BDI: A New Decidable First-order Clause Class

Manuel Lamotte-Schubert and Christoph Weidenbach

Max Planck Institute for Informatics, Campus E1 4,
D-66123 Saarbriicken, Germany
{lamotte,weidenbach}@mpi-inf.mpg.de

Abstract

BDZ (Bounded Depth Increase) is a new decidable first-order clause class. It strictly
includes known classes such as PVD. The arity of function and predicate symbols as well
as the shape of atoms is not restricted in BDZ. Instead the shape of ”cycles” in resolution
inferences is restricted such that the depth of generated clauses may increase but is still
finitely bound. The BDI class is motivated by real world problems where function terms
are used to represent record structures.
We show that the hyper-resolution calculus modulo redundancy elimination terminates on BDZ
clause sets. Employing this result to the ordered resolution calculus, we can also prove termination of
ordered resolution on BDZ, yielding a more efficient decision procedure.

1 Introduction

Identifying decidable fragments of first-order logic has a long tradition in automated reasoning
research. It started with the specification of decidable quantor prefix classes at the beginning
of the 20*" century (see [4] for an overview). After the invention of automated reasoning
calculi, in particular resolution-based calculi, it moved to the identification of decidable clause
classes (e.g., see [3, [15], [6l @, 10, [1]) which then serve, e.g., as (background) fragments for
effective reasoning on tree automata properties, reachability problems in security, knowledge
representation formalisms, or data structures. Decidability is shown via termination of the
resolution calculus on the clause class. In particular, the resolution calculus terminates on a set
of clauses, if the length (number of literals in a clause) and depth (maximal depth of a literal in
a clause) of newly generated clauses can be finitely bound. For all of the above mentioned clause
classes the term depth of newly generated clauses by the respective resolution (superposition)
strategy does not grow. To this end the depth and structure of terms is a priori restricted, e.g.,
in some of the above classes only shallow linear terms, like f(x1,...,z,), are permitted.

In this paper we define a new clause class called BDZ (Bounded Depth Increase) where the
term structure of clauses belonging to the class is not restricted at all. In addition, and in
contrast to, e.g., the monadic classes, predicates may have an arbitrary number of arguments.
An overall bounded term depth is guaranteed by restricting the form of recursive definitions for
predicates that occur in the clause set. For the BDZ class any considered resolvent with have
depth at most 2n where n is the maximal depth of clause in the initial set (Theorem [4.2)). By
requiring that all variables occurring in a positive literal of a clause, also occur in a negative one
of that clause, (positive) hyper-resolution generates only ground clauses (Lemma, implying
together with the depth bound termination and therefore decidability of the BDZ class.

For example, consider the BDZ clause set

(1) — P(f(a), h(a),a)

(2) P(z,y,2) — Qx,y,f(9(x))),5(x,y)
(3) Qr,y, f(2) — R(f(9(x)),z,h(y))
(4) R(f(9(x),y,h(z)) — Plx,y,2)

() (a,b,¢) —

62 K. Mcmillan, A. Middeldorp, G. Sutcliffe, A. Voronkov (eds.), LPAR-19 (EPiC Series, vol. 26), pp. 62

BDI Lamotte-Schubert and Weidenbach

where clauses are written in implication form. The clauses (2)-(4) recursively define the predi-
cate P. By resolving clauses (1) and (2) the clause
= Qf(a), ha), F(g(f(@)))), S(f(a), h(a))

is generated causing an overall depth increase by the term f(g(f(a))), the third argument of
Q@ through the first argument of P. The deeper term is a result of z occurring at depth 0 in
P(x,y, z) in clause (2) and at depth 2 in the third argument of Q(z,y, f(g(x))). In this case, we
require that the third argument of () cannot show up by resolving along the cycle (2)-(4) as a
first argument of P. We ensure this by the concept of a watched argument (Deﬁnition. The
terms at watched arguments of an atom are assumed to never increase during any derivation
and argument positions holding terms with increased variable depth only depend on watched
argument positions. For the example, the argument positions 1,2 of the predicates @ and P
are watched and all atoms with predicates P, @, satisfy this requirement (Definition (iii)).
A second increase in depth is potentially produced by clause (3), at the first argument of the
R atom, where the clauses (2)-(4) also recursively define R. This clause does also not eventu-
ally generate terms of increasing depth, because all occurrences of R atoms in the clause set
are similar (see Section , i.e., they have the same tree shape, and thus can only generate a
bounded increase in depth (Definition [3.6)). Finally, for the clauses (1), (4), (5) the depth of
occurrences of variables in positive literals is smaller than their respective depth in negative
literals. As a result, positive hyper-resolution terminates on the above clause set.

The BDZ class is not included in any known decidable clause class. It obviously generalizes
PVYD [6]. The class of guarded formulae, originally proposed by Andréka et al. [12], was shown to
be decidable through an effectively bounded finite model property. The first resolution decision
procedure for the guarded fragment has been described by de Nivelle [I3]. It has been further
studied by Georgieva et al. [7] resulting in the fragment GF1~, for which hyper-resolution is
a decision procedure. The class GF1™ includes function symbols but does not support non-
guarded formulas. For example, a transitivity clause is not included in this fragment but
contained in our class BDZ. Further classes that can be decided by resolution (superposition)
without generating clauses with a term depth increase are the monadic class [3], the class of
shallow sort theories [I5], or classes related to tree automata [10].

Another related class is BU [§], which generalizes the set of all clause sets one can obtain
from GF17, includes function symbols, and is also decidable by hyper-resolution. The class
definition of BU takes special care of variables, for example, every non-positive functional clause
must contain a covering negative literal which contains all the variables of the clause. Eventually
this limits the depth of clauses generated by hyper-resolution. In BDZ, we don’t require such
conditions but instead limit the form of recursive definitions.

The class BDZ is not artificial. It arose naturally out of our work on analyzing real-word
authorization structures as they occur, e.g., in enterprise relationship systems [11]. When
modeling business processes function terms occur out of newly created business objects. For
example, a system user creating a purchase requisition out of a business requirement to buy
some good x could result in clause like

User(y), BusReq(z), Authorized(y, PurchReq) — ToBeReleased(purchreq(y, x))

that is depth increasing in x and y. Typically, business processes are not recursive. But prov-
ing properties of such processes and the underlying authorization setup requires in particular
considering clauses of the form

ToBeReleased (purchreq(y, x)) — Authorized(y, PurchReq)

and now we have created a depth increasing, recursive clause structure. For this very simple
example, it is obvious that the two clauses can not result in a non-terminating hyper-resolution

63

BDI Lamotte-Schubert and Weidenbach

derivation. However, for the real-world authorization set ups we have considered, the full power
of our new BDZ class is needed to guarantee termination.

The remaining of the paper is organized as follows. We first constitute the notational
background including the ordered (hyper-)resolution calculus in Section In Section |3 we
formally define the new clause class BDZ. The main ideas of the termination proof for the
hyper-resolution calculus applied to the new class are then presented in Section Although
hyper-resolution is a decision procedure for BDZ, in practice and in particular in the context
of authorization proofs it is generally not a good choice, because it enumerates all ground
consequences out of a given clause set. Therefore, in Section [5| we prove decidability of our
classes for ordered resolution with selection. Given a concrete problem class, the ordered
resolution calculus with selection offers a by far more fine grained control on the size of the
eventually generated clause set. Finally, we conclude the paper by investigating the border
between BDZ and undecidable clause classes and end with some further discussion on related
and future work.

2 Background

We follow the notation from [I6] and [2]. We consider a first-order language without equality
constructed over a signature ¥ = (F,R), where F and R are non-empty, disjoint, in general
infinite sets of function and predicate symbols, respectively. Every function or predicate symbol
has some fixed arity. In addition, we assume a further, infinite set X of variable symbols disjoint
from the symbols in X. Then the set of all terms T (F,X) is defined as usual. A term not
containing a variable is a ground term. If t1,...,t, are terms and R € R is a predicate symbol
with arity n, then R(ty,...,t,) is an atom. We sometimes write R(f) as a shortened version of
R(t1,...,t,) with arguments t1,...,t,. An atom or the negation of an atom is called a literal.
Disjunctions of literals are clauses where all variables are implicitly universally quantified.
Clauses are often denoted by their respective multisets of literals where we write multisets
in usual set notation. Alternatively to the multiset notation of clauses, we write clauses in
implication form I' — A where the multiset I" is called antecedent and the multiset A is called
succedent of the clause. The atoms in I' denote negative literals while the the atoms in A denote
the positive literals in a clause.

A position is a word over the natural numbers. Let f(t1,...,t,) be a term. The set
pos(f(t1,...,t,)) of positions of a term is recursively defined as (i) the empty word € is a
position in any term t and t|. = ¢ (ii) if ¢|, = f(s1,...,5n), then p.i is a position in ¢ for all

i=1,...,n and t|,; = s;. The term t[p/s] is obtained from ¢ by replacing ¢|, in ¢ with s.

The function wvars returns the set of variables for some term, atom, literal, clause. The
depth of a term ¢ is the maximal length of a position in the term: depth(t) = max({length(p) |
p € pos(t)}. The depth of a literal [-]P(ty,...,t,) is the maximal depth of its terms:
depth([-]P(t1,...,t,)) = maz({depth(t1),..., depth(t,)}). The depth of a clause is the maxi-
mal depth of its literals, and in the same manner, the depth of a set of literals is the maximal
depth of its literals. Additionally, the function depth is extended to variables and clauses (or
sequences of literals) depth(z, C') returning the maximal depth of an occurrence of the variable
x € vars(C) in a clause C.

Ordered resolution is defined with respect to a reduction ordering > that is total on ground
terms. A reduction ordering > is a well-founded, transitive relation satisfying for all terms
t, s, 1, positions p € pos(l) and substitutions o that whenever s > ¢ then I[p/so] > l[p/to]. Any
(reduction) ordering > on terms (atoms) can be extended to clauses by considering clauses as
multisets of occurrences of atoms as described in [16].

64

BDI Lamotte-Schubert and Weidenbach

For the termination proof of the BDZ clause class, inferences are computed only using the
below ordered hyper-resolution rule. All inferred clauses by hyper-resolution will be ground, so
factoring actually becomes condensation. As usual the calculus is based on a reduction ordering
> that is total on ground terms. Inference rules add the clause(s) below the bar to the current
clause set.

Definition 2.1 (Ordered Hyper-Resolution). The inference

Eh...,En—)A —>A“E; (ISZSTL)
(= AAL. Ao

where

(i) o is the simultaneous mgu of Ey,...,E,, Ef,...,E!,
(ii) all Elo are strictly maximal in (— A;, E)o

is called an ordered hyper-resolution inference.

Definition 2.2 (Ordered Resolution). The inference

I'n = A, B1 B, Ty = Ay
(F17F2 — Al,Ag)U

where

(i) o is the mgu of E; and Es,

(ii) no literal in Ty is selected,

(iii) F4o is strictly maximal in (I'y — Ay, Fy)o,

(iv) the atom FEso is selected or it is maximal in (E2,I's — As)o, and no literal in I'y is
selected

is called an ordered resolution inference. If conditions (ii)-(iv) are dropped, the inference is

called resolution.

Definition 2.3 (Factoring). The inference

I'— A,EI,EQ
(F — A,El)O'

where

(i) o is the mgu of E; and E,

(ii) no literal in T is selected,

(iii) Ejo is maximal in (I' = A, Eq, E2)o
is called factoring.

For the purpose of this paper the reduction rules subsumption and condensation suffice.
Nevertheless, the general superposition redundancy criterion is applicable. A clause I'y — Aq
subsumes a clause I's — Ay if for some substitution o we have I'yoc C I'y and Ajo C Ag. A
clause IV — A’ is a condensation of a clause I' =+ A if IV — A’ subsumes I' — A and IV — A/
is obtained from I' — A by instantiation and duplicate literal deletion.

Now the (ordered) hyper-resolution calculus consists of the rules (ordered) hyper-resolution,
factoring, condensation, and subsumption deletion and the (ordered) resolution calculus consists
of the rules (ordered) resolution, factoring, condensation, and subsumption deletion. We assume
that reduction rules are applied exhaustively and before the application of any inference rule.

65

BDI Lamotte-Schubert and Weidenbach

3 The Clause Class BDT

The class PVD (positive variable dominated) [6] is the starting point for the class definition
of BDZ. The class PVD has already been proven to be decidable by hyper-resolution in [5].
In contrast to the clause class PVD where the maximal depth of any derived clause by hyper-
resolution does not exceed the maximal depth of its parent clauses, the class BDZ permits to
have such a growth of the term depth for a derived clause. Clearly, this relaxation requires addi-
tional restrictions in order to guarantee that hyper-resolution still remains a decision procedure
for BDI.

In the following, we start by defining some additional notions that are needed to define
the class BDZ. Let p be an arbitrary position of a term s (atom, literal). We call p an inner
position if there exists a position ¢ in s such that ¢ = p.r, r # e. Two atoms P(tq,...,t,)
and Q(s1, ..., Sm) are called similar if pos(P(t1,...,tn)) = pos(Q(s1,...,Sm)) and for all inner
positions p we have P(t1,...,t,)|p = Q(s1,..., Sm)|p, implying P = @ and n = m.

Definition 3.1 (PVD). A clause I' = A is PVD [6] (Positive Variable Dominated) if
(i) wvars(A) C vars(T) (A is ground for T' = (),
(ii) depth(z,A) < depth(z,T") for all x € vars(A).

Definition 3.2 (Depth Increasing). We call a clause C =T — P(ty,...,t,), A depth increasing
if there is a variable = € vars(C) and depth(z,t;) > depth(x,T") for some t; where 1 < ¢ < n.
The variable x is called a depth increasing variable in C, P(t1,...,t,) a depth increasing atom
in C, P a depth increasing predicate in C, and i a depth increasing argument position of P.

We call a clause C =T — P(ty,...,t,), A uniquely depth increasing if C is depth increasing,
and there is exactly one depth increasing argument position i of P(t1,...,t,) such that for all
depth increasing variables x € vars(C) we have depth(x, {P(t1,...,ti—1,Z,tit1,.--,tn), A}) <
depth(z,T'). Given a clause set N, we call a depth increasing clause C' € N uniquely depth
increasing clause in N for the predicate P at argument position i if there is no different depth
increasing clause for the same predicate P in N with depth increasing argument position j # i.

In order to speak about recursive definitions of predicates or, alternatively, cycles between
clauses, we need to establish a notion of reachability between predicate symbols of atoms
occurring in (possibly different) clauses.

Definition 3.3 (Reachability). Given a clause set N, a predicate @ is reachable from P in
one step if there is a clause (T', P(5) — Q(),A) € N. A predicate R is reachable from P if the
predicate R is reachable in one step from @) and @ is reachable from P, or if R is reachable
from P in one step. Additionally, we say that R is reachable from a depth increasing clause
(T — Q(t), A) € N, with depth increasing predicate @, if R is reachable from Q.

Consider the following set N as a motivating example for the below definition of watched
arguments:
(1) — P(f(a),b,c)
(2) Pz,y,z) — Q(f(x),y,2)
3) Qz,y,2) — Px,y,2) ‘
(Hyper-)resolution on N computes infinitely many clauses of the form Q(f*(a),b,c). The
reason is, in particular, the second clause, where the depth of the occurrence of x in the
succedent (term f(x)) is strictly larger than its depth in the antecedent (term). In order to
exclude such a situation, we “watch” the non-increasing arguments of Q(f(x),y, z), which are
Y,z (the second and third argument). Due to the existing cycle between the second and third

66

BDI Lamotte-Schubert and Weidenbach

clause, we also watch the second and third argument in the atoms with predicate symbol P. In
the case of a depth increase comparing the maximal term depth of the atoms on the right hand
side and the maximal term depth occurring in the atoms on the left hand side (as we have it
for the second clause), we require for the second clause that only variables from the watched
arguments occur inside the depth growing terms. This means for the example, that if only the
variables y or z are arguments of the function f in the second clause, the infinite nesting does
not occur.

Definition 3.4 (Watched arguments). Let warg be a function from predicate symbols to se-
quences of direct argument positions such that if warg(P) = [i1,...,4,] then 1 < i; < m,
0 <n <m,andi; <iy for k < j where m is the arity of P. In case warg(P) = [i1,...,i,] then
any 7; is called a watched argument of P. The function warg is extended to atoms by:

warg(P(tl,...,tm)) = [P(t17~--atm)|i17---7P(t1;---atm)|in] .

Definition 3.5 (Origination). Let N be a set of clauses. Origination is defined inductively by:
(i) For all input clauses C' € N their literals L € C originates from C.

(ii) For all hyper-resolution derived clauses — Ac,Aq,..., A, from parent clauses C =
Q1(81,17 M) 81,m1)7 ctc Qn(sn,h M Sn,mn) — Aa D’i = Qi(ui,17 tet 7u’i,m1‘)? Aia the hter—
als Lo € Ao originate from the clause C, and each L'c € A; originates from the clause
D;.

Definition 3.6 (BDI-1). Let N be a set of clauses and warg a watched argument function. A
clause C =T — Pi(t11,---st1.n1)s - s Pm(tm1s - - - tony), A from N with 1 < i < m satisfies
BDI-1 if C is depth increasing, and

(1) vars({P1(t1,15---st1m1)s- > Pn(Em1, - stmom,,), A}) C vars(T'), and
depth(z, A) < depth(x,T) for all z € vars(A)

(ii) for all C" = Pi(s1,...,8,),I" — A’ € N where Pi(s1,...,8,)0 = Pi(ti1,.-.,tin)0
for some unifier o, the atoms P;(s1,...,s,) and P;(t;1,...,t; n,) are similar, and for
all depth increasing variables x, positions p, variables y, argument positions j where
tijlp =, sjlp =y with y € (vars(Pi(s1,...,s,)) Nvars(A’)) it holds depth(y, A") =0

(iii) for all P;(t;1,...,tin,) holds warg(P;(ti1,. .. ,tin,)) =[]

(iv) for all atoms Qy(7%), Ri(¥7) € I’ where @, is reachable from a depth increasing clause in
N and R; is not reachable from a depth increasing clause holds

vars(P;(ti, .. tin,;)) C U vars(warg(Qr(7%))) U U vars(R;(0}))
k 1

(v) for all atoms Q(7) € T holds

(warg(Q(7)) = [Jor for all R(¥) € A it holds warg(Q (7)) = warg(R(?)))

BDI-1-(ii) ensures that any derived atom from a clause satisfying BDI-1 with increased
depth (compared to its parent clauses) cannot further contribute to the growth in depth in the
next hyper-resolution step where the atom with the increased depth is considered as a parent
clause. The R atoms in the clause set in the introduction are an example.

BDI-1-(iv) prevents to have two consecutive depth increases in an argument when two
consecutive hyper-resolution inference steps with depth increasing clauses take place. The

67

BDI Lamotte-Schubert and Weidenbach

following example assumes a hyper-resolution inference applied to a clause satisfying BDI-1 and
the immediate previous hyper-resolution was performed on a clause satisfying BDI-2. Consider
the following clause set N for this condition:

(1) P(z,y) — Q(f(9(v)),y)
(2) — P(a, f(a))
(3) Qz,y) — R(f(z),)
(4) R(f(z),z) — P(f(z),z)

Hyper-resolution between clause (1) satisfying BDI-2 and (2) yields a depth increased clause
= Q(f(g(f(a))), f(a)). Next, we can apply hyper-resolution on clause (3) satisfying BDI-1 and
the previously derived clause. According to the construction of BDI-2 (see below), the first
(increased) argument of the literal Q(f(g(y)),y) in clause (1) is not watched, but the second
argument is, i.e. warg(Q(f(9(y)),y)) = [y]. Consequently, the variable condition of BDI-1-(iv)
permits only variables in R(f(x),x) where z € vars(warg(Q(z,y)) because Q is reachable from
a depth increasing clause. However, the variable condition cannot be satisfied because the
variable & ¢ warg(Q(f(9(1)), y).

BDI-1-(v) prevents position swapping of previously increased arguments in the non-depth
increasing arguments of a clause satisfying BDI-1. The idea is to require for any atom in the
succedent with a non-empty watched argument list that the watched argument list for all atoms
in the antecedent is either identical or empty.

Definition 3.7 (BDI-2). Let N be a set of clauses and warg a watched argument function.
A clause C =T — P(t1,...,t5,...,t,),A from N satisfies BDI-2 if C' is a uniquely depth
increasing clause in N for the predicate P at argument position j, and
(i) vars({P(t1,...,tj,...,tn), A}) C vars(T')
(ii) for all i # j holds t; ¢ warg(P(t1,...,t,)) and t; € warg(P(t1,...,t,))
(iii) for all atoms Q(s1,...,s,) € I’ where @ is reachable from P and
vars(Q(s1, ..., 8n)) Nwars(P(t, ..., tn)) # 0:
(1) arity(Q) = arity(P)
(2) warg(Q(Sh LR Sn)) - wa’rg((1y--- n))
(3) wars(s;) Nvars(P(t1,...,t,)) =0

(iv) for all clauses C’ € N with C' =TI — A’ which have an atom whose predicate is reachable
from P, it holds for all atoms Q(7) € T' that

(warg(Q(7)) = [Jor for all R(¥) € A it holds warg(Q(7)) = warg(R(7)))

(v) for all atoms S(vy,...,v,) € A and Q(7), Ri(v;) € T where @y, is reachable from a depth
increasing clause and R; is not reachable from a depth increasing clause holds

vars(S(vi,...,vm)) C U vars(warg(Qr (7)) U U vars(R;(7}))
k 1

Please note that condition BDI-2-(iii) implies that the depth increasing atom has at least
two arguments. BDI-2-(iii) takes care of the depth inside the depth increasing atom of a clause
satisfying BDI-2. In a clause set N with recursive predicate definitions, this condition restricts
the way of increasing the depth in order to prohibit an unbounded growth of depth. BDI-2-(iv)
prevents the “transfer” of a term with increased depth in a literal to another literal inside a
different clause.

68

BDI Lamotte-Schubert and Weidenbach

BDI-2-(iv) and BDI-2-(v) guarantee that depth increasing cycles cannot be used several
times with the same depth increasing term, analogous to the corresponding conditions in BDI-
1-(iv) and BDI-1-(v).

Consider the following set of clauses:

(1) P(z,y),Q(z,y) — P(f(2),9)
(2) P(z,y) — Qz,y)
(3) — P(a,b)

In this example, the clause (1) does not satisfy BDI-1, nor BDI-2, nor PVD. It does not
satisfy PVD because it is depth increasing, nor does it satisfy BDI-1 because the occurrence
of the atom P(f(z),y) is not similar to P(z,y) occurring in clause (2) which is required by
BDI-1-(ii). And eventually, it also does not satisfy the conditions of BDI-2, because there is
the atom Q(z,y), @ is reachable from P but BDI-2-(iii)-(3) is violated. The clauses (2) and (3)
satisfy PVD.

Definition 3.8 (BDZ). Let N be a set of clauses and warg a watched argument function. The
set N belongs to BDZ (bounded depth increasing) if for all C € N:
(i) C satisfies PVD, or
(ii) C satisfies BDI-1, or
(iii) C satisfies BDI-2,

and, additionally, for two depth increasing clauses I' — P(t1,...,t,), A and
I'" = Q(th,...,t.,), A’ with depth increasing predicates P and @ satisfying BDI-2

(iv) the predicate @ is not reachable from P and vice versa.

In the context of a clause set N satisfying BDZ, we can relax condition BDI-2-(iv) to apply
only to clauses satisfying PVD. Please note that we can have clauses in N which satisfy the
conditions of both BDI-1 and BDI-2.

Consider the following set of clauses as an example to demonstrate and discuss the different
syntactical conditions of the class BDZ:

(1) - P(f(a),h(a),a)

(2) P(z,y,2) — Qz,y, f(9(x))), S(z,y)
(3) Qz,y, f(2)) — R(f(9(z)), 2, h(y))

4) R(f(9(x)),y,h(2)) — P(z,y,2)

(5) P(a,b,c) —

(6) P(r,y,z) — T(y,2)

(7) T(z,y) — R(z,y,9(2))

A common requirement for all clauses is that the set of variables of the succedent of each
clause is a subset of the set of variables of the antecedent of the same clause. Clause (7) violates
this condition and is therefore not in BDZ. For the rest we only consider the clauses (1) to
(6). The ground clauses (1) and (5) trivially satisfy PVD, as well as clause (4). The clause
(2) is depth increasing and satisfies BDI-2: The variables occurring in atoms different than
Q(z,y, f(g(x))) do not increase the term depth. Further, the predicate P of the atom P(z,y, 2)
is reachable from @ through the clauses (2)-(3)-(4). P has the same arity than @, the lists of
watched arguments (i.e. all arguments except the depth increasing argument) can be defined
identical, and the variable z does not occur inside the third argument of Q(z,y, f(g(x))) (BDI-
2-(iii)). Clause (3) satisfies BDI-1 because the occurrence of the atom R(f(g(z)),z,h(y)) in
clause (3) is similar to the atom R(f(g(x)),y,h(z)) in clause (4) (BDI-1-(ii)). Furthermore,
the variable whose depth has been increased in clause (3) occurs with depth 0 in the atom

69

BDI Lamotte-Schubert and Weidenbach

P(z,y, z) in the succedent of clause (4). In addition, the atom in the succedent of clause (3)
satisfies vars(R(f(g(x)),z, h(y))) C vars(warg(Q(x,y, f(2)))) (BDI-1-(iv)).

Note that checking membership of a clause set N in BDZ can be done in time at most
quadratic in the size of N. Membership in PVD can be checked in time linear in the size of N.
While this test depth increasing atoms according to BDI-1 or BDI-2 can already be identified.
In time at most quadratic in the size of N reachability between the predicates of those atoms
and all other atoms can be established. Once reachability is established BDI-1 can be decided
in linear time in the size of N. Note that for BDI-1 the watched arguments of the depth in-
creasing predicate need to be set to the empty set (BDI-1-(iii)) and the watched arguments
of reachable predicates have to be set accordingly (BDI-1-(iv) and BDI-1-(v)). Similarly, the
BDI-2 conditions can be checked in linear time. All other argument positions except for the
depth increasing one need to be watched and conditions BDI-2-(iv) and BDI-2-(v) can be es-
tablished /checked in linear time once the reachable predicates are identified. Finally, condition
Definition (iV) is also linearly checked on the basis of an established reachability relation on
the predicates.

4 Termination of Hyper-Resolution on BDZ

In order to decide BDZ, we use the hyper-resolution calculus. The aim is to show that any
derivation from a given finite BDZ clause set N terminates. It is well known that this is the
case if the depth of terms in clauses as well as the number of different variables in clauses can
be finitely bound. For the new class BDZ, hyper-resolution will only generate ground clauses,
implying that for termination it is sufficient to provide an overall depth bound.

Lemma 4.1. Any clause derived by a hyper-resolution inference from an initial clause set NV
satisfying BDZ is positive ground.

Proof. Follows from the variable condition wvars(A) C wars(I') that holds for all clauses
vars(A) C vars(T') satisfying BDZ. O

Because Factoring is applied only to positive clauses, and positive clauses derived by hyper-
resolution inferences are always ground as stated in Lemma[4.1] the application of the factoring
rule corresponds to condensation which amounts to the elimination of duplicate literals. So for
BDZI actually no factoring rule is needed for completeness. We still need to have a bound on
the term depth of any derived clause.

Theorem 4.2. Let N be a finite set of BDZ clauses and dy = 2-max{depth(A) |T — A € N}.
Then the term depth of any clause C derived by the hyper-resolution calculus from NV is smaller
than dN.

Proof (Outline). The proof is by induction of the length of a hyper-resolution derivation. The
induction invariant implying the above statement is: for any clause C'
(i) depth(C) < dy
(ii) for all atoms P(t1,...,t,) € C with depth(P(t1,...,tn)) > dTN holds:
(iia) warg(P(t1,...,t,)) # [], P(t) is reachable from a depth increasing clause satisfying
BDI-2, and for all arguments ¢, € warg(P(f)) holds that depth(t,) < % or

(iib) warg(P(t1,...,t,)) =[] and P(t1,...,t,) originates (and A is therefore also reachable)
from a depth increasing clause satisfying BDI-1.

O

70

BDI Lamotte-Schubert and Weidenbach

5 From Hyper to Ordered Resolution

Hyper-resolution enumerates all ground facts from a given clause set. For many practical
applications this is not feasible. For example, in the context of our authorization analysis,
thousands of authorization definitions for a large number of users need to me modeled. They
imply a huge number of derivable ground facts representing the exact authorization instan-
tiations for all these users. Therefore, we want to employ a specific selection strategy on
atoms in order to avoid the naive enumeration of all derivable positive ground clauses. Con-
sider the following abstract, but real world, set of clauses as an example to sketch the idea.
Assume 10000 ground atoms — A(a;, bj) relating authorizations a,; to possible values b;. As-
sume 10000 ground atoms of the form — Holds(u;,a;) that assign authorizations a; to users
u;. Then already a clause of the form Holds(x,y), A(y,z) — Access(x, z) results already in
a potential quadratic (10k*10k) number of concrete access rights. However, in some busi-
ness process, these rights are only needed in a very specific way, e.g., a clause of the form
P(x,y,z), Access(x1,z), Access(x1,y), Access(x1,z) — Q(z1,y,2) requires three specific
rights in order to derive Q(z1,y,2) . If we can first select P(z,y,z) in this clause, then the
overhead of generating all access rights for all users in order to reason about Q(x1,y,2) can
be prevented. Therefore, we want to turn ordered resolution with selection into a decision
procedure for BDT.

In general, ordered resolution is not a decision procedure for BDZ. However, as we will shoe
below, the BDZ class justifies two additional reduction rules that then make ordered resolution
terminate.

Theorem 5.1. Let N be an unsatisfiable clause set of the class BDZ and dy = 2 -
max{depth(A) | (' = A) € N}. Consider a hyper-resolution proof of the empty clause with
ordering . Then there is a (non-ground) ordered resolution proof of the empty clause with
respect to > and an arbitrary selection strategy such that depth(C) < dy for all clauses C
derived in this ordered resolution proof.

Proof. By Theorem there is a hyper-resolution proof of the empty clause where any gen-
erated clause does not exceed the depth bound dy. Having a hyper-resolution proof for N
with depth bound dp, we can construct an inconsistent subset S of N and ground it by some
constant such that all ground clauses still have depth bound dy. By refutational completeness
of the ordered resolution calculus with selection, we can derive the empty clause from S. Be-
cause all inferences are ground in the refutation of S, any derived ground clause respects the
depth bound dpy. Using the standard lifting lemma, we can construct a non-ground refutation
of the original set N where it still holds depth(C) < dy for all clauses C' derived by the ordered
resolution calculus with an arbitrary selection strategy. O

We exploit Theorem by the following two paramterized reduction rules that eventually
enable a finite saturation of a BDZ clause set via ordered resolution with selection.

Definition 5.2 (Variable Condensation(k)). The reduction

C
00'172, ceey Co'l—l,l

where vars(C) = {z1,...,x;}, I >k and 0, ; = {z; — x;} for all 4,j with 1 <i <[, i < j <l
is called Variable Condensation.

71

BDI Lamotte-Schubert and Weidenbach

Definition 5.3 (Depth Cutoff(k)). The reduction

C

where depth(C) > k is called Depth Cutoff.

Theorem 5.4. Let N be a finite set of clauses satisfying BDZ and ¥’ be the signature symbols
occurring in N. Then the ordered resolution calculus with an arbitrary selection strategy to-
gether with Depth Cutoff (dn) and Variable Condensation(ey) where dy = 2-max{depth(Ac) |
CeN}andeny =|{t|teT(X),depth(t) < dn}|is complete and terminating.

Proof. It follows from Theorem that the standard ordered resolution calculus with an ar-
bitrary selection strategy is able to derive the empty clause and none of the derived clauses
in the ordered resolution proof exceeds the depth of dy. Thus, if we have a clause D with
depth(D) > dy, we apply Depth Cutoff (dy) on D and discard it as it will not be required to
refute IV in case of a contradiction.

Additionally, with respect to the finitely many signature symbols in N and the depth limit
dyn only ey many different ground terms need to be considered in any proof. Therefore, we
can apply Variable Condensation(en) on any (derived) clause D such that the total number of
different variables in any derived clause is bounded as well. O

6 Conclusion and Future Work

In order to emphasize the thin line between decidability and undecidability on our new class
definition, we present two examples each violating only one of the conditions of BDZ, and
show, that it is possible to encode the Post Correspondence Problem, PCP [I4] using the
relaxed conditions. For the PCP consider words over an alphabet {0,1}. We construct a clause
set such that an instance of the PCP problem has a solution if and only if the clause set is
unsatisfiable. We encode words over '0’, ’1’ by using terms built from the constant a and the
monadic function symbols fo, fi. For example, the word 110 is represented as f1(f1(fo(a))).
The corresponding string s for a term is denoted as fs(x). For a PCP instance ((u1,v1), (ug, v2),
ooy (U, Um)), the overall clause set representing the PCP encoding is:

- P(ful(a)afvl(a)) 1< <m
P(z,z) —

The clauses of the form (1.1) represent the start state for m words and clauses (1.2) the
recursion to construct larger words. Eventually, clause (1.3) neglects the existence of a common
word.

Consider the below clause set of Example The clauses and both satisfy
condition PVD while the clauses and both satisfy BDI-2. In contrast to the standard
formalization of the PCP problem, the extension of words (original clause) is now spread
over two clauses (and) However, these clauses in combination do not satisfy BDZ-
(iv), because the predicate P is reachable from @; (and vice versa).

72

BDI Lamotte-Schubert and Weidenbach

Example 6.1.

— P(fu,(a), fo,(a)) 1<i<m (2.1)
P(z,y Qi(fu;(7),y) 1<i<m (2.2)
Qi(x,y) — Pz, fo,(y)) 1<i<m (2.3)
P(z,z) — (2.4)

So dropping the reachability condition of BDZ leads to an undecidable clause class.

Consider the below clause set of Example Here, we have used the same idea as in
Exampl namely, to distribute the extension of words over several clauses —. The
clauses (3.1]) and (3 satisfy PVD while the remaining clauses are candidates to satisfy BDI-1.
Starting from the clauses , the atoms with @Q;, R;-predicates occurring in . are
all similar, respectively. However the variable condltlon of BDI-1-(iv) is Vlolated in (3.3) and
. Consider one of the clauses resulting from as an example The atom Q;(fu,(x
is reachable from a critical clause (a clause resulting from [32)), vars(warg(Q;i(fu,(z),))) = @
and there are no other atoms that are not reachable from a critical clause on the left hand
side. Consequently, the right hand side of the clause had to be ground to satisfy condition
BDI-1-(iv).

Example 6.2.

— P(fu,(a), fu,(a@)) 1<i<m (3.1)

P(z,y) — Qi(fu,(2),y), Ri(z, fo,(y)) 1<i<m (3.2)

Qi(fu;(),y) — Ri(z, fu,(y)) 1<i<m (3.3)

Ri(z, fu,(y)) — Qi(fu(z),y) 1<i<m (3.4)

Qi(fu, (), y), Ri(z, fu, (y)) — P(fu; (%), fo,(y)) 1<i<m (3.5)
P(z,z) — (3.6)

So dropping condition BDI-1-(iv) leads to an undecidable clause class.

In general, any violation of the conditions of BDI-1 or BDI-2 results in a clause class where
hyper-resolution is no longer a decision procedure. The above two clause sets show that at least
two of the conditions are mandatory in order to obtain a decidable clause class. As part of future
work, we will investigate whether some conditions can be relaxed by appropriate refinements
of the (hyper-)resolution calculus.

We have presented a new decidable clause class BDZ. It is motivated by our authorization
analysis experiments. As hyper-resolution terminates on BDZ it enjoys the finite model prop-
erty. In addition, we showed that even any ordered resolution calculus with selection cutting off
clauses with terms exceeding some a priori bound and variable condensing clauses exceeding a
certain limit of different variables, decides the class. The this way extended ordered-resolution
calculus can in fact efficiently decide properties for large BDZ clause sets generated out of
authorization structures.

There are ways to extend the BDZ class or derive new decidable classes from it. An obvious
modification would be to turn the variable conditions from succedent to antecedent and adopt
the resolution strategy accordingly. Furthermore, it is possible to extend condition BDI-2 to
several depth growing argument positions.

73

BDI Lamotte-Schubert and Weidenbach

References

[1] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. New results on
rewrite-based satisfiability procedures. ACM Transactions on Computational Logic, 10(1):4:1-4:51,
20009.

[2] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages 19-99.
Elsevier and MIT Press, 2001.

[3] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplification as a
decision procedure for the monadic class with equality. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Computational Logic and Proof Theory, Third Kurt Gédel Colloquium,
volume 713 of LNCS, pages 83-96. Springer, August 1993.

[4] Egon Borger, Erich Gradel, and Yuri Gurevich. The classical decision problem. Perspectives in
mathematical logic. Springer, 1996.

[5] C. Fermuller, T. Tammet, N. Zamov, and Alexander Leitsch. Resolution Methods for the Decision
Problem. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[6] Christian G. Fermiiller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tamet. Resolution decision
procedures. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume II, chapter 25, pages 1791-1849. Elsevier, 2001.

[7] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution for guarded formulae.
J. Symbolic Computat, 36:2003, 2000.

[8] Lilia Georgieva, Ullrich Hustadt, and RenateA. Schmidt. A new clausal class decidable by hyper-
resolution. In Andrei Voronkov, editor, Automated DeductionCADE-18, volume 2392 of Lecture
Notes in Computer Science, pages 260—274. Springer Berlin Heidelberg, 2002.

[9] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of decidable first-order frag-
ments and description logics. Journal of Relational Methods in Computer Science, 1:251-276,
2004.

[10] Florent Jacquemard, Michaél Rusinowitch, and Laurent Vigneron. Tree automata with equality
constraints modulo equational theories. In Automated Reasoning, Third International Joint Con-
ference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture
Notes in Computer Science, pages 557-571. Springer, 2006.

[11] Manuel Lamotte-Schubert and Christoph Weidenbach. Analysis of authorizations in SAP R/3.
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, FTP 2009 : First-Order Theorem
Proving, volume 556 of CEUR Workshop Proceedings, pages 90-104, Oslo, Norway, July 2009.
CEUR.

[12] Carsten Lutz, Ulrike Sattler, and Stephan Tobies. A suggestion for an n-ary description logic. In
Description Logics, 1999.

[13] Hans De Nivelle. Resolution decides the guarded fragment., 1998. ILLC report CT-98-01, Univer-
sity of Amsterdam, The Netherlands.

[14] Emil L. Post. A variant of a recursively unsolvable problem. J. Symbolic Logic, 12(2):255-56,
1946.

[15] Christoph Weidenbach. Towards an automatic analysis of security protocols in first-order logic.
In Harald Gangzinger, editor, 16th International Conference on Automated Deduction, CADE-16,
volume 1632 of LNAI, pages 314-328. Springer, 1999.

[16] Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and

Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2, chapter 27, pages 1965—
2012. Elsevier, 2001.

74

	Introduction
	Background
	The Clause Class BDI
	Termination of Hyper-Resolution on BDI
	From Hyper to Ordered Resolution
	Conclusion and Future Work

