dataset, by perturbing each sentence several times in turn. Tables 2
and 3 show how, given one sentence and one type of perturbation, one forms a set of perturbed
sentences. ANTONIO keeps different types of perturbations separately. We obtain, per each sentence,
three sets of its perturbed variants, one per each perturbation type.

ANTONIO embeds these sentences into a vector space, and performs the geometric transfor-
mations, such as data rotation and dimensionality reduction. Then, for each perturbation type,
ANTONIO creates one hyper-rectangle per each original sentence. The hyper-rectangle covers the
original sentence and its n perturbations. ANTONIO collects all such hyper-rectangles for the
given set of sentences. We call the resulting sets of hyper-rectangles H∗

char and H∗
word, H∗

sentence,
depending on the perturbation type. Similarly, it also creates a set of ϵ-cubes (denoted H∗

ϵ=0.05), based
on the L∞ distance, and ignoring any knowledge of semantic perturbations. Finally, ANTONIO
trains a baseline network (Nbase) and four adversarial networks (Nϵ=0.05, Nword−adv, Nchar−adv,
Nsentence−adv ) trained using PGD on, respectively, H∗

ϵ=0.05, H∗
word, H∗

char, H∗
sentence. Having made

these preparations, ANTONIO forms a set of verification challenges, to verify the given networks and
the input space covered by H∗

ϵ=0.05, H∗
char, H∗

word and H∗
sentence. At this point, the automatically

generated neural networks in ONNX format and the verification conditions defining the desirable
shapes in VNNLib format can be given to any verifier participating in VNN-COMP. Table 4 shows
the results for Marabou and ERAN, the 2 verifiers that we tested with ANTONIO already. But this
list can be easily extended. For brevity, we note the results presented (Table 4) are just a snapshot
of what ANTONIO is capable of, and we omit experiments done on sentence perturbations.
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