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Abstract

In our ongoing project VeriTaS, we aim at automating soundness proofs for type sys-
tems of domain-specific languages. In the past, we successfully used previous Vampire
versions for automatically discharging many intermediate proof obligations arising within
standard soundness proofs for small type systems. With older Vampire versions, encoding
the individual proof problems required manual encoding of algebraic datatypes via the
theory of finite term algebras. One of the new Vampire versions now supports the direct
specification of algebraic datatypes and integrates reasoning about term algebras into the
internally used superposition calculus.

In this work, we investigate how many proof problems that typically arise within type
soundness proofs different Vampire 4.1 versions can prove. Our test set consists of proof
problems from a progress proof of a type system for a subset of SQL. We compare running
Vampire 4.1 with our own encodings of algebraic datatypes (in untyped as well as in typed
first-order logic) to running Vampire 4.1 with support for algebraic datatypes, which uses
SMTLIB as input format. We observe that with our own encodings, Vampire 4.1 still
proves more of our input problems. We discuss the differences between our own encoding
of algebraic datatypes and the ones used within Vampire 4.1 with support for algebraic
datatypes.

1 Introduction
VeriTaS [3, 6] is a Scala library under development for the specification and automated verifica-
tion of statically typed domain-specific languages. VeriTaS shall achieve automated verification
of type soundness by combining automated domain-specific proof strategies with existing au-
tomated theorem provers. To this end, VeriTaS will on the one hand provide concrete domain-
specific proof strategies for proving progress and preservation properties of type systems [9] as
well as an infrastructure for facilitating the development of further domain-specific proof strate-
gies. On the other hand, VeriTaS already provides an infrastructure for structuring complicated
proofs in several independent smaller proof problems, for encoding these proof problems into the
input formats of automated theorem provers (ATPs) and SMT solvers, and for calling different
ATPs to verify these individual proof steps.

Previous versions of VeriTaS translated a core specification language with algebraic datatypes
and recursive functions to TPTP [11], encoding algebraic datatypes by axiomatizing term al-
gebras. In previous work, we describe the details of this translation [5]. Our case studies so far
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showed that Vampire [8] is well able to prove individual proof steps from progress and preser-
vation proofs automatically [4], as well as proof goals for exploring language specifications [5],
such as goals that test the concrete behavior of a type system for specific programs. On the
other hand, we also frequently ran into seemingly trivial proof problems that previous Vampire
versions could not prove, even with a high timeout.

One hypothetical reason for encountering such situations could be our external encoding
of algebraic datatypes, which may not be optimal with regard to the search heuristics that
Vampire 4.1 employs internally. The most recent version of Vampire 4.1 now includes internal
support for algebraic datatypes [7], where reasoning about term algebras is integrated into the
superposition calculus. This version allows using the SMTLIB format (version 2.6)1 as input,
which contains constructs for directly specifying algebraic datatypes. Kovács, Robillard and
Voronkov [7] show that this new Vampire 4.1 variant can solve many proof problems with
algebraic datatypes which previously, no other prover could solve. Hence, it may be that the
new support for algebraic datatypes also proves more of the proof problems we are interested
in.

To investigate whether the new support of Vampire 4.1 for algebraic datatypes proves more of
our proof problems, we use a sample set of proof problems from a progress proof of a type system
for a subset of SQL which we encoded in VeriTaS (Section 2). We implement an automated
encoding of these proof problems into SMTLIB version 2.6. The translation is straightforward,
since our current input format in VeriTaS for type system specifications is conceptionally very
close to SMTLIB. Next, we run Vampire 4.1 with and without internal support for algebraic
datatypes and compare the results (Section 3). Finally, we discuss our observations and our
wishlist for future Vampire versions (Section 4).

2 VeriTaS Infrastructure and Test Specification
VeriTaS The VeriTaS infrastructure is being implemented as a Scala library. Its main compo-
nents are 1) an input format for type system specifications, 2) a compiler family which enables
using different compilation strategies for translating from our input format for type system spec-
ifications to the input format of automated theorem provers, 3) a proof graph infrastructure
conceptionally based on previous work on proof planning [10] for structuring and visualizing
type soundness proofs, and 4) tactics and domain-specific strategies for automatically generating
proof graphs from a type system specification (under development, and not in the scope of this
paper). VeriTaS is available at github via https://github.com/stg-tud/type-pragmatics/
tree/master/Veritas. The main work we describe in this paper is available in the dev-smt
branch (https://github.com/stg-tud/type-pragmatics/tree/dev-smt/Veritas).

Our input format for type system specifications is currently implemented as an embedded
DSL. This embedded DSL allows for specifying the syntax of a language via closed algebraic
datatypes, the dynamic semantics (reduction semantics) of the language via simple recursive,
immutable functions, and the static semantics (type system) as well as properties to prove via
typing rules and formulas. In a previous publication, we thoroughly describe our input format
and different variants of how we translate the format to untyped and typed first-order logic
([5]), where we encode algebraic datatypes ourselves by generating axioms which describe the
respective term algebras.

We structure and visualize proofs via proof graphs, which is a variant of proof trees from
Richardson et al. [10]. Proof graphs are directed, acyclic graphs (DAGs). We use DAGs instead

1http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-draft-2017-06-05.pdf
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of trees to avoid redundant proof nodes, since some lemmas might be used in several parts of a
type soundness proof. A node in a proof graph is an individual proof problem (consisting of a
set of specification axioms and a single goal to be proven from the specification axioms). That
is, each node can be translated separately into an input problem for an external prover. Each
node either has no children (i.e. is a leaf node), which means that the corresponding proof
problem should be directly provable from the given specification axioms, or it has one or more
children, which are sub-goals that are required for proving the parent goal and will be included
as lemmas into the specification of the input problem that is generated for the parent node. A
root node (i.e. a node of a proof graph that does not have any parents) specifies a theorem.
Each node is associated with a tactic that describes how the parent goal can be proven from its
direct sub-goals (e.g. via induction, via case distinction). Leaves typically just have the basic
“Solve” tactic associated, which simply sends the proof problem as is (i.e. without adding any
additional lemmas) to a prover. A node is marked as verified if 1) all its children are marked
verified and 2) the step from the children to the parent is marked verified.

SQL test specification For the present work, we use a type system specification described
in one of our previous publications [5]: The language we model is a small subset of SQL,
consisting of basic table values, simple select ... from ... where ... queries without
joins and Cartesian products (i.e. combinations of table selection (of table rows) and projection
(of table columns)), and queries for forming the union, intersection, and difference of two tables
with the same table schema. We specify a small-step reduction semantics which reduces queries
in small steps to table values (i.e. the final tables). The semantics may get stuck if it is has to
perform an operation that is not possible with the currently given table, e.g. if it has to access
a named column that does not exist within the current table. Furthermore, we augment the
subset of SQL with a static type system, which type-checks a given query by checking whether
the operations to be executed correspond to the typed table schemas of the original tables and
all the intermediate tables implicitly created by a query.

For this type system, we prove progress, which is one of two standard soundness properties
from the type system literature (e.g. Pierce [9]). Intuitively, progress says that if a query can
be typed, it is either already a table value (with a well-typed table), or the reduction semantics
can reduce the query at least one step further without getting stuck. We described the property
and the progress proof in a previous publication at the Vampire workshop [4].

3 Comparison of Different Vampire Versions

3.1 Setup

The SQL progress proof overall consists of 32 goals which we transform into the corresponding
proof problems. For this transformation, we apply various steps successively, as described in
our previous work [5]. Here, we briefly highlight one of them: Firstly, we eliminate universally
quantified variables that appear in premises of implications and are refined by equations by
inlining them. For example, a formula of the shape ∀v a. v = f(a) =⇒ p(v) becomes
∀a. p(f(a)). Our previous empirical study [5] showed that this often increases the probability
of proving our particular input problems. For the generated input problems we try to find
proofs with the provers Vampire 4.1 using TPTP [11] FOF encoding (untyped first-order logic),
Vampire 4.1 using TPTP TFF encoding (typed first-order logic), Vampire 4.1 with support
for reasoning about term algebras (-tar option) and VampireZ3 4.1 with the -tar option. For
the latter two Vampire versions, we translate our input problems to SMTLIB 2.6. The main
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difference between the problems encoded in TPTP and the problems encoded in SMTLIB is
the encoding of closed algebraic datatypes: For the TPTP encodings, we add axioms that
describe the corresponding term algebras for each closed algebraic datatype. These axioms are
mostly just like the ones also used internally in Vampire 4.1 with the -tar option [7]. When
using SMTLIB, we simply translate our original closed algebraic datatypes syntactically to
corresponding constructs in SMTLIB. We discuss some of the finer differences in Section 4.
We call all provers in casc mode and additionally Vampire 4.1 and VampireZ3 with support
for term algebraic reasoning with the -tar option and with --input_syntax smtlib2 to support
the usage of SMTLIB as an input format. We leave the acyclicity axioms off, since we do not
require them within our proof problems. We call the provers with increasing timeouts (5s, 10s,
30s, 90s, 120s) for each input problem. If a proof is found, we stop looking at other timeouts
for the current combination of input problem and prover.

We execute all prover calls on a MacBook Pro with an Intel Core i7, 2,9 GHz and 8GB
RAM.

3.2 Results
Table 1 lists the full results for all 4 prover variants and the 32 input problems. The name
of each problem reveals the role of each input problem within the overall progress proof: The
top-level goal is called SQL-Progress. We prove it via structural induction. Whenever we prove
a goal via induction, we attach -icaseN to its name, where N is the number of the induction
case. If we prove an input problem via case distinction, we further attach -caseM to the name
of the input problem for each case M. We visualize the corresponding proof graph in Figure2.

We call different Vampire 4.1 versions for each of these proof problems. For each call, we
list the status of the prover in Table 1. If an input problem was proven, we also list the time
reported by the prover. Note that one has to take the prover times with a grain of salt, since
the prover calls were not executed in a benchmarking environment. However, executing the
same calls several times does not yield significantly different prover times.

Out of the 32 input problems, Vampire 4.1 without support for reasoning about term alge-
bras (Vampire 4.1 FOF and Vampire 4.1 TFF) found 23 proofs. Vampire 4.1 with support for
reasoning about term algebras (Vampire 4.1 tar SMTLIB) as well as VampireZ3 (VampireZ3 4.1
tar SMTLIB) found 15 proofs for the given maximum timeout of 120 seconds. An interesting
observation is that whenever one of Vampire 4.1 FOF and Vampire 4.1 TFF found a proof, the
other version was also able to find a proof within 120 seconds. The same holds for Vampire 4.1
tar SMTLIB and VampireZ3 tar SMTLIB.

The first general observation we can make is that the provers with support for reasoning
about term algebras are almost always slower when trying to find a proof for a given input
problem than the other provers which have no support for reasoning about term algebras.2
Next, we can say that if provers without reasoning about term algebras could not find a proof
for the maximum timeout of 120 seconds the provers with support about term algebras could
not find a proof as well.

An interesting observation is that there are input problems for which the prover times of
Vampire 4.1 FOF and Vampire 4.1 TFF differ considerably: For the input problems textttSQL-
Progress-icase2-case0, SQL-Progress-icase3-case0, and SQL-Progress-icase4-case0, Vam-

2In our very first experiments for this work, the SMTLIB encodings lacked one group of axioms compared to
the TPTP encodings (these axioms had nothing to do with the axioms generated for algebraic datatypes in the
TPTP encodings). With this difference, we first occasionally observed faster prover times with the Vampire 4.1
tar support. Later, we noticed this difference and added the missing set of axioms to the SMTLIB encodings,
which yielded the current results.
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Figure 1: Prover status and time for a given input problem and prover

pire 4.1 FOF proves each problem within approximately one second and Vampire 4.1 TFF re-
quires more than 60 seconds. For the proof problem projectCols-progress-icase1 it is the
other way around: Vampire 4.1 TFF needs less than a second to find a proof while Vampire
4.1 FOF can only find a proof after about 63 seconds.

Figures 2 and 3 show the visualized proof graphs after trying to find a proof for every input
problem generated by the goals contained within the proof graph. The boxed nodes represent
the individual proof goals of the problem, the diamond-shaped ones the tactics associated with
each proof problem (i.e. the individual proof step for proving a parent node, assuming that
all child goals are true). We visualize the prover stati from Figure 1 via border colors: A
green border represents a proved problem, a red one represents an inconclusive status. For
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Figure 2: Visualization of proof graph after proving the single steps with Vampire 4.1 FOF/TFF.

our purposes here, the colors of the diamond-shaped nodes are the interesting ones - they
directly correspond to the stati from Figure 1. Note that in our evaluation, we ignored the
nodes arising from the diamond-shaped nodes labeled StructuralInduction: These input
problems would require verifying the application of a scheme for structural induction, which
Vampire cannot do so far (induction being a higher-order reasoning technique, not a first-order
reasoning technique).

As said previously, we could not observe any differences regarding prover stati between
Vampire 4.1 FOF and Vampire 4.1 TFF, or between Vampire 4.1 tar SMTLIB and VampireZ3
4.1 tar SMTLIB, hence the respective proof graphs look alike and we depict only one graph for
Vampire 4.1 FOF/TFF (Figure 2) and one for Vampire/VampireZ3 4.1 with support for term
algebra reasoning (Figure 3).

We observe that for most of the induction cases arising from structural induction, Vampire
4.1 without support for reasoning about term algebras could prove the base cases (-icase0,
except for top-level induction) as well as the step cases (-icase1, except for top-level induction).
Vampire 4.1 with support for reasoning about term algebras found only proofs for the base cases.
We can see examples of this observation in lemmas successfulllookup, welltypedlookup, and
filterRowsPreservestable (left side of the proof graphs).

When looking at the proofs of the structurally similar induction cases for the three set
queries (SQL-Progress-icase2 - SQL-Progress-icase4), we can observe that Vampire 4.1
without support for reasoning about term algebras could find proofs for the subcases within
the set queries (SQL-Progress-icaseN-case0, N from {2,3,4}), while the two Vampire 4.1
versions with support for reasoning about term algebra were not able to find proofs for these
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Figure 3: Visualization of proof graph after proving the single steps with Vampire/VampireZ3
4.1 with support for term algebra reasoning.

cases. Provers with and without support for term algebra reasoning were able to find proofs for
the top-level set case distinction input problems (proving SQL-Progress-icaseN with N from
{2,3,4}, from assuming the sub-cases).

4 Discussion

The only crucial difference between our own encoding of algebraic datatypes to untyped logic
and our own encoding of algebraic datatypes to typed logic lies in the presence of the domain
closure axiom: Suppose we have a closed algebraic datatype for lists containing elements of
type A:

datatype AList = n i l | cons ( head : A, t a i l : AList )

To axiomatize this datatype, we would firstly add an axiom stating nil is never equal to any
term of the form cons(h, t) (distinctness axiom). Secondly, we would add an axiom stating
that all terms of the form cons(h, t) are equal to each other if the corresponding arguments
are equal (injectivity axiom) [7, 5]. All of our own encodings of algebraic datatypes as well as
the encoding used internally by Vampire 4.1 with support for term algebraic reasoning contain
these axioms.

For completeness, you would need to add a domain closure axiom, which is also added
internally by Vampire 4.1 with the -tar option [7]:
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∀al : AList. al = nil ∨ (∃a : A, ar : AList. al = cons(a, ar))

We add domain closure axioms for all datatypes when encoding our input problems to typed
logic, but not when encoding to untyped logic. There, we omit the domain closure axioms since
we apply full type erasure. Full type erasure is sound in our setting, since all of the types we use
either always have an infinite domain or, in the case of underspecified datatypes, are explicitly
axiomatized to have an infinite domain (see our own previous work [5] for further explanation
on this, which is based on work by Claessen et al. [2] and Blanchette et al. [1]). The domain
closure axiom in our example then becomes

∀al. al = nil ∨ (∃a, ar. al = cons(a, ar))

Although this axiom is not unsound, we judged it to be unintuitive and hence removed it
from our input problems. Removing the axiom cannot introduce any inconsistencies, but could
theoretically lead to incompleteness: Without the domain closure axiom, the prover might not
be able to create certain new clauses during the proof search.

However, in our particular proof problems, we so far could not detect any major differences
between including or not including domain closure axioms regarding whether a prover is able to
prove an input problem or not (see also the first two result columns of Figure 1, which confirms
this for our set of test problems). This may be since coincidentally, the particular problems we
used do not require domain closure axioms to be proven. Having fewer axioms over all in the
proof problem could be a valid explanation for the differences we observed regarding Vampire
4.1 with untyped logic and Vampire 4.1 with support for term algebraic reasoning. Still, we
emphasize that our encoding to typed logic does include domain closure axioms just like the
ones internally used by Vampire 4.1 -tar, but we nevertheless observed that Vampire 4.1 using
typed logic with our own encoding of algebraic datatypes proved more proof problems than
Vampire 4.1 with support for term algebraic reasoning. Hence, it seems unlikely that including
or not including domain closure axioms explains the differences we observed.

Another more likely explanation for the differences we observed may be the strategy portfolio
used within the different Vampire versions: The strategies and options used on input problems
are in general “hidden” from the outside user who typically simply employs the casc mode.
However, which strategies and options are used first or used at all severely influences whether
the prover finds a proof to a problem or not. For instance, older Vampire versions such as
Vampire 3.0 would prove even more of our input problems than Vampire 4.1 (e.g. the remaining
set cases SQL-Progress-icase2-case1, SQL-Progress-icase2-case2 etc.) were proven by
Vampire 3.0 [4]). The most likely explanation here is that the casc mode of Vampire 3.0
contained a different strategy portfolio than the one of Vampire 4.1. Similarly, the portfolio
used by Vampire 4.1 may not (yet) work as well with the internal support for reasoning on term
algebras. Finally, the differences we observed may also arise from the computation of the final
proof, which we typically query as well.

In summary, even after careful analysis we could not find any difference between our own
encodings and the one used internally by Vampire 4.1 with support for reasoning about term
algebras which would explain the differences we observed. The differences may arise from
different strategy portfolios. Comparing more input problems and further work on the encodings
may shed some light on the issue.

Wishlist for future Vampire versions Overall, from our perspective as Vampire users,
we have three items on our personal wishlist which arose from the experiments conducted
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for this article as well as our previous experience with Vampire: Firstly, we believe it would
be very helpful if Vampire users were able to train their custom modes using a set of input
problems instead of relying on the casc mode. Secondly, we think it would be very useful if
the support for reasoning with term algebras would be further improved so that more input
problems can be solved. We think that internally supporting reasoning with term algebras is
very useful for external Vampire users, notably from the programming languages community,
who should not have to consider “low-level” issues such as how exactly an algebraic datatype
should be axiomatized and whether a domain closure axiom is needed in their case or not (which
might heavily influence prover performance). Thirdly, it would be very useful if Vampire also
internally supported simple structural induction on algebraic datatypes. Since we sometimes
observed that Vampire was well able to prove all induction cases of a lemma whose proof
requires structural induction, the only missing step for automatically proving the entire lemma
here would be to also apply structural induction automatically first. Hence, adding structural
induction along with appropriate heuristics when to apply it could further increase the number
of problems that Vampire can solve.
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