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Abstract

Quantitative verification techniques offer an effective means of computing performance
and reliability properties for a wide range of systems. In many cases, it is necessary to
perform repeated analyses of a system, for example to identify trends in results, determine
optimal system parameters or when performing online analysis for adaptive systems. We
argue the need for incremental quantitative verification techniques which are able to re-
use results from previous verification runs in order to improve efficiency. We report on
recently proposed techniques for incremental quantitative verification of Markov decision
processes, based on a decomposition of the model into its strongly connected components.
We give an overview of the method, describe a number of useful optimisations and show
experimental results that illustrate significant gains in run-time performance using the
incremental approach.

1 Introduction

Many real-world systems include probability, which is employed to quantify the likelihood of
certain events, such as component failure or message loss over a wireless medium, or to obtain
efficient randomised solutions to coordinate distributed systems. Quantitative verification is
an automated method to establish quantitative properties of a system model. In quantitative
probabilistic verification, models are typically variants of Markov chains and properties are
stated in probabilistic temporal logics, which can express performance and reliability properties,
for example, the probability of battery power dropping below minimum, the expected time for
message delivery and the expected number of messages lost before protocol termination. Tools
such as the probabilistic model checker PRISM [25] are widely used in a variety of application
domains, including communication protocols, security and planning.

Quantitative verification for probabilistic systems is an extension of conventional, non-
probabilistic verification, which, in addition to exhaustive exploration of a system model and
graph-based analysis techniques, also requires numerical computation. Typically, this involves
the solution of linear equation systems or linear optimisation problems. Although many effi-
cient techniques exist for this purpose, in practice, since system models are large, computational
performance of verification quickly becomes a crucial issue. Indeed, the development of efficient
and scalable quantitative verification techniques represents one of the major topics of research
in this area.

In this paper, we argue the need for incremental quantitative verification techniques, that
is, those which are able to re-use results from previous verification runs in order to improve
efficiency. Such techniques become particularly important in scenarios where verification needs
to be performed many times and where fast execution times for verification are required. Below,
we describe two specific instances where this is the case.

(i) System parameter exploration. Traditional verification techniques take as input a
Boolean-valued system property, which is either proven to hold or shown to be violated, usually
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with the aid of a counterexample. For quantitative verification of probabilistic systems, prop-
erties are often in a numerical form, i.e., “what is the worst-case probability of battery power
dropping below minimum?” or “what is the maximum expected time for message delivery?”.
Furthermore, it is common to evaluate such properties on a system model for a range of pa-
rameters of that model. This may help to identify erroneous or anomalous system behaviour.
For example, an analysis of the anonymity protocol Crowds [31] demonstrated that, for some
measures of anonymity, the algorithm’s effectiveness decreases as the number of users increases.
It is also common to explore the effect that system parameters have on the overall perfor-
mance or reliability of a system. For example, in the context of randomised algorithm design,
quantitative verification has been used to show that using biased coins can be beneficial for
communication protocols [33, 27] and self-stabilisation algorithms [26]. Although some specific
techniques have been developed for parametric quantitative verification [11, 20, 15], the most
common approach in practice is simply to perform multiple verification runs, motivating the
need for incremental techniques.

(ii) Predictable adaptive software. Adaptive software systems are designed to be able to
react to changes in their environment in order to continuously satisfy their system requirement
specifications. Quantitative verification has been proposed as a key ingredient of the predictable
adaptive software framework of [6, 5], in which requirement specifications include reliability and
Quality of Service properties. Quantitative verification is used repeatedly to analyse a system
model in order to detect when requirements are violated, predict when such violations may
occur and/or to plan self-adaptive actions to remedy the situation. Verification runs need
to be executed many times and also in an online fashion, where a timely response is crucial.
Furthermore, changes in the system model and its parameters are likely to occur gradually, over
time, providing scope for incremental verification to add value. The framework of [6, 5] has
been validated with an implementation based on the PRISM model checker [25], but incremental
techniques have yet to be applied.

We report on research aimed at developing incremental quantitative verification for prob-
abilistic systems initiated in [28]. The focus is on Markov decision processes, a widely used
model that underpins a wide range of systems, including randomised distributed algorithms,
communication protocols and planning. We target scenarios where the probability values for
certain transitions in the model undergo changes, but the underlying graph structure is not
altered. The idea is to re-use results from previous verification runs, based on a decomposition
of the model into its strongly connected components (SCCs). To do so, we build upon existing
SCC-based approaches to the verification of MDPs presented in [7]. We also describe a number
of optimisations that can be used to improve the performance of the SCC-based approach.
We evaluate the effectiveness of our incremental verification techniques on a selection of large
benchmark case studies, illustrating significant gains in run-time.

Related work. In the context of non-probabilistic verification, A variety of incremental tech-
niques have been proposed, e.g., [32, 9, 23], but typically the problems solved (e.g. speeding up
state space generation or model checking of functional properties) are quite different to those
for probabilistic systems.

For the quantitative setting, an alternative approach to the incremental techniques described
in this paper is the run-time probabilistic model checking technique of [15]. This uses discrete-
time Markov chains as system models (which can be seen as a special case of Markov decision
processes) and employs parametric techniques: building a symbolic expression for the required
system property, which can then be evaluated very rapidly for different parameter values. In
related work, run-time approaches to verifying Markov decision process models are considered
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in [14], instead using techniques from control theory.
In fact, the parametric approach to probabilistic verification, as used in [15], is an active area

of research. Calculation of symbolic expressions over system parameters was originally proposed
by Daws [11] and then improved further in [20, 19], both for the case of discrete-time Markov
chains. A closely related problem is the synthesis of the set of parameter values for which a
system model satisfies its specification. Methods have been proposed both for time-bounded
properties of continuous-time Markov chains [21] and also for Markov decision processes [18].

Finally, we also mention the work of [34], which performs verification in a run-time manner,
i.e., by monitoring a system during its execution. This approach is also based on the analysis of
a probabilistic system model (a hidden Markov model), not because the system being verified
is stochastic, but because its state space is only partially observable during monitoring.

2 Quantitative Verification of Markov Decision Processes

We begin with some background material on Markov decision processes and techniques for their
verification.

2.1 Markov Decision Processes

Markov decision processes (MDPs) are widely used to model systems that exhibit both prob-
abilistic and nondeterministic behaviour. Real-life systems are often inherently stochastic, for
example due to the presence of failures, unpredictable delays or randomisation. In addition,
nondeterminism may be essential, for example to capture concurrency, i.e., the possible inter-
leavings of multiple components operating in parallel, or underspecification, where a probability
or other parameter is not known or is not relevant.

Formally, we define MDPs as follows. We letDist(S) denote the set of all discrete probability
distributions over S, i.e., the set of functions µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. An MDP

is then a tuple M = (S, s,Steps, r) where:

• S is a finite set of states,

• s ∈ S is the initial state,

• Steps : S → 2Dist(S) is a probabilistic transition function,

• r : S ×Dist(S)→ R>0 is a reward function.

The transition probability function Steps maps each state s ∈ S to a finite, non-empty set
Steps(s) of probability distributions. There are two steps to determine the successor of a state
s in the MDP: first, a distribution µ is chosen non-deterministically from the set Steps(s);
second, the next state s′ is chosen randomly according to µ, i.e., the probability of moving
to each state s′ is given by µ(s′). For simplicity, we do not include action labels in MDPs.
Distributions are, however, augmented with rewards (sometimes called impulse rewards).

A path in an MDP, representing a possible execution of the system being modelled, is a non-

empty (finite or infinite) sequence of the form: s0
µ0−→ s1

µ1−→ s2 . . . where si ∈ S, µi ∈ Steps(si)
and µi(si+1) > 0 for all i > 0. We use ω(i) to denote the (i+1)th state in the path ω, i.e.,
ω(i) = si, and step(ω, i) is the distribution taken in state ω(i), i.e., step(ω, i) = µi. We let
Paths denote the set of all (infinite) paths starting in state s.

In order to reason formally about the probabilistic behaviour of an MDP M, we require
the notion of adversary (sometimes called strategy, policy or scheduler), which is one possible
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resolution of the nondeterministic choices in M. Formally, an adversary selects an available
distribution in each state based on the history of choices made so far. An adversary A restricts
the behaviour of the MDP to a set of paths PathAs ⊆ Paths. It also induces a probability
space [24] ProbAs over the paths PathAs . We use AdvM to denote the set of all possible adversaries
for M.

2.2 Quantitative Verification of MDPs

Usually, properties to be verified against MDPs are expressed in temporal logics, such as
PCTL [22, 2] and LTL [29]. These logics can also be augmented to specify reward- or cost-based
properties [12, 16]. Performing verification reduces to the computation of a few key properties
of MDPs [10, 2, 12, 16]. The first are minimum or maximum reachability probabilities, i.e., the
minimum or maximum probability that a path through the MDP eventually reaches a state in
some target set F ⊆ S, quantified over all possible adversaries:

pmin
s (F ) = inf

A∈AdvM
pAs (F )

pmax
s (F ) = sup

A∈AdvM

pAs (F )

where:
pAs (F ) = ProbAs ({ω ∈ PathAs | ∃i . ω(i) ∈ F}) .

Secondly, we may require the minimum or maximum expected reward accumulated until target
F ⊆ S is reached:

emin
s (F ) = inf

A∈AdvM
eAs (F )

emax
s (F ) = sup

A∈AdvM

eAs (F )

where:
eAs (F ) =

∫
ω∈PathA

s
rF (ω) dProbAs

and rF (ω) gives, for any path ω ∈ PathAs , the total reward accumulated along ω until a state
in F is reached:

rF (ω) =

{ ∑nF

i=1 r(ω(i−1), step(ω, i−1)) if ∃j . ω(j) ∈ F
∞ otherwise

and nF = min{j |ω(j) ∈ F}.
For simplicity, in the remainder of this paper, we will focus on the case of maximum reach-

ability probabilities, i.e., computing pmax
s (F ), but the techniques described also adapt easily to

minimum probabilities and expected rewards.
Throughout the remainder of the paper, we will assume a fixed MDP M = (S, s,Steps, r)

and target set F . For clarity, we will abbreviate pmax
s (F ) to just pmax

s . We use pmax to denote
the vector of probabilities pmax

s for all states s ∈ S.
Calculation of reachability probabilities (or expected reward values) proceeds in two steps.

The first step, referred to as precomputation, executes an analysis of the underlying graph of
the MDP to identify states that have reachability probabilities of 0 or 1. Second, numerical
computation is performed to determine values for the remaining states; this can be done with
a variety of standard techniques, including value iteration, linear programming and policy
iteration. We describe value iteration in more detail in this section since the other techniques
discussed in the paper depend on it. Details of the other methods can be found in standard
texts on MDPs [30].
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Precomputation. This phase is used to partition the state space S into sets Sno, Syes and S?,
containing states s for which the probability pmax

s is 0, 1 or in (0, 1), respectively. Determining
these sets is performed using an analysis of the underlying graph of an MDP, that is, the actual
probabilities of transition between states are unimportant, only the existence of a transition.
We omit here the precise details of the precomputation algorithms to determine sets Sno, Syes.
See, for example, Section 4.1 of [16] for an explanation.

Value iteration. One commonly used method to compute the probabilities pmax
s for the

remaining states s ∈ S? is to use value iteration, an iterative numerical method which can
approximate the values up to some desired accuracy. In practice, this method is widely used
since it scales well to large MDPs.

Value iteration works by computing a sequence of vectors pmax,k for increasing k. Initially,

i.e., for the case k = 0, we set pmax,0
s to 1 if s ∈ Syes and 0 otherwise. Then, the kth iteration

of computation is defined, for each s ∈ S, as:

pmax,k
s :=


1 s ∈ Syes
0 s ∈ Sno

max
µ∈Steps(s)

∑
s′∈S

µ(s′) · pmax,k−1
s′ s ∈ S?.

(1)

The sequence of vectors pmax,k is guaranteed to converge eventually to pmax. In practice,
though, the computation is terminated when a pre-specified convergence criterion is met. One
common approach is to check that the maximum (absolute) difference between the correspond-
ing elements of successive vectors is below some fixed threshold δ, i.e.:

maxs∈S |pmax,k
s − pmax,k−1

s | < δ.

Another is to check the maximum relative difference:

maxs∈S |(pmax,k
s − pmax,k−1

s )/pmax,k
s | < δ.

A useful optimisation for value iteration is the so-called Gauss-Seidel variant of the algorithm.
This increases the rate of convergence of the computation by using the most up-to-date prob-
ability values that are available for each state. More precisely, when computing pmax,k

s in the

kth step of value iteration, the values pmax,k−1
s′ in (1) can be replaced with pmax,k

s′ for states s′

where this value has already been computed. See, for example, [30, 16] for more detail.

2.3 SCC-based Value Iteration

We now describe an improved version of value iteration, first presented in [7], based on a
decomposition of the MDP M to be analysed. The first step of this process is to remove
maximal end components (MECs). An end component [12] of M is a pair (S′,Steps ′), where
S′ ⊆ S and Steps ′(s) ⊆ Steps(s), which is closed and strongly connected, i.e.:

1. ∀µ ∈ Steps ′(s), ∀s′ ∈ S . (µ(s′) > 0→ s′ ∈ S′)

2. ∀s, s′ ∈ S′, there is a path in (S′,Steps ′) from s to s′.

A maximal end component is one for which there is no larger end component that contains
it. It is known [12] that all states s within an MEC have the same probability value pmax

s .
Furthermore, we can safely compress each MEC into a single state [7]. From this point on, we
assume that all MECs have already been compressed in this way.
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Algorithm 1 The k-th iteration (for states in Ci)

1: X := {x ∈ Ci | pmax,k−1
x − pmax,k−2

x > δ}
2: for all x ∈ X do
3: Y := {y ∈ Ci | pmax,k−1

y < 1 and ∃µ ∈ Steps(y) . µ(x) > 0}
4: for all y ∈ Y do
5: Steps ′(y) := {µ ∈ Steps(y) | µ(x) > 0}
6: pmax,k

y := max
µ∈Steps′(y)

∑
s′∈S µ(s′) · p′s′

7: end for
8: end for

Next, we identify strongly connected components (SCCs) in the MDP. An SCC C is a set of
states that is strongly connected (there is a path between any two states in C) and maximal
(no superset of C is also strongly connected).

SCCs are particularly important in value iteration. Let C be an SCC, and Pre∗(C) ⊆ S\C
be the set of states that can reach C, but are not contained within it. Any change of a state’s
probability value in C affects probability values of all other states in C, as well as those of
states in Pre∗(C). Furthermore, until the probability values of the states in C converge, the
probability values of states in Pre∗(C) cannot converge. In fact, the computation of probability
values for states in Pre∗(C) can be postponed until the values in C converge [7].

The set of SCCs in M forms a partition of its states S. Let Π = {C1, . . ., Cm} be this
partition. The successor set Succ(Ci) of Ci is the set of states outside Ci that are immediate
successors of states in Ci. We say that Ci depends on Cj if Succ(Ci) ∩ Cj 6= ∅. As there is
no cyclic dependence among SCCs, we generate a reversed topological order C among SCCs
such that Cj will appear before Ci in C if Ci depends on Cj . The set of SCCs, along with
their topological order, can be obtained efficiently with well-known methods such as the Tarjan
algorithm [35], whose time and space complexity is linear in the size of the model.

SCC-based value iteration processes each SCC separately, according to the ordering C, and
then terminates. For each SCC, a sequence of approximations is computed, like for value
iteration. For each state s in an SCC, pmax,k

s denotes the value computed for s in the kth
iteration and pmax,0

s the initial value for s. For any SCC, we set pmax,0
s to 1 if s ∈ Syes and 0

otherwise. We also let pmax
s denote the final value for s. Consider now a particular SCC Ci.

The first iteration is performed as follows. For each s ∈ Ci:

pmax,1
s :=

{
max

µ∈Steps′(s)

∑
s′∈S

µ(s′) · p′s′ pmax,0
s <1∧Steps ′(s) 6=∅

pmax,0
s otherwise.

where Steps ′(s) = {µ ∈ Steps(s) | ∃s′ ∈ Succ(Ci) .
(
µ(s′) > 0 ∧ pmax

s′ > 0
)
} and p′s′ is pmax

s′ if

s′ ∈ Succ(Ci), or pmax,0
s′ otherwise.

In the remaining iterations, we only update probabilities for states that are affected by
the previous iteration. Other states simply keep their probability from the previous iteration.
Algorithm 1 describes the k-th iteration (for k > 1), where p′s′ = pmax

s′ if s′ ∈ Succ(Ci),

and otherwise p′s′ = pmax,k−1
s′ . The iteration on Ci terminates at the k-th iteration when X

in Algorithm 1 is empty. Note that Algorithm 1 also works when we use δ as a maximum
relative difference, e.g., the condition pmax,k−1

x − pmax,k−2
x > δ in Algorithm 1 can be replaced

by
pmax,k−1
x −pmax,k−2

x

pmax,k−2
x

> δ.
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Algorithm 2 Generate Π

1: Π := ∅
2: for all i ∈ 1, . . . ,m do
3: if ∃s ∈ Ci . Steps(s) 6= Steps(s) or ∃C ∈ Π . Succ(Ci) ∩ C 6= ∅ then
4: Π := Π ∪ {Ci}
5: end if
6: end for

3 Incremental Verification of MDPs

We now describe an incremental approach to quantitative verification of MDPs [28], which
builds on the SCC-based version of value iteration outlined above. Incremental verification
techniques aim to accelerate the process of analysing a model that has undergone minor changes,
by exploiting the presence of existing verification results.

The techniques that we describe here target cases where the probabilities of some transitions
in an MDP undergo changes. It is assumed, though, that the transition structure of the model
remains untouched. This means that transitions with probability one or zero cannot be changed;
otherwise, some transitions with non-zero probability would be added or deleted from the
model. We use M = (S, s̄,Steps, r) to denote the original MDP and M = (S, s̄,Steps, r) for
the modified one. Notice that only Steps is modified.

3.1 Incremental SCC-based Value Iteration

When some probabilities in Steps are changed, it may be unnecessary to recompute probability
values for all states. We first identify the set Π of SCCs that have been affected by the changes.
It can be generated using Algorithm 2.

First, Π is initialised to an empty set. Then, we scan the SCC partition according to the
reverse topological order and add Ci to Π if Ci satisfies one of two conditions:

1. There exists a state s ∈ Ci such that one distribution from s is involved in the changes;

2. There exists an SCC C ∈ Π that Ci depends on.

Let pmax
s be the maximum probability for state s computed previously on M and pmax

s the
one we need to compute after the changes occur. The SCC-based value iteration algorithm
of Section 2.3 can be adapted to handle changes in probabilities by replacing Π by Π and
initialising pmax

s as follows:

pmax,0
s :=


1 s ∈ Syes
0 s ∈ Sno

pmax
s s ∈ S? and s ∈ C for some C ∈ Π\Π
0 otherwise.

In addition, before we recompute the probability for an SCC C in Π, we perform a test on its
successor set Succ(C). This test checks the following conditions:

1. the probability for each state s ∈ Succ(C) is unaffected by the changes, i.e.:

∀s ∈ Succ(C) . pmax
s = pmax

s , (2)

251



On Incremental Quantitative Verification for Probabilistic Systems Kwiatkowska, Parker, Qu and Ujma

2. all distributions from a state in C are unaffected by the changes, i.e.:

∀s ∈ C . Steps(s) = Steps(s).

If both conditions hold, there is no need to recompute values in this SCC, i.e. we simply use:

∀s ∈ C . pmax
s = pmax

s .

Although the above test can eliminate unnecessary recomputation for SCCs that might be
affected by the changes, condition (2) is quite restrictive since it requires all states in the
successor set to have the same probability as before the changes occurred. Recomputation is
executed even if, for all states in Succ(C), there are only very small changes, e.g., |pmax

s −pmax
s | ∈

(0, ε) for some small ε > 0.
In this case, the change in the probability for a state in C is bounded by ε with respect to

its original value. If ε is less than the required accuracy, we can use pmax
s as pmax

s for state s in
C, which speeds up the recomputation by introducing a small approximation error. Lemma 1
formalises this idea.

Lemma 1 ([28]). Consider the SCC-based version of value iteration from above.

1. If the condition pmax
s = pmax

s in condition (2) is replaced by |pmax
s −pmax

s | < ε and the test
succeeds, then:

∀x ∈ C . |pmax
x − pmax

x | < ε. (3)

2. If condition pmax
s = pmax

s is replaced by |p
max
s −pmax

s

pmax
s

| < ε and the above test succeeds, then:

∀x ∈ C . |p
max
x − pmax

x

pmax
x

| < ε. (4)

In practice, we can use δ, the maximum absolute difference or maximum relative difference, as
ε, or a smaller value than δ to increase the accuracy, but possibly also increase computation
time.

3.2 Further Optimisations to SCC-based Value Iteration

The performance of SCC-based value iteration, with or without the incremental approach de-
scribed above, can be further optimised in several ways.

Parallelisation. First, the decomposition of verification presents opportunities for paralleli-
sation, which is particularly desirable to exploit, given the increasing prevalence of multi-core
architectures in mainstream CPU design. The topological order among SCCs provides a natural
structure for parallel computation. At any step, an SCC can be processed independently (and
thus in parallel), as long as all of its successor sets have been processed. To achieve this, we need
a queue to store SCCs that are ready to be processed. Initially, all SCCs that have an empty
successor set are put in the queue. Each computation thread takes one SCC from the queue
to process, and when it is done, it puts SCCs that newly become ready into the queue. The
whole process terminates when the queue is empty. Let Succ(C) be a copy of the successor set
Succ(C) of an SCC C in Π. Algorithm 3 shows the procedure for parallel computation. Note
that, in the while loop, only line 5 can be executed in parallel. As an additional optimisation,
MECs identification can also be parallelised. This is done by first partitioning into SCCs, then
searching each one for MECs in parallel.
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Algorithm 3 Parallel processing of SCCs

1: Queue := {Ci ∈ Π | Succ(Ci) = ∅}
2: Π := Π\Queue
3: while Queue 6= ∅ do
4: scc := the head of Queue
5: compute maximum probabilities for states in scc
6: for all C ∈ Π . Succ(C) ∩ scc 6= ∅ do
7: Succ(C) := Succ(C)\scc
8: if Succ(C) = ∅ then
9: Π := Π\{C}

10: Queue := Queue ∪ {C}
11: end if
12: end for
13: end while

State ordering heuristics. SCC-based value iteration works by exploiting the topological
ordering of SCCs, as identified by Tarjan’s algorithm for SCC detection. As mentioned in Sec-
tion 2.2, implementations of value iteration can in general also be improved using Gauss-Seidel
schemes, which re-use the latest values for each state that is available during each iteration.
These can therefore be used when computing the values for the states within a single SCC.

Gauss-Seidel schemes are, by their nature, sensitive to the order in which states are updated
during value iteration. In [28], the order taken is arbitrary: for convenience, the implementation
simply uses the order in which states had been created during model construction. However, this
may not reflect the way that states are connected. Here, we consider an additional improvement,
namely, we use the order in which states were visited during the Tarjan SCC detection algorithm
(which is based on a depth-first search). In our experiments, this gave the greatest improvement
in the speed of convergence of value iteration.

Eliminating precomputation. As discussed in [28], the precomputation phase of MDP verifi-
cation (which identifies states satisfying a property with probability exactly 0 or 1) is sometimes
relatively expensive in comparison to value iteration. However, SCC-based decomposition of
an MDP yields the possibility to replace the standard precomputation algorithms with simpler
and cheaper checks, resulting in significant improvements in performance. We refer the reader
to [28] for more details.

Symbolic SCC identification. Finally, we discuss another technique from [28]: a symbolic
version of SCC identification. Using standard explicit-state data structures to store the state
space and transition relation of an MDP can limit the size of models that can be handled.
Tools like PRISM make use of symbolic implementations, based on binary decision diagrams
(BDDs) [4] and extensions such as multi-terminal BDDs (MTBDDs) [8, 1]. Symbolic versions
of precomputation algorithms and value iteration already exist, but Tarjan’s SCC identification
algorithm is known to be poorly suited to these data structures. Various BDD-based versions
of SCC identification have been developed [3, 17], but these make it inefficient to generate the
topological ordering of SCCs, as required here. Thus, [28] develops a “hybrid” version of the
Tarjan algorithm that combines symbolic and explicit-state data structures. Again, we refer
the reader to [28] for full details of the implementation and resulting gains in performance.
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3.3 Experimental Results

The techniques described in this paper have been implemented in an extension of PRISM [25],
using its explicit-state probabilistic model checking library. We summarise here the performance
of the techniques on four case studies:

• zeroconf : a model of the Zeroconf dynamic network configuration protocol. We compute
“the maximum probability of the protocol correctly configuring a local network address
within time T”.

• consensus: a model of the shared coin protocol used in Aspnes & Herlihy’s randomised
consensus algorithm. The algorithm allows N processes in a distributed network to reach
a consensus. We compute “the maximum probability of terminating without consensus
being reached”.

• wlan: a model of an IEEE 802.11 Wireless LAN featuring two stations sending data over
a shared channel, each with a backoff counter of size N . We compute “the maximum
probability of the backoff counters for both stations reaching their maximum value”.

• mer : a simple model based on the flight software for JPL’s Mars Exploration Rovers
(MER), in which N threads compete for a set of R resources. We compute “the minimum
probability that mutual exclusion is not violated within 2 cycles of system execution”.

The first three models are taken from the PRISM benchmark suite [36]; the fourth is taken from
[13]. The reader is referred to these sources for details of any model parameters not explained
here (e.g. K for zeroconf, K for consensus) and for the models themselves. The experiments
were performed on a 2.80GHz PC with 6 cores and 32GB RAM, running 64-bit Fedora.

To demonstrate the incremental verification algorithm without bias, we use the following
scheme to make small changes to an MDP’s transition probabilities. We randomly choose three
states that are not in any maximal end component and have a distribution with probabilistic
choices. For each state s, we pick such a distribution µ ∈ Steps(s) and modify the probability
distribution as follows. Assume there exist m (m > 1) states s1, . . . , sm ∈ S such that µ(si) > 0
for 1 6 i 6 m. The new distribution µ′ is such that, for 1 6 i 6 m−1, we keep half of the value,
i.e., µ′(si) = µ(s)/2; for i = m, we increase the value such that µ′(sm) = µ(sm)+

∑m−1
i=1 µ(si)/2.

Table 1 summarises the results. For each example, the first three columns show the name
and parameters of the model, and the number of states in the MDP. The remaining columns
show the total time required to verify a single property, using four different variants of value
iteration:

(i) the standard algorithm (see Section 2.2);

(ii), (iii) the SCC-based version of [7, 28], using parallelisation, without and with the state
ordering heuristic described in Section 3.2, respectively;

(iv) the incremental algorithm (see Section 3.1), with parallelisation and the state ordering
heuristic.

Where parallelisation is employed, we use 12 threads, i.e. 2 per core. It should also be noted that
the results shown here are based on an improved implementation of parallelisation, compared
to the one originally presented in [28].

Generally, we see that these four variants perform increasingly well in terms of verification
time. Firstly, we see significant gains when using the SCC-based approach (including the faster
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Model Time(s)

Name Parameters States Original
SCC-based (parallel) Incremental

Non-ordered Ordered (parallel, ordered)

zeroconf
[K,T ]

2, 10 665,567 122 6.1 5.1 0.5
2, 14 1,061,771 214 8.6 7.1 0.5
3, 10 949,912 198 8.3 4.4 0.8
3, 14 1,735,014 354 16.6 10.1 1.3
4, 10 976,247 265 9.4 4.6 1.1
4, 14 2,288,771 575 24.6 14.1 1.9

consensus
[N,K]

2, 12 24,678 26 2.3 1.9 0.1
2, 16 32,486 63 3.9 2.3 1.4
2, 20 40,294 131 6.4 3.5 1.8
3, 1 729,337 33 3.3 3.6 0.4
3, 2 1,418,545 168 9.1 8.6 0.4
3, 3 2,259,817 478 16.3 9.4 0.4

wlan
[N ]

2 28,480 0.3 0.4 0.4 0.1
3 96,302 1.3 0.7 0.8 0.1
4 345,000 8.6 2.4 1.7 0.4
5 1,295,218 59 7.9 8.1 1.7

mer
[R,N ]

2, 100 592,264 20 3.4 3.1 0.4
2, 200 1,182,964 39 6.1 5.9 1.0
3, 300 1,773,664 59 15.0 13.3 1.5
4, 400 2,364,364 86 20.3 19.6 2.0
5, 500 2,955,064 97 16.2 14.9 2.6

Table 1: Performance comparison for SCC-based and incremental verification methods

precomputation phase and parallelisation of Section 3.2) compared to the standard algorithm.
Next, we note that the state ordering heuristic offers (in almost all cases) an additional small
gain. Lastly, and most importantly, we see that incremental verification is much faster than
any other option. Comparing to the fastest of the three non-incremental variants (option (iii)
above), we see an average speed-up by more than a factor of ten. In comparison to the original
version of value iteration, the incremental algorithm is often hundreds of times faster.

4 Conclusions and Further Directions

We have argued the need for incremental approaches to quantitative verification of probabilistic
systems, citing several scenarios where multiple verification runs need to be performed, after
only small changes to the model being verified, and often with rapid response times required
for the results of verification.

We reported on improvement to the recent work from [28], which performs incremental
verification on Markov decision processes by exploiting a model’s decomposition into strongly
connected components, and demonstrated significant gains in run-time for incremental verifi-
cation of MDPs in which localised changes were made to some transition probabilities.

There are several additional directions that warrant investigation. For example, we plan to
develop incremental techniques for models that undergo structural alterations, as well as changes
to their transition probabilities. We will also investigate incremental model construction. For
both of these directions, we hope to exploit information about modifications to the system
expressed in terms of their high-level model descriptions (e.g. the PRISM modelling language,
in the current implementation), rather than a low-level examination of the changes to states
and transitions. Another important direction is the development of incremental techniques for
other classes of probabilistic models, in particular those that include timing information such
as continuous-time Markov chains or probabilistic timed automata.
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