
EPiC Series in Computing

Volume 74, 2020, Pages 209–241

ARCH20. 7th International Workshop on Applied Ver-
ification of Continuous and Hybrid Systems (ARCH20)

Analysis of Real-Time Control Systems

using First-Order Continuization ∗

Maximilian Gaukler

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
max.gaukler@fau.de

Abstract

Experience Report: Real-Time control systems can be difficult to analyze due to the
mixture of discrete-time and continuous-time dynamics. This difficulty is particularly pro-
nounced if the timing is non-periodic, e.g., due to network or execution effects. Still,
most control loops behave similar to a purely continuous-time system disturbed by a small
discretization error, which is exploited by Bak and Johnson (2015) in the method of Con-
tinuization. This paper uncovers limitations of that work and presents an extension, First-
Order Continuization, based on a new formal framework that recovers previous results and
eases future development.

1 Introduction

From coffee machines to self-driving cars, our lifes are increasingly depending on the correct
function of real-time control systems. While it may be dismissed as bad luck if sometimes a
cup of coffee is brewed too cold, safety-critical functions such as lane keeping of an autonomous
vehicle must work provably correct under all specified conditions. Typically, correctness of the
controller design is not guaranteed by construction, i.e., some of the relevant safety properties
such as stability, state bounds and response time require additional verification. In practice,
this verification is often approximated by a multitude of randomized simulations and real-life
test runs. However, these only cover a finite number of the infinitely many possible scenarios.
A promising solution for full coverage is set-valued reachability analysis [6], which no longer
considers individual trajectories, but an outer bound of the set of possible states over time.

As real-time control systems combine a discrete-time digital controller and a continuous-time
physical environment, they are ill-suited for standard methods of reachability analysis [4, 5, 9].
The main reason is that discrete transitions are treated separately from continuous evolution
and often incur approximations due to set operations. The error from these approximations
is particularly pronounced if the control loop admits uncertain timing due to varying network
delays or execution times. One solution is to tailor reachability analysis to the specific structure
of digital control loops [1, 5]. While this can provide good results for a very specific class of

∗Acknowledgement: Thanks to Jiapeng Wu for showing the feasibility of an early version of first-order
continuization in his Master’s thesis under supervision of the author.

G. Frehse and M. Althoff (eds.), ARCH20 (EPiC Series in Computing, vol. 74), pp. 209–241

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

systems, it comes at the cost that one can no longer draw from the decades of experience
condensed in existing reachability analysis tools. Therefore, for example, an extension from
linear to nonlinear systems is no longer as easy as enabling a configuration option in an existing
tool, but could require months to years of coding and research. An alternative approach that
avoids this problem is Continuization [4, 2]: If the mixed discrete-time and continuous-time
original system behaves “smoothly enough”, it can be approximated by a continuous-time
system with “smooth” behavior that can be analyzed efficiently with existing tools. Formally,
the discontinuous solution of the original hybrid system is approximated by the continuous
solution of a differential inclusion, and the approximation error is bounded.

This paper extends the work on Continuization by Bak and Johnson [4] towards a broader
class of digital control loops. It presents a step towards solving the benchmark problems of [9]
by reachability analysis that so far have only been solved by LMI-based methods [8]. The key
contents are the following: Section 3 develops a specialized formal framework for proving Con-
tinuization schemes using abstractions of hybrid automata and a modified equivalence relation.
Section 4.1 restates prior work by Bak and Johnson, here termed Zero-Order Continuization,
in the new formal framework, correcting some errors in the details and uncovering a previously
unknown limitation: This method is limited to state feedback, e.g., proportional controllers.
Hence, it cannot handle controllers with internal dynamics, e.g., integral controllers, for which a
novel extension named First-Order Continuization is developed in Section 4.2. Experiments in
Section 5 show that this method is feasible with some limitations that are discussed in Section 6.

2 Notation

Definitions are denoted a := b, meaning “a defined as b”. Time arguments are mostly omitted
if their value is t, i.e., x(t) may be abbreviated as x, but x(kT) is never abbreviated. For a
state x, the time derivative is denoted ẋ, and the successor state of a discrete state transition
(“jump”) is denoted x′.

The closed ball of radius r and appropriate dimension n is

Br := {x ∈ Rn | |x| ≤ r}. (1)

Minkowski addition ⊕, set-valued multiplication ⊗ and scaling of sets are defined as

A⊕B := {a+b | a ∈ A, b ∈ B}, A⊗B := {ab | a ∈ A, b ∈ B} and cA := {ca | a ∈ A}. (2)

The smallest closed multidimensional interval (box) containing the set S is denoted �S. The
cartesian product is ×. Closed intervals are denoted [a; b], open intervals as (a; b).

For a function f(x) with non-scalar argument or result, the partial derivative ∂f(x)/∂x is
generalized as the Jacobian matrix

∂
[
f1(x1, x2, . . .) f2(x1, x2, . . .) . . .

]>
∂
[
x1 x2 . . .

]> :=

∂f1/∂x1 ∂f1/∂x2 . . .
∂f2/∂x1 ∂f2/∂x2 . . .
. . .

 . (3)

3 Abstraction of Hybrid Automata

This section presents the theoretical foundation that will later be used prove Continuization.

210

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

initial location
flow

Inv: invariant

initial values

location name 2
flow2

Inv: invariant2

label
Guard: guard

transition

Figure 1: Legend for hybrid automata used in this publication

3.1 Definition of Hybrid Automaton

In this paper, hybrid automata analogous to the definition of Henzinger [10] are used to describe
the mixed continuous and discrete behavior of digital control loops. An introduction for readers
unfamiliar with the subject can be found in [6]. A formal mathematical definition is detached
to Appendix A.1, as it is only relevant for the proofs.

Definition 3.1 (Graphical Notation for Hybrid Automata). Hybrid automata are graphi-
cally depicted per Fig. 1. Irrelevant labels and location names, as well as disabled transitions
(guard=false) may be omitted. State components not mentioned in a transition function remain
unchanged, e.g., the empty transition function represents the identity transition x′ = x. /

3.2 Continuous-Variable Reachability and Equivalence

To check if two control loops have the same physical behavior, this paper introduces adapted
definitions for the reachable set and equivalence of hybrid automata. In contrast to the conven-
tional definitions, an automaton remains equivalent after a transformation of the state vector
or after renaming discrete transition labels.

Definition 3.2 (Reachable Set of a Continuous Variable). Let H be a hybrid automaton with
x ∈ Rn as the vector of continuous state variables. Then, “x = ξ is reachable by H at t”,
abbreviated as ξ ∈ Reachx(H, t), iff there is a trajectory of H that has a duration of t and ends
with (l, ξ), where the location l is irrelevant.

For reference, in the formalism of Henzinger [10, Def. 1.4 and 1.5], this definition reads

Reachx(H, t) :=
{
x | ∃Tr, j : Tr = 〈labeli, (locationi, xi)〉i≥1 is an initialized

trajectory of H, xj = x,

j∑
i=1

duration(labeli) = t
}

(4)

with “initialized trajectory” and “duration” as defined there. /

Definition 3.3 (Generalized Notation for the Reachable Set). To extend the previous notation,
denote the reachable set of a function z = h(x) of the state vector x as

Rz(H, t) := {h(ξ) | ξ ∈ Reachx(H, t) ∩ domh}. (5)

Herein, domh ⊆ Rn denotes the domain of h, i.e., undefined results are excluded.
The reachable set over a time range T ⊆ [0,∞) is defined as

Reachx(H,T) :=
⋃
t∈T

Reachx(H, t), (6)

211

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

and the reachable set over all time as

Reachx(H) := Reachx(H, [0,∞)). (7)

/

Comparison to Linear Impulsive Systems In hybrid automata, time does not elapse
during discrete transitions. Therefore, if a discrete transition occurs at t1, “x(t1)” is ambiguous
as it refers to both the value x− before and x+ after a transition. Formally, the set Reachx(H, t1)
will then have (at least) two elements x− and x+. In this respect, hybrid automata are different
from Linear Impulsive Systems (LIS), where, for a typical definition

ẋ(t) = f(x), t 6= ti, (8a)

x(ti) = gi(x(t−i)), i ∈ N, (8b)

x(t1) is the unique value after the transition, while the value before is referenced by the left-
side limit x(t−1). While this notation may be more intuitive, it is no longer possible if multiple
transitions occur at one time instant, e.g., if t1 = t2. For example, LIS cannot be directly used
for systems with multiple asynchronous sensors [8, Section 6.1].

Definition 3.4 (Continuous Equivalence). Two hybrid automata H1, H2 are x-equivalent
(H1 =x H2) iff the corresponding reachable sets for x(t) are the same for all times t:

H1 =xH2 :⇔ Reachx(H1, t) = Reachx(H2, t) ∀t (9)

Matching (5), this notation includes the case that H1 and H2 have different state vectors x and
x̃ with a given, possibly non-invertible transformation x = q(x̃). /

Loosely speaking, x-equivalence considers all discrete transition labels and locations as hid-
den internal behavior and only compares for equality of x(t). Next, we define a weakened
variant of this relation by replacing “=” with “⊇”:

Definition 3.5 (Continuous Abstraction). A hybrid automaton H2 x-abstracts a hybrid au-
tomaton H1 (H2 ⊇x H1) iff all values of the continuous variable x reachable by H1 are also
reachable by H2 at the same time t:

H1 ⊆xH2 : ⇔ H2 ⊇x H1 :⇔ Reachx(H2, t) ⊇ Reachx(H1, t) ∀t (10)

/

Every automaton H2 with H2 ⊇x H1 is a safe, i.e., pessimistic, approximation of H1: If
H2 stays within a given safe x-region, then H1 will certainly do, while the converse is not
guaranteed.

Lemma 3.6 (Operator Properties of Continuous Equivalence and Abstraction). The operators
⊆x, =x and ⊇x obey the same rules as ⊆, = and ⊇. In particular,

H1 ⊆x H2 ⊆x H3 ⇒ H1 ⊆x H3, (11)

H1 =x H2 ⇔ H1 ⊆x H2 ∧ H2 ⊆x H1 (12)

and H1 =x H2 ⇔ H2 =x H1. (13)

212

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

ẋ ∈ F1(x)
Inv: inv(x)

x(0) ∈ X0

H1:

Guard: h(x)

x′ = g(x)

ẋ ∈ F2(x)
Inv: inv(x)

x(0) ∈ X0

?

⊆x H2:

Guard: h(x)

x′ = g(x)

Figure 2: Automata of Theorem 3.7

3.3 Abstraction of Hybrid Automata Within Bound

The point of Continuization is to avoid the expensive analysis of the original automaton and
instead only consider a simplified variant. However, as will be seen later, this simplification
requires a bound on the reachable states, which at first leads to a chicken-and-egg problem: For
simple analysis, a bound is required, which in turn requires the analysis result. To break this
circle, [4] uses a scheme that can be summarized as follows:

1. A complicated automaton H1 is abstracted (simplified) under the assumption that the
state remains in a certain set X.

2. An outer bound Y of the reachable set of the simplified automaton H2 is computed.

3. The assumption is validated only by checking if Y is “smaller than” X, without knowledge
of the original reachable set R. If Y < X, then R < Y < X. Here, “<” denotes an
appropriate condition for “smaller than”, possibly stricter than ⊆.

While this may seem trivially true at first sight, some caution is required to avoid circular
reasoning. For example, consider the following naive claim: 1. Assume R ⊆ X. 2. Analysis
under this assumption yields Y . 3. Claim: If Y ⊆ X, then R ⊆ Y ⊆ X.

However, this is a false conclusion: 1. Under the assumption R ⊆ X, a trivial abstraction
of any H1 is H2 =“x(t) ∈ X”. 2. This yields Y = X. 3. As then Y ⊆ X, the above claim
would state that R ⊆ X. This result is clearly wrong, as one could show any bound X for any
automaton. A correct and formally based version is given in the following theorem:

Theorem 3.7. Let H1, H2 be given from Fig. 2, X ⊆ Rn be a set and ε > 0 such that

F1(x) ⊆ F2(x) ∀x ∈ X ⊕Bε and (14)

Reachx(H2)︸ ︷︷ ︸
Y

⊆ X. (15)

Then, H1 ⊆x H2, so Reachx(H1)︸ ︷︷ ︸
R

⊆ Reachx(H2)︸ ︷︷ ︸
Y

.

Proof Sketch. The proof uses the continuity of continuous evolution. In graphical terms, x in
H1 cannot escape X without passing through the “buffer zone” of width ε around X. As the
abstraction is still valid there, this escape would be caught in Reachx(H2). Appendix A.2
contains the full proof as well as a counterexample for ε = 0.

213

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

Usage: Given H1, choose a set (e.g., interval) X, preferably as a rough guess of Reachx(H1)
from numerical simulations. Apply the broadening from F1(x) to F2(x). For example,

F1(x) = {−x+ sin(x)} ; F2(x) = {−x} ⊕ {sin(ξ) | xmin − ε ≤ ξ ≤ xmax + ε} (16)

is a valid broadening for X = [xmin;xmax] and ε > 0. Analyze the resulting simpli-
fied automaton H2 to check whether Reachx(H2) ⊆ X. If the condition is true, then
Reachx(H1) ⊆ Reachx(H2) ⊆ X. Else, one can try again with X changed to an enlarged
version of Reachx(H2), such as X = Reachx(H2)⊕Br with some bloating radius r ≥ 0.

4 Continuization

The idea of Continuization is to abstract a system with mixed discrete and continuous behaviour
by a purely continuous approximation plus an error bound [2, 4]. For a controller that is
designed in continuous time and then discretized for implementation, Continuization can be
loosely interpreted as “inverting” this discretization.

4.1 Zero-Order Continuization

A first variant of Continuization given by Bak and Johnson in [4] applies to a control loop with
the physical plant

ẋp(t) = fp(xp(t), xc(t)) (17)

and a zero-order-hold state feedback controller

xc(t) = fc(xp(kT)), kT ≤ t < (k + 1)T (18)

with fixed period T . The corresponding hybrid automaton H0 is shown in Fig. 3 (top left).
(Note that the original publication [4] permits that fc may additionally depend on xc. However,
as will be discussed later, this turns out to be infeasible.)

As illustrated in Fig. 4, the key idea is that zero-order sample-and-hold with high sampling
rate approximates a direct connection plus some small error. Here,

xc(t) = fc(xp(kT)) ≈ fc(xp(t)). (19)

The approximation error ω := xc − fc(xp) can be bounded by, loosely speaking, the product of
the period T and the maximum time derivative of −fc(xp(t)). For the following explanation,
assume that a bound ω ∈ Ω is known. Then, substituting xc = fc(xp) + ω and ω ∈ Ω in (17)
yields a purely continuous-time system

ẋp(t) ∈ {fp(xp(t), fc(xp(t)) + ω) | ω ∈ Ω} (20)

for xp with bounded disturbance, hence the name Continuization. Analysis of this new sys-
tem is typically easy compared to the original automaton with its mixture of discrete and
continuous-time dynamics. With minor modifications, the approach extends to more realis-
tic timing schemes involving uncertain periods or skipped executions [4], where analyzing the
original automaton would be even more difficult. However, for simplicity, this publication will
only consider the periodic case. A second simplifying assumption in the following derivations,
however without loss of generality, is that the initial state is exactly known and there is no
disturbance, so that the behavior of the control loop is uniquely determined.

214

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

ẋp = fp(xp, xc)
ẋc = 0
τ̇ = 1

Inv: τ ≤ T

xp(0) = xp,0
xc(0) = fc(xp,0)
τ(0) = 0

H0:

Guard: τ = T

τ ′ = 0
x′c = fc(xp)

fc(xp)

τ

T 2T 3T

t

T

Trajectory of H0 and H1:

xp

xc︸︷︷︸
H0

= fc(xp(kT)) = fc(xp) + ω︸ ︷︷ ︸
H1

ω (H1)

;

state transformation from x :=

xpxc
τ

 to x̃ :=

xpω
τ

, where ω := xc − fc(xp)

ẋp = fp(xp, xc)|xc=fc(xp)+ω

ω̇ = −fω(xp, xc)|xc=fc(xp)+ω

τ̇ = 1

Inv: τ ≤ T

xp(0) = xp,0
ω(0) = 0
τ(0) = 0

H1:

Guard: τ = T

τ ′ = 0
ω′ = 0

ẋp ∈{fp(xp, xc) | xc = fc(xp) + ω̂, ω̂ ∈ Ω}︸ ︷︷ ︸
Fp(xp,Ω)

ω̇ ∈{−fω(x̂p, xc) | xc = fc(x̂p) + ω̂,

x̂p ∈ Xp, ω̂ ∈ Ω}︸ ︷︷ ︸
Fω(Xp,Ω)

τ̇ =1

Inv: τ ≤ T

xp(0) = xp,0
ω(0) = 0
τ(0) = 0

?

⊆x H2:

Guard: τ = T

τ ′ = 0
ω′ = 0

Figure 3: Hybrid automata of control loop and continuization in Theorem 4.1

215

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

t

S
ta

te

original

sampled

error bound

Figure 4: Key idea of Zero-Order Continuization: A sample-and-hold signal can be approxi-
mated by its continuous original plus a bounded error.

Formal Derivation: The above idea is now implemented using the concepts of continuous-
variable equivalence and bounded abstractions outlined in Section 3. Consider the controller

given by H0 in Fig. 3. Transforming the state vector from x =
[
x>p x>c τ

]>
to x̃ =

[
x>p ω> τ

]>
yields H1, which uses the error ω := xc − fc(xp) instead of the sampled state xc. This is illus-
trated by the trajectory in Fig. 3 (top right). Assuming that the derivative ∂fc(xp)/∂xp exists,
the dynamics of ω are

ω̇ = ẋc −
∂fc(xp)

∂xp
ẋp = −∂fc(xp)

∂xp
f(xp, xc) = −∂fc(xp)

∂xp
f(xp, fc(xp) + ω)︸ ︷︷ ︸

=:−fω(xp,fc(xp)+ω)

, (21)

except for the discrete transitions at t = kT . The negative sign of fω is chosen to simplify
a comparison with [4]. The remaining dynamics and transitions follow immediately from the
state transformation. Consequently, H0 =x H1 with

x = q(x̃) :=
[
x>p (fc(xp) + ω)> τ

]>
. (22)

Next, Theorem 3.7 is applied to H1, which has

X̃0 ={
[
xp(0)> 0> 0

]>}, (23a)

F1(x̃) =


 fp(xp, fc(xp) + ω)
−fω(xp, fc(xp) + ω)

1

 , (23b)

h(x̃) =(τ = T), (23c)

g(x̃) =
[
x>p 0> 0

]>
, (23d)

inv(x̃) =(τ ≤ T). (23e)

Choose the sets Xp and Ω as a (possibly wrong) guess for the bounds of xp and ω. Define the
bloated bounds

Xp =Xp ⊕Bε (24)

Ω =Ω⊕Bε (25)

216

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

and the combined, non-bloated bound

X̃ =Xp × Ω× R. (26)

Now, to get from H1 to H2 (Fig. 3, bottom right), the dependency of ẋp on ω is replaced with
the bound ω ∈ Ω:

ẋp ∈{fp(xp, fc(xp) + ω̂) | ω̂ ∈ Ω} =: Fp(xp,Ω). (27)

Also, all dependencies of ω̇ are also replaced with their bounds:

ω̇ ∈{−fω(x̂p, fc(x̂p) + ω̂) | ω̂ ∈ Ω, x̂p ∈ Xp} =: Fω(Xp,Ω). (28)

Thereby, F1 is broadened to

F2(x̃) =Fp(xp,Ω)× Fω(Xp,Ω)× {1}. (29)

(It is also valid to use an outer approximation of F2, e.g., as interval). By construction,

F1(x̃) ⊆F2(x̃) ∀x̃ ∈ X̃ ⊕Bε, (30)

so the only missing condition for Theorem 3.7 is Reachx̃(H2) ⊆ X̃. The automaton H2 (Fig. 3)
consists of three mostly separate subsystems, so its reachable set can be computed as follows:

• xp(t) is independent of τ and ω and follows the continuous-time differential inclusion

ẋp ∈ Fp(xp,Ω), xp(0) = xp,0. (31)

Therefore it is within

X ′p := Reachxp

({
ẋp ∈ Fp(xp,Ω),

xp(0) = xp,0

})
. (32)

• τ(t) = t mod T is reset to zero every T seconds, so τ ∈ [0;T].

• ω(t) is also reset to zero every T seconds. Inbetween it grows by

ω̇ ∈ Fω(Xp,Ω), (33)

so, for kT < t < (k + 1)T ,

ω(t) =

∫ t

kT

ω̇(τ) dτ
Lemma A.5 (Appendix A.3)

∈ [0;T]⊗�Fω(Xp,Ω) =: Ω′. (34)

If X ′p ⊆ Xp and Ω′ ⊆ Ω, then, by [0;T] ⊆ R, the condition Reachx̃(H2) ⊆ X̃ of Theorem 3.7 is
fulfilled and therefore, H1 ⊆x̃ H2. As there is a mapping x = q(x̃), also H1 ⊆x H2.

The result is summarized by the following theorem:

Theorem 4.1 (Zero-Order Continuization). From Fig. 3, consider the control loop H0 with
state vector x and its modifications H1 and H2 with state vector x̃. Let fc be a differentiable
function. Then, H0 =x H1 with

x = q(x̃) :=
[
x>p (fc(xp) + ω)> τ

]>
. (35)

Also, H1 ⊆x H2 if X ′p ⊆ Xp and Ω′ ⊆ Ω. Herein, Xp and Ω are arbitrarily chosen and represent
a (possibly wrong) guess for the set of xp and ω. X ′p and Ω′ are determined by (32) and (34),
and all remaining variables are as given in the above derivation.

217

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

Proof. See the above derivation.

Remark 4.2 (Iterative Analysis). If the condition does not hold, one can retry with an enlarged
version of the result as new assumption, e.g., Xp = X ′p⊕Br and Ω = Ω′⊕Br with an arbitrary
bloating radius r ≥ 0. /

Remark 4.3 (Comparison with Prior Work). Theorem 4.1 mostly, but not exactly matches the
results of [4]. Particularly, [4] also permits that fc depends on xc, which will be discussed in
the following chapter. The remaining differences are less severe and can be judged as typing
errors with high certainty, as detailed in Appendix B. /

Remark 4.4. As X ′p can be determined without knowing Xp, it is possible to avoid guessing
Xp: First, choose Ω and compute X ′p. Then, use Xp = X ′p to finally determine Ω′. /

Lemma 4.5. If the conditions of Theorem 4.1 hold, the following statements are true:

• (31) is an abstraction of xp(t).

• xp(t) ∈ X ′p for all t.

• ω(t) ∈ Ω′ and therefore xc(t) = fc(xp(t)) + ω(t) ∈ {fc(xp(t))} ⊕ Ω′ for all t.

Conjecture 4.6. There exist stable control loops (of the form H0 per Fig. 3) whose stability
can never be shown by Theorem 4.1. This particularly affects control loops whose discrete-time
execution differs significantly from quasi-continuous, i.e., arbitrarily fast, execution.

4.2 First-Order Continuization

The method of Zero-Order Continuization introduced in the previous section is appropriate for
static state-feedback controllers, i.e., if the control signal u

u[k] = f(xp[k]) (36)

is determined only from the plant state xp, where [k] denotes the discrete-time value obtained
at t = kT . Zero-Order Continuization approximates arbitrarily fast operation of the controller,
i.e., T → 0 with unchanged f . However, this approximation makes no sense if the controller
has internal dynamics such as a state observer or, for example, an integral part

xc[k + 1] =xp[k] + xc[k]︸ ︷︷ ︸
fc(xp,xc)

≈ 1

T

∫
xp dt, (37a)

u[k] =Kxc[k]. (37b)

Here, T → 0 leads to an infinite speed of integration, so Zero-Order-Continuization fails. The
contrary is implied by [4, Theorem 1], where fc may depend on xc, however, the counterexample
in Appendix B suggests this is rather a typing error.

As a remedy, the idea of Continuization is extended to a first-order -hold approximation, as
sketched in Fig. 5: Following the idea of [9, Section 4.1], a linear interpolation xint(t) between
neighboring samples xc(kT) and xc((k + 1)T) is constructed and then differentiated:

xint(t) := (1− α(t))xc[k] + α(t)xc[k + 1], α(t) :=
t− kT
T

, kT ≤ t ≤ (k + 1)T (38)

⇒ ẋint =
1

T
(xc[k + 1]− xc[k]) =

1

T
(fc(xc[k], xp[k])− xc[k]). (39)

218

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

t

S
ta

te

discrete-time state xc[k]

linear interpolation xint(t)

continuous approximation x̃c(t)

error bound for x̃c(t) vs. xint(t)

Figure 5: Principle of First-Order Continuization: A discrete-time system is smoothed by
linear interpolation and then approximated as a continuous-time differential equation. The error
between the continuous approximation and the original interpolation is modeled as disturbance.

Assuming that xc and xp change slowly leads to approximate continuous-time dynamics

˙̃xc ≈
1

T
(fc(x̃c, xp)− x̃c), (40)

whose solution x̃c closely resembles the linear interpolation xint of the discrete-time signal xc.
For the exemplary integral controller (37), this yields

˙̃xc ≈
1

T
xp, (41)

which recovers the desired integrator dynamics: The discrete-time integrator has been con-
tinuized. Formal application of this idea requires an appropriate error bound, for which the
difference between ˙̃xc and ẋint is considered as a disturbance on the continuous dynamics.

Theorem 4.7 (First-Order Continuization). From Fig. 6, consider the control loop H0 with
state vector x and its modifications H1 and H2 with state vector x̃. (Unlike in Theorem 4.1,
there are no specific requirements on fc.)

Then, H0 =x H1 with x = q(x̃). Additionally, H1 ⊆x H2 if X ′pc ⊆ Xpc and ∆′ ⊆ ∆.
Herein, ∆ and Xpc are arbitrarily chosen and represent a (possibly wrong) guess for the set of

δpc :=
[
δ>p δ>c

]>
and xpc :=

[
x>p x̃>c

]>
. X ′pc and ∆′ are defined as

Reachxpc(H2) = Reachxpc

 ẋpc ∈ Fpc(xpc,∆)

xp(0) = xp,0

x̃c(0) = xc,0

 =: X ′pc, (42)

Reachδpc(H2) = Reachδpc

(
δ̇pc ∈ Fδ(Xpc,∆)

δpc(0) = 0
, [0;T]

)
⊆ [0;T]⊗�(Fδ(Xpc,∆)) =: ∆′, (43)

where Xpc := Xpc ⊕Bε, ∆ := ∆⊕Bε, and Fpc, Fδ are given in H2 in Fig. 6.

Proof Sketch. H0 =x H1 with the coordinate transformation x = q(x̃) can be shown by consid-
ering a trajectory of H1, as sketched in Fig. 6 (top right). By construction of H1, x−p := xp+ δp
is the newest sample of xp(kT) and x−c := x̃c+δc is the previous sample of xc, so that fc(x

−
p , x

−
c)

reconstructs the current sample of xc. Additionally, x̃c is a linear interpolation between the
samples of xc with a time delay of T . A detailed proof is detached to Appendix A.4.

The proof concering H1 ⊆x H2 is analogous to Theorem 4.1 and therefore omitted.

219

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

ẋp = fp(xp, xc)
ẋc = 0
τ̇ = 1

Inv: τ ≤ T

xp(0) = xp,0
xc(0) = fc(xxp,0, xc,0)
τ(0) = 0

H0:

Guard: τ = T

τ ′ = 0
x′c = fc(xp, xc)

xc (H0)

x−c := x̃c + δc (H1)

x̃c (H1)

δc (H1)

τ

T 2T 3T

t

T

δp (H1)
xp

x−p := xp + δp (H1)

Trajectory of H0 and H1:

xp,0

xc,0

;

change state vector from x :=

xpxc
τ

 to x̃ :=


xp
x̃c
δp
δc
τ

 with x :=


xp

fc(xp + δp︸ ︷︷ ︸
x−p

, x̃c + δc︸ ︷︷ ︸
x−c

)

τ


︸ ︷︷ ︸

q(x̃)

[
ẋp
˙̃xc

]
︸ ︷︷ ︸
ẋpc

=

[
fp(xp, xc)

1
T

(
xc − x−c

)] ∣∣∣∣∣ x−c =x̃c+δc

x−p =xp+δp

xc=fc(x
−
p ,x

−
c)︸ ︷︷ ︸

fpc(xpc,δpc)[
δ̇p
δ̇c

]
︸︷︷︸
δ̇pc

=

[
−ẋp
− ˙̃xc

]
= −fpc(xpc, δpc)

τ̇ = 1

Inv: τ ≤ T

xp(0) = xp,0
x̃c(0) = xc,0
δpc(0) = 0
τ(0) = 0

H1:

Guard: τ = T

τ ′ = 0
δ′pc = 0

?

⊆x H2:

[
ẋp
˙̃xc

]
∈{fpc(xpc, δpc) | δpc ∈ ∆}︸ ︷︷ ︸

Fpc(xpc,∆)[
δ̇p
δ̇c

]
∈{−fpc(xpc, δpc)

| xpc ∈ Xpc, δpc ∈ ∆}︸ ︷︷ ︸
Fδ(Xpc,∆)

τ̇ =1

Inv: τ ≤ T

xp(0) = xp,0
x̃c(0) = xc,0
δpc(0) = 0
τ(0) = 0

Guard: τ = T

τ ′ = 0
δ′pc = 0

Figure 6: Hybrid automata of control loop and continuization in Theorem 4.7

220

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

5 Experiments

This section evaluates an implementation of First-Order Continuization, using SpaceEx [7]
and HYST [3] for reachability analysis and the Python mpmath library [11] for inter-
val arithmetic. Open-source code is available at https://github.com/qronos-project/

timing-stability-lmi/.
In the experiments, the linear case is considered, which can be summarized as

ẋp = fp(xp, xc) = Apxp +Bpcxc, (44a)

x′c = fc(xp, xc) = Bcpxp +Acxc at t = kT. (44b)

Zero-Order Continuization is not evaluated, as this was already done in [4]. The implementation
mostly follows Section 4.2; further details are given in Appendix C.

The following examples are based on Example C1 from [9], which represents a part of the
angular rate control of a quadcopter: The angular rate xp with dynamics

ẋp = u/Jx, y = xp, xp(0) ∈ [−1; 1], Jx = 9.0359 · 10−6 (45)

and control input u is controlled by a PI-controller approximating u = −KPxp − KI

∫
xp dt

with KP = 3.6144 · 10−3 and KI = 2.5557 · 10−4. The controller period T = 0.01 is chosen
such that the behavior differs from the continuous equivalent by about 20 percent [9, Fig. 7].
The discretized implementation incurs a one-period processing delay from xp to u. However,
the formulation used here in Section 4.2 does not directly admit this delay, as there is no
extra sample-and-hold mechanism between xc(t) and the plant input u(t). To avoid extra delay
states, the example is simplified by dropping the delay:

Example C3 (PI discrete). Choosing xc,1 ≈
∫
xp dt and xc,2 ≈ xp leads to

Ap = 0, Bpc =
1

Jx

[
−KI −KP

]
, Bcp =

[
T
1

]
, Ac =

[
1 0
0 0

]
. (46)

Continuization of this system fails: No valid error bound can be determined, as the iteration
does not converge even for small T (T = 0.001, whereas the original example C1 has T = 0.01).
Presumably this is due to the zero eigenvalue of Ac, as this discrete-time dead-beat behavior
has no proper continuous equivalent. This variant is therefore excluded from further analysis.

Example C4 (P continuous, I discrete). As a simple academic example, the proportional
part of the controller is changed to continuous time and merged with the plant. Note that this
is not equivalent to the previous example. The remaining controller is a discrete-time integrator.

Ap =
−KP

Jx
, Bpc =

−KI

Jx
, Bcp = T, Ac = 1, T = 0.003 (47)

For T = 0.003, Continuization shows stability and reasonable bounds, as will be illustrated
later. For larger periods, the bounds grow until Continuization starts to fail near T = 0.01.

Example C5 (P as discrete lowpass, I discrete). As a more realistic variant, the proportional
feedback is lowpass-filtered in discrete time with an equivalent time constant of TL = 0.1:

Ap = 0, Bpc =
1

Jx

[
−KI −KP

]
, Bcp =

[
T

1− e−T/TL

]
, Ac =

[
1 0
0 e−T/TL

]
, T = 0.001

(48)

221

https://github.com/qronos-project/timing-stability-lmi/
https://github.com/qronos-project/timing-stability-lmi/

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

C4 (original):

xp (reach. analysis) xp (simulation)

C4 (continuized):

timed out
(>10 h)

C5 (original):

C5 (continuized):

xc,1 (simulation)

Figure 7: Reachability analysis and randomized simulations for the example systems

For TL → 0, this would be equivalent to Example C3. With the smaller period of T = 0.001,
results are similarly positive as in the previous example.

To illustrate the results, the behavior of the original and continuized systems for C4 and
C5 is shown in Fig. 7 for a horizon of t = 0.5 seconds. The left column shows the outer
approximation of the reachable set Reachxp(Hi, t) of the plant state xp(t) determined using
SpaceEx. The remaining columns show randomized simulations of xp (middle) and the first
controller state xc,1 (right) using PySim from the HYST/Hypy toolset. It can be seen that the
original systems are stable but ill-suited for reachability analysis: The approximated reachable
set diverges (C4) or cannot be computed within ten hours (C5), although the simulations
indicate stability. It should be noted that because this paper is restricted to strictly periodic
controllers, it should still be possible to solve these systems without Continuization with some
analysis tools and optimized parameters. Mainly, one could exploit that the transitions occur
at fixed times. However, this benefit disappears for an extension to uncertain timing [9].

222

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

After Continuization, reachability analysis is easy: SpaceEx returns a useful result with
little pessimism compared to the simulations. The only downside is the pessimism incurred by
Continuization itself. Particularly, some steady-state uncertainty remains, while the original
system converges to zero. This is because the assumed disturbance bound is constant over time,
which could however be mitigated by “restarting” with a lower disturbance bound after some
time has passed [4, Lemma 2].

6 Conclusion and Outlook

Results This paper considers the analysis of digital control loops whose behavior is similar
to a continuous-time differential equation. This paper presented a new formal framework for
Continuization, a method to determine this continuous equivalent and use it for analysis. Two
variants were derived: Zero-Order Continuization is equivalent to previous work by Bak and
Johnson. Unlike assumed previously, this method is limited to static controllers, i.e., controllers
with only feedthrough and no dynamics. As a complement, the novel method of First-Order
Continuization is presented. For the first time, this method allows the Continuization of con-
trollers with internal dynamics, e.g., an integral part or lowpass filter. Experiments show it can
be successfully applied for dynamics controllers without feedthrough if the period is small enough
to approximate continuous-time behavior. However, controllers with dynamics and feedthrough
can not be solved yet.

Open Questions The results open up a number of questions and possible future develop-
ments: Is it possible to analyze controllers with dynamics and feedthrough, e.g., the common
PI controller, by combining Zero- and First-Order Continuization? Can the fundamental re-
striction to small periods be reduced? A possible direction of research could be higher-order
Continuization, analogous to higher-order (e.g., Runge-Kutta) numerical integration methods.

For the sake of brevity, this paper only considered strictly periodic execution. An extension
to relaxed timing schemes is of high practical importance, e.g., to uncertain periods [4] or
uncertain input/output timing [9], as these are difficult or impossible to analyze with other
methods. The former was already solved in [4] for Zero-Order Continuization. Both cases
should be solvable in the formal framework presented here by adding additional sample-and-
hold states analogous to δp and δc.

Regarding the class of systems, the presented formal framework should allow for general-
ization with little effort: The theory already covers nonlinear dynamics, and the results should
hold unchanged for the case of bounded disturbance. Similarly, the results should extend to
hybrid plants and controllers (cf. Conjecture A.4). For these hybrid systems, reachability anal-
ysis as employed here is particularly suitable, while other methods such as Lyapunov functions
are rather difficult.

In summary, First-Order Continuization and the underlying formal framework are a promis-
ing step towards the verification of real-time control systems with uncertain timing.

References

[1] Mohammad Al Khatib, Antoine Girard, and Thao Dang. Stability verification and timing contract
synthesis for linear impulsive systems using reachability analysis. Nonlinear Analysis: Hybrid
Systems, September 2016.

223

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

[2] Matthias Althoff, Soner Yaldiz, Akshay Rajhans, Xin Li, Bruce H. Krogh, and Larry Pileggi. For-
mal verification of phase-locked loops using reachability analysis and continuization. In 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, November
2011.

[3] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HYST. In Proceedings of the 18th
International Conference on Hybrid Systems Computation and Control - HSCC '15. ACM Press,
2015.

[4] Stanley Bak and Taylor T. Johnson. Periodically-scheduled controller analysis using hybrid systems
reachability and continuization. In 2015 IEEE Real-Time Systems Symposium. IEEE, December
2015.

[5] Viktorio Semir el Hakim and Marco Jan Gerrit Bekooij. Stability verification of self-timed control
systems using model-checking. In 2018 21st Euromicro Conference on Digital System Design
(DSD). IEEE, August 2018.

[6] Goran Frehse. An introduction to hybrid automata, numerical simulation and reachability analysis.
In Formal Modeling and Verification of Cyber-Physical Systems, pages 50–81. Springer Fachmedien
Wiesbaden, 2015.

[7] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification
of hybrid systems. In International Conference on Computer Aided Verification, pages 379–395.
Springer Berlin Heidelberg, 2011.

[8] Maximilian Gaukler, Günter Roppenecker, and Peter Ulbrich. Details and proofs for: Stability
analysis of multivariable digital control systems with uncertain timing, 2019.

[9] Maximilian Gaukler and Peter Ulbrich. Worst-case analysis of digital control loops with uncertain
input/output timing. In ARCH19. International Workshop on Applied veRification for Continuous
and Hybrid Systems, 2019.

[10] Thomas A. Henzinger. The theory of hybrid automata. In M. Kemal Inan and Robert P. Kurshan,
editors, Verification of Digital and Hybrid Systems, chapter 13, pages 265–292. Springer, 2000.

[11] Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic
(version 1.1), December 2018. http://mpmath.org/.

A Formal Details and Proofs

A.1 Formal Definition of Hybrid Automata

Definition A.1 (Hybrid Automaton). The semantics of hybrid automata in this paper are
based on the work of Henzinger [10, Definitions 1.4 and 1.5], with some minor simplifications.

A hybrid automaton is defined by

• A finite set Loc of discrete-valued locations (“modes”)

• A vector x ∈ Rn of continuous-valued state variables (abbreviated as “states” with some
abuse of terminology)

• Discrete transitions (“jumps”) from i ∈ Loc to j ∈ Loc with

– a non-numeric transition label αi,j /∈ R, e.g., a letter of the alphabet, whose value is
not further relevant in this paper,

– a guard condition guard i,j(x) ∈ {true, false} to describe if the transition is enabled,
and

224

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

– a transition function transi,j(x) ⊆ Rn modeling the change of continuous variables
due to the transition.

The discrete transition from x = x in location i to x = x′ in location j is possible (formally,

the relation (i, x)
αi,j−→ (j, x′) is true) iff guard i,j(x) is true and x′ ∈ transi(x).

• Continuous dynamics in a location i with

– an invariant condition inv i(x) ∈ {true, false} and

– a dynamics (flow) flow i(x, ẋ) ∈ {true, false}, e.g., an ordinary differential equation.

The continuous transition in location i from x to x′ with duration δ ≥ 0 is possible

(formally, the relation (i, x)
δ−→ (i, x′) is true) iff there is a solution (witness) ξ(t) :

[0; δ] 7→ Rn such that

– ξ(0) = x and ξ(δ) = x′,

– flow i(ξ(t), ξ̇(t)) and inv i(ξ(t)) are true on (0; δ) and

– ξ(t) is differentiable on (0; δ) and continuous on [0; δ].

In particular, the invariant may be violated at the start and end of the transition, and

(i, x)
0−→ (i, x) is always true. Note that here, t refers to the local time since the start of

the transition.

• An initial set Init ⊆ Loc × Rn: Trajectories start at all (l, x) ∈ Init with inv l(x) = true.
The restriction to inv l(x) = true serves no purpose in this paper, except that it ensures
compatibility with Henzinger’s definition.

A trajectory of the automaton is defined as a chain of transitions (l0, x0)
β1−→ (l1, x1)

β2−→
. . .

βn−→ (ln, xn) of arbitrary length n ≥ 0 with (l0, x0) ∈ Init and inv l0(x0) = true. The
duration of this trajectory is defined as the sum

duration =

n∑
i=1

{
βi, βi ∈ R (continuous transition),

0, else (discrete transition)
(49)

of the durations of all continuous transitions.
Should any of the involved functions become undefined, e.g., if flow contains a division by

zero, then this is treated as false or the empty set {}, forcing an end of the trajectory (deadlock)
if no other transition is possible. /

A.2 Bounded Abstractions: Theorem 3.7

Proof of Theorem 3.7. Assume the given conditions (14) and (15) are true. Consider any tra-
jectory

(l0, x0)
β1−→ (l1, x1)

β2−→ . . .
βn−→ (ln, xn) (50)

of H1 to show by induction that every transition (li, xi)
βi+1−→ (li+1, xi+1) of this trajectory also

exists in H2 and consequently Reachx(H2) ⊇ Reachx(H1).

225

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

Induction Assumption IA(i): For given i, where 0 ≤ i ≤ n, the first i transitions of the
trajectory (50) of H1 are also a valid trajectory of H2, i.e.,

(l0, x0)
β1−→ (l1, x1)

β2−→ . . .
βi−→ (li, xi) (51)

is also trajectory of H2. This implies that (l0, x0) ∈ Init(H2) and xi ∈ Reachx(H2).

Start of Induction: H1 and H2 have the same initial set and invariant, so their trajectories
start the same. Hence, IA(0) is true.

Induction Step: Assume IA(i) to show IA(i + 1): By IA(i), xi ∈ Reachx(H2), so xi ∈ X.
Consider the following cases:

• The next transition (li, xi)
βi−→ (li+1, xi+1) is a discrete transition. Then, it is present

both in H1 and H2, because the invariant does not affect the discrete transitions.

• The next transition (li, xi)
δ−→ (li+1, xi+1) is a continuous transition with duration δ ≥ 0.

By the definition of continuous transitions, li = li+1 and there is a witness ξ(t) defined
on 0 ≤ t ≤ δ such that ξ(t) is continuous on [0; δ] and differentiable on (0; δ),

ξ(0) = xi, (52)

ξ(δ) = xi+1, (53)

ξ̇(t) ∈ F1(ξ(t)) ∀t ∈ (0; δ) and (54)

inv(ξ(t)) = true ∀t ∈ (0; δ). (55)

To show that ξ(t) is a witness for the same transition in H2, it must be shown that also

ξ̇(t) ∈ F2(ξ(t)) ∀t ∈ (0; δ). (56)

– If δ = 0, the transition is the trivial transition (li, xi)
0−→ (li, xi), which is also

present in H2.

– If δ > 0 and ξ(t) ∈ X ⊕ Bε for all t ∈ [0; δ], then also ξ̇(t) ∈ F1(ξ(t)) ⊆ F2(ξ(t))

for all t ∈ (0; δ). Consequently, ξ(t) is witness of a continuous transition (li, xi)
δ−→

(li, xi+1) of H2.

– The remaining case is that δ > 0 and ξ(t) /∈ X ⊕ Bε for some t ∈ [0; δ]. Informally,
ξ has left X by a distance of more than ε. Then, there is a time of violation t1 with
0 ≤ t1 ≤ δ such that ξ(t1) /∈ X⊕Bε. By the induction assumption, xi ∈ Reachx(H2),
so ξ(0) ∈ Reachx(H2). With

Reachx(H2)
(15)

⊆ X ⊂ X ⊕Bε (57)

it follows that ξ(0) ∈ X ⊕Bε, so t1 > 0.

In summary, ξ(t) is continuous, starts at ξ(0) ∈ X and reaches ξ(t1) /∈ X ⊕ Bε at
t1 > 0. Consequently, as illustrated in Fig. 8, there is a time t0 between 0 and t1
such that ξ has already left X, but only by a distance of at most ε: There exists t0
with 0 < t0 < t1, ξ(t0) /∈ X and ξ(t) ∈ X ⊕Bε∀t ∈ [0; t0].

226

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

Consider the same ξ(t) defined on a shortened timespan 0 ≤ t ≤ t0. As it fulfills
all conditions given in the definition, it is witness of a shorter continuous transition

(li, xi)
t0−→ (li, ξ(t0)) of H1. Within that shorter timespan, ξ(t) stays within X ⊕Bε,

so it fulfills all conditions of the previous case for δ = t0. Therefore, H2 has the same

transition (li, xi)
t0−→ (li, ξ(t0)).

This leads to a contradiction: Because of this transition, ξ(t0) ∈ Reachx(H2). By the
assumed condition (15) of the theorem, Reachx(H2) ⊆ X, so ξ(t0) ∈ X. However,
in the current case, ξ(t0) /∈ X, so the case is impossible.

Conclusion IA(i) holds for all i ≥ 0 up to the length n of the given trajectory of H1.
Therefore, any trajectory of H1 is a trajectory of H2, so H1 ⊆x H2.

Remark A.2. The ε-boundary is required, which is illustrated by the following example with
“impossible” flow:

X0 = {0}, F1(x) = {1}, X = [−1; 1], F2(x) =

{
{1}, x ≤ 1,

{−1}, x > 1

}
,

h(x) = false, g(x) = x, inv(x) = true. (58)

H1 is equivalent to ẋ = 1, x(0) = 0, which yields x(t) = t for t ≥ 0. H2 has the solution
x(t) = t only within 0 ≤ t ≤ 1. At t = 1, there is a deadlock, so the trajectories do not
continue any further, as will be explained later. Consequently, Reachx(H1) = [0;∞) and
Reachx(H2) = [0; 1] ⊆ X. However, for ε = 0, the theorem would state that H1 ⊆x H2, which
is clearly false.

To see the deadlock of H2 at t = 1, consider all possible transitions starting from x(1) = 1.
First, there are no possible discrete transitions. Second, there is a continuous transition of
duration δ = 0, but it has no effect on x and t, so it can be ignored. Lastly, there is also
no continuous transition of duration δ > 0: This would require a witness ξ(t) with ξ(0) =
x(1) = 1 that is differentiable on (0; δ) and fulfills ξ̇(t) ∈ F2(ξ(t)) on (0; δ). The derivative of
a differentiable function is continuous, but ξ̇ ∈ F2(ξ) ⊆ {+1,−1}, so the only two candidates
for ξ̇(t) are the constant functions ξ̇(t) = ±1. Consequently, the only two candidate witnesses
are ξ(t) = 1 ± t. Consider an arbitrary time t ∈ (0; δ) to see that neither candidate fulfills
ξ̇(t) ∈ F2(ξ(t)): For the case “+”, ξ > 1, so ξ̇ = 1 /∈ F2(ξ) = {−1}. For the case “−”, ξ < 1,
so ξ̇ = −1 /∈ F2(ξ) = {1}. Hence, there is no valid witness, so H2 has no solutions beyond
t = 1. /

Remark A.3. Theorem 3.7 makes no restrictions on the set X. The set may be non-connected,
non-convex or could even contain isolated points. Similarly, no special restrictions apply on the
dynamics F (x), such as the existence or continuity of solutions. This generality is a benefit of
defining hybrid automata by a chain of transitions. /

Conjecture A.4. Theorem 3.7 can be generalized to hybrid automata with multiple modes in
a way such that there is a different assumption for each mode. As a naive proof sketch, treat
the mode number as an additional continuous state variable with zero derivative and then merge
all modes into one whose flow, invariant, guard and transition depend on the mode number.
Similarly, merge the set of assumptions by introducing the mode number as new dimension.
Then apply the theorem in its current form.

227

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

ε

X ⊕Bε

X ξ(0) ξ(t0)

ξ(t1)
ξ(δ)

Figure 8: A continuous trajectory from inside X to outside X ⊕Bε must first pass through the
“boundary” (X ⊕Bε) \X.

A.3 Zero-Order-Continuization

The following lemma is required for the proof of Theorem 4.1:

Lemma A.5. Let f : R 7→ Rn be an integrable function and F be a set. If f(t) ∈ F for all
t ∈ [0;T], then ∫ t

0

f(τ) dτ ∈ [0;T]⊗ convF for all t ∈ [0;T], (59)

where conv denotes the convex hull.

Proof Sketch. Assume t ∈ [0;T]. Consider the integral as weighted sum of n→∞ summands,

∫ t

0

f(τ) dτ = t

n−1∑
i=0

1

n
f

(
t

n

)
︸ ︷︷ ︸

(∗)

. (60)

In this product, the first factor t is in [0;T] by assumption. The second factor (∗) is a convex
combination of values of f(τ) ∈ F , which by definition is inside the convex hull of F .

For a fast pessimistic approximation, the convex hull can be replaced by the interval hull.

Remark A.6. To see that taking the convex hull (or interval hull) is necessary, consider

F =

{[
1
0

]
,

[
0
1

]}
, f(t) =

[
1
0

]
for 0 ≤ t < T

2
, f(t) =

[
0
1

]
for

T

2
≤ t ≤ T (61)

and T = 1, for which ∫ T

0

f(τ) dτ =
T

2

[
1
0

]
+
T

2

[
0
1

]
=

[
1
2

1
2

]
(62)

is not contained in

[0;T]⊗ F =

{[
t
0

]
,

[
0
t

] ∣∣∣∣∣ 0 ≤ t ≤ 1

}
. (63)

/

228

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

A.4 First-Order-Continuization

Proof that H0 =x H1 in Theorem 4.7. Consider the value of x̃ along a trajectory of H1 to show
that there is a one-to-one correspondence x = q(x̃) (as given in Fig. 6 on page 220) with the
state x along a trajectory of H0. The following proof proceeds by induction, extending the
trajectory by one transition in every induction step. For the sake of readability, the proof steps
are not strictly formalized, but sketched in terms of x(t) and x̃(t). To clarify the meaning of x(t)
at discrete transitions, x(t−) refers to the value before and x(t+) to the value after a possible
discrete transition at t. This notation is possible because at most one discrete transition occurs
at a given time instant. As a special case, t = 0− refers to the initial state, and t = 0+ to the
state after a possible discrete transition following the initial state.

Assumption: Well-Behaved Automaton For simplicity, assume that in H0

1. every trajectory can be extended to infinite duration,

2. every continuous transition can be extended to duration T and

3. all functions are defined globally.

This assumption excludes some problematic scenarios, but should be without loss of generality.
As sketched in the following, if there is a “problem”, it will be the same for H0 and H1, and
except for that point in time, the proof can be reused.

1. Trajectories ending due to impossible flow (cf. H2 in Remark A.2), finite escape time or
a similar deadlock will admit the same effect in H0 and H1 at the same time.

2. Piecewise-continuous solutions due to discontinuous derivatives are built from piecing
together multiple continuous transitions (cf. the definition in Appendix A.1). This is the
same in H0 as in H1. For each piece, the proof can be reused.

3. Trajectories of H0 ending due to a transition with undefined fc will render the state
transformation q(x̃) of H1 undefined from that time on, as it also contains fc. However,
this is not a problem since the derivative in H1 will also become undefined, so both
automata reach a deadlock.

Induction Assumption IA(k): For given k ≥ 0, the trajectory is consistent until t = kT+,
i.e.,

x(t+) = q(x̃(t+)) for 0 ≤ t ≤ kT, (64)

x(t−) = q(x̃(t−)) for 0 ≤ t ≤ kT. (65)

H0 and H1 share the state names xp and τ , though it must still be proven that these actually
have equal value. For τ , it is obvious that both automata behave exactly the same. For xp,
however, this is not immediately clear, so its values will be distinguished by xH0

p and xH1
p .

Start of Induction (k = 0): At t = 0, the initialization is consistent, and no discrete
transition occurs:

x(0−) = x(0+) =

 xp,0
fc(xxp,0, xc,0)

0

 = q(x̃0) = q(x̃(0−)) = q(x̃(0+)). (66)

Therefore, IA(0) holds.

229

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

Induction Step: Assume IA(k), where k ≥ 0.

1. Continuous Evolution from t = kT+ to t = (k + 1)T−: The first goal is to show that the
continuous evolution is consistent per

x(t) = q(x̃(t)) for kT < t < (k + 1)T. (67)

This will be shown in two steps that are repeated for each component xp, xc and τ :

• The “initial condition” at t = kT+ is consistent per IA(k), which implies x(kT+) =
q(x̃(kT+)).

• The flow is consistent as well, i.e.,

ẋ =
dq(x̃(t))

dt
for kT < t < (k + 1)T. (68)

(a) Consistency of τ : As noted before, τ is obviously equal in both automata.

(b) Consistency of xc: The following steps show that for the evolution from t = kT+ to
t = (k+1)T−, the state xc in H0 is consistent with its counterpart fc(x

H1
p +δp, x̃c+δc)

in H1.

i. Initial Condition: For the initial condition, IA(k) implies that

xc(kT
+) = fc(xp(kT

+) + δp(kT
+), x̃c(kT

+) + δc(kT
+)). (69)

ii. Flow: Next, the time derivatives of xc and its equivalent in H1 are shown to be
equal. For the continuous evolution between t = kT+ and t = (k + 1)T−, the
following holds: In H0,

ẋc = 0, (70)

and in H1,

ẋ−c = ˙̃xc + δ̇c = 0

ẋ−p = ẋH1
p + δ̇p = 0

}
⇒

dfc(

const.︷ ︸︸ ︷
xH1
p + δp,

const.︷ ︸︸ ︷
x̃c + δc)

dt
= 0. (71)

Therefore, the xc-component of the flow consistency (68) is true:

ẋc =
d

xc-component of q(x̃)︷ ︸︸ ︷
fc(x

H1
p + δp, x̃c + δc)

dt
for kT < t < (k + 1)T. (72)

iii. Conclusion: As the flow and initial condition are consistent, (69) can be ex-
tended to the whole duration of the continuous evolution:

xc(kT
+) = xc((k + 1)T−) = xc(t) = fc(x

H1
p (t) + δp(t), x̃c(t) + δc(t))

for kT < t < (k + 1)T. (73)

This result will now be used to show the consistency of xp.

230

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

(c) Consistency of xp: Analogous to the considerations for xc, consider xp from t = kT+

to t = (k + 1)T−:

i. Initial Condition: By IA(k), xH0
p (kT+) = xH1

p (kT+), so the initial condition
matches.

ii. Flow: In H0,

ẋH0
p = fp(x

H0
p , xc). (74)

In H1,

ẋH1
p = fp(x

H1
p , fc(xp(t) + δp(t), x̃c(t) + δc(t)))

(73)
= fp(x

H1
p , xc)

for kT < t < (k + 1)T. (75)

iii. Conclusion: Therefore, xp evolves consistently:

xH0
p (t) = xH1

p (t) for kT < t < (k + 1)T. (76)

From items 1a to 1c, it follows that

x(t−) = x(t+) = q(x̃(t−)) = q(x̃(t+)) for kT < t < (k + 1)T, (77)

and also

x((k + 1)T−) = q(x̃((k + 1)T−)). (78)

Together with IA(k), this shows (65) for k + 1.

2. Helper Variables x−p and x−c in H1:

(a) Preliminary Considerations: At t = 0, there is no discrete transition, so

δp(0
+) = δp(0

−) = 0 and (79)

δc(0
+) = δc(0

−) = 0. (80)

Due to the discrete transition at t = kT , k ≥ 1,

δp(kT
+) = 0 (81)

δc(kT
+) = 0. (82)

Because x̃c and xH1
p are unaffected by discrete transitions,

x̃c(t
+) = x̃c(t

−) and (83)

x̃H1
p (t+) = xH1

p (t−) (84)

hold for all t. Therefore, for any k ≥ 0,

x−p (kT+) = xH1
p (kT+) + δp(kT

+)
(79),(81)

= xH1
p (kT+)

(84)
= xH1

p (kT−) (85)

and

x−c (kT+) = x̃c(kT
+) + δc(kT

+)
(80),(82)

= x̃c(kT
+)

(83)
= x̃c(kT

−). (86)

231

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

(b) Interpretation of x−p : The variable x−p := xH1
p + δp remains constant at the current

sample-and-hold value of xp: For kT < t < (k + 1)T ,

ẋ−p = ẋH1
p + δ̇p = 0 (87)

⇒ x−p (t) = x−p (kT+) = xH1
p (kT+) + δp(kT

+)
(85)
= xH1

p (kT−) + 0 (88)

IA(k)
= xH0

p (kT−). (89)

(c) Interpretation of x−c : Similarly, x−c := x̃c + δc is a sample-and-hold value of x̃c: For
kT < t < (k + 1)T ,

ẋ−c = ˙̃xc + δ̇c = 0 (90)

⇒ x−c = x−c (kT+)
(86)
= x̃c(kT

+). (91)

(d) Interpolator state x̃c: The state x̃c will now be shown to be a specific linear inter-
polation of xc: Within the period kT < t < (k + 1)T ,

˙̃xc =
1

T

(
fc(xp + δp, x̃c + δc)︸ ︷︷ ︸

(73)
= xc(kT+)

− (x̃c + δc)︸ ︷︷ ︸
(91)
= x̃c(kT+)

)
= const. (92)

holds. Integrating this result over the period leads to

x̃c((k + 1)T−) = x̃c(kT
+) +

∫ (k+1)T−

kT+

ẋc(τ) dτ (93)

(92)
= x̃c(kT

+) + T · 1

T

(
xc(kT

+)− x̃c(kT+)
)

(94)

= xc(kT
+) (95)

(73)
= xc((k + 1)T−). (96)

In summary, x̃c

• is continuous (83),

• matches xc at the end t = (k + 1)T− of the period (96), just before the next
controller execution, and

• has constant derivative within the period (92).

For the next sentence, assume that the above holds for all k and not just for the
current value of k. Then, the above defines a linear interpolation with supporting
points at t = (k + 1)T−.

(e) Summary: If IA(k) is later shown to hold for all k, then the trajectory of H1 matches
the illustration in Fig. 6 (page 220, top right):

• x−p (t) := xH1
p (t) + δp(t) is the newest sample-and-hold value of xp.

• x−c (t) := x̃c(t) + δc(t) is the previous discrete-time value of xc.

• Consequently, fc(x
−
p , x

−
c) reconstructs the current value of xc.

• x̃c(t) is linear interpolation of xc with supporting points at t = (k + 1)T−, i.e.,
with a delay of (almost) one period.

232

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

3. Discrete Transition at t = (k + 1)T : Next, it is shown that the transition of H0 and H1

at t = (k + 1)T is consistent with x = q(x̃). In H0, this transition is

xH0
p ((k + 1)T+) = xH0

p ((k + 1)T−), (97a)

xc((k + 1)T+) = fc(x
H0
p ((k + 1)T−), xc((k + 1)T−)), (97b)

τ((k + 1)T+) = 0. (97c)

In H1, the corresponding transition is

xH1
p ((k + 1)T+) = xH1

p ((k + 1)T−), (98a)

x̃c((k + 1)T+) = x̃c((k + 1)T−) (98b)

δc((k + 1)T+) = 0, (98c)

δp((k + 1)T+) = 0, (98d)

τ((k + 1)T+) = 0. (98e)

Therefore,

q(x̃((k + 1)T+)) (99)

=

 xH1
p ((k + 1)T+)

fc(x
H1
p ((k + 1)T+) + δp((k + 1)T+), x̃c((k + 1)T+) + δc((k + 1)T+))

τ((k + 1)T+)

 (100)

(98)
=

 xH1
p ((k + 1)T−)

fc(x
H1
p ((k + 1)T−) + 0, x̃c((k + 1)T−) + 0)

0

 (101)

(78)
=

 xH0
p ((k + 1)T−)

fc(x
H0
p ((k + 1)T−), x̃c((k + 1)T−))

0

 (102)

(96)
=

 xH0
p ((k + 1)T−)

fc(x
H0
p ((k + 1)T−), xc((k + 1)T−))

0

 (103)

(97)
=

xH0
p ((k + 1)T+)
xc((k + 1)T+)
τ((k + 1)T+)

 = x((k + 1)T+). (104)

Due to this, (77) and (78), the trajectory is consistent up to t = (k+ 1)T+, so (64) holds
for k + 1.

4. Summary: Equations (64) and (65) hold for k + 1, as shown by (77), (78) and (104).
Therefore, IA(k + 1) is true.

Conclusion IA(k) holds for all k ≥ 0. Therefore, H0 =x H1 with x = q(x̃).

233

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

B Comparison with Results of Bak and Johnson (2015)

This section presents two examples to highlight differences between [4] and Theorem 4.1, and
to justify the following claim: The intended meaning of [4, Lemma 1] matches Theorem 4.1; all
problematic differences can be judged as typing errors in [4]. Due to the nature of this section,
it heavily references [4] and requires familiarity with that paper.

B.1 Definitions and Notation

A periodic discrete transition of a hybrid automaton (Model 1 in [4]) is denoted

x′ = f(x) at t = kT. (105)

A vector notation for multidimensional intervals is defined as
a1

a2

...

 ;

b1b2
...


 := [a1; b1]× [a2; b2]× (106)

For vectors, the maximum and minimum are applied elementwise.

B.2 Example F1: Controller with Internal Dynamics

The following example illustrates that, as claimed in Section 4.2, Zero-Order Continuization
can fail if the controller update depends on the controller state xc.

B.2.1 Original Control Loop

Let the control loop be given by [4, Model 1] with the parameters

ẋp = xc, (107a)

x′c = controller update(xp, xc) = 2xc at t = kT, k > 0, (107b)

xp(0) = 1, (107c)

xc(0) = 2, (107d)

T > 0. (107e)

This is a simple academic example with an unstable controller and no physical feedback. It
illustrates similar problems that occur with PI controllers or any other controllers with internal
dynamics. Moving these internal dynamics from the discrete-time to the continuous part of the
system is typically not possible, particularly not for uncertain timing.

The explicit solution of this system is

xc(kT) =2k+1, k ≥ 0, (108)

xp(kT) =1 +

k∑
i=1

2iT, k > 0. (109)

234

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

B.2.2 Continuous Approximation

Following the definition of [4], the continuous approximation is

ẋp = xc (110a)

ẋc,continuous =
d

dt
controller update(xp, xc) = 2ẋc (110b)

It is unclear how to handle ẋc, and this case occurs in none of the examples of [4]. Two
interpretations seem plausible:

1. Handle it similar to how ẋp is handled in [4, Section IV.B]: Insert the dynamics of the
original system, i.e., ẋc = 0.

2. Set ẋc = ẋc,continuous and solve the equation for ẋc,continuous.

For this specific example, both interpretations lead to the same result

ẋp,continuous = xc,continuous, (111a)

ẋc,continuous = 0, (111b)

xp,continuous(0) = 1, (111c)

xc,continuous(0) = controller update(xp(0), xc(0)) = 4. (111d)

The explicit solution of this is

xc,continuous = 4, (112a)

xp,continuous = 1 + 4t, (112b)

which is suspicious because it is radically different from the explicit solution of the original
system. Also, it does not depend on T , whereas xp(t) and xc(t) grow faster if T is decreased.
Plots for T = 1 are shown in Fig. 9.

B.2.3 Continuized Abstraction

Next, the error bound is determined to construct the safe approximation (continuized abstrac-
tion). Here, [4, Lemma 1] states that ω ∈ [−T ; 0] ⊗ [Kmin;Kmax], where K bounds the rate
of change of ẋc in the continuous approximation (not in the abstraction, as discussed later).
In loose notation, ẍc,continuous ∈ K. Maybe this is a misinterpretation and should instead be
ẋc,continuous. Here, this does not matter as both are equally zero.

Therefore, K = 0 and ω = 0, so [4] states that the continuized abstraction is the same as
the continuous approximation. This leads to a contradiction to [4, Theorem 1] (Soundness of
Continuization), which states that if K = 0, then Reach(xp,continuous) ⊇ Reach(xp). However,
for t = 4T this does not hold, since

xp,continuous(t) = 1 + 16T 6= xp(t) = 1 + 30T (113)

(cf. Fig. 9 with T = 1). Probably, controller update(xp, xc) must not depend on xc.

B.3 Interpretation of Bak and Johnson’s Lemma 1 without ẋc

For now, put aside the issue with xc and consider the remaining case.

235

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

0 1 2 3 4

0

20

40

60 xp
xp,continuous

0 1 2 3 4
0

10

20

30

t

xc
xc,continuous

Figure 9: Original system and continuous approximation without error of
Example F1 for T = 1. (Source code can be found in the subdirectory notes/

continuization-counterexample-f1-f2/ of the repository referenced in Section 5.)

B.3.1 Original Hybrid Automaton

For simplicity, only consider the periodic case. Define the controller as

ẋp =fp(xp, xc), (114a)

x′c =fc(xp) at t = kT, (114b)

xp(0) =xp,0, (114c)

xc(0) =fc(xp,0). (114d)

Definition B.1 (Continuous Approximation). The continuous approximation of (114) is de-
fined in [4] as

˙̃xp =fp(x̃p, x̃c) (115a)

˙̃xc =

(
d

dt
fc(xp)

) ∣∣∣∣∣
ẋp=fp(xp,xc), xp=x̃p, xc=x̃c

=
∂fc(x̃p)

∂x̃p
fp(x̃p, x̃c)︸ ︷︷ ︸

=fω(x̃p,x̃c)

, (115b)

x̃p(0) =xp,0, (115c)

x̃c(0) =fc(xp,0). (115d)

/

(For consistency with Section 4.2, the continuized controller state is here named x̃c, while in
[4] it is named c.) This approximation may be arbitrarily bad: Its stability is neither necessary
nor sufficient for the stability of (114).

236

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

B.3.2 Equivalent Rewriting of Original Automaton

For comparison with [4], a part of the derivation from Section 4.1 will now be repeated in
explicit notation: Defining the error ω := xc − fc(xp) leads to

ω′ =0 for t = kT, (116)

ω̇ =− d

dt
fc(xp) = −∂fc(xp)

∂xp
fp(xp, xc)︸ ︷︷ ︸

−fω(xp,xc)

for t 6= kT. (117)

Note the negative sign of fω here, resulting from the definition of fω in Section 4.1. Due to this
definition, fω matches ˙̃xc (which is named ċ in [4]), the “derivative of the cyber variable in the
continuous approximation”, up to a change of arguments from (xp, xc) to (x̃p, x̃c). [4, Lemma
1] claims that a bound on ω can be obtained from “rate of change of the derivative of ci [here:
x̃c] in the continuous approximation”, i.e.,

ω
?
∈ [−T ; 0]⊗

 min
t

trajectories of cont. approx.

d

dt
fω(x̃p(t), x̃c(t)); max

t
...

d

dt
fω(x̃p(t), x̃c(t))

 .
(118)

However, the derivation of (34) using Lemma A.5 leads to

ω =

∫ t

kT

−fω(xp(τ), xc(τ)) dτ for kT ≤ t < (k + 1)T (119)

⇒ ω ∈ [0;T]⊗ {−1} ⊗
[
min
t
fω(xp(t), xc(t)); max

t
fω(xp(t), xc(t))

]
(120)

= [−T ; 0]⊗

 min
t

traj. of original automaton

fω(xp(t), xc(t)); max
t
...

fω(xp(t), xc(t))


︸ ︷︷ ︸

Ω

, (121)

which shows two differences:

• [4, Lemma 1] speaks of “rate of change of the derivative of” x̃c, so ¨̃xc, whereas here only
the first derivative ˙̃xc = fω is considered. However, the proof and examples in [4] suggest
this is merely a typing error.

• Here, xc and xp must be from the original system, not the continuous approximation.
Also, in the examples in [4], the states are taken from the abstraction, unlike in the
Lemma, which refers to the continuous approximation. A counterexample is shown later
in Appendix B.4.

B.3.3 Continuized Abstraction

As a final step, which is roughly the same in [4] and here, the dynamics of ω in the original system
are discarded and replaced with a bound ω ∈ Ω. Here, it yields the continuized abstraction

ẋp =fp(xp, xc) = fp(xp, fc(xp) + ω) (122a)

ω ∈Ω. (122b)

237

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

The variable xc is no longer required as a state because it can be obtained from

xc = ω + fc(xp). (123)

Contrary, in [4] the continuous abstraction (in the following denoted x̂p, x̂c) is obtained from
the continuous approximation by replacing x̃c with x̃c + ω:

˙̂xp =fp(x̂p, x̂c + ω) (124a)

˙̂xc =

(
d

dt
fc(xp)

) ∣∣∣∣∣
ẋp=fp(xp,xc), xp=x̂p, xc=x̂c+ω

=
∂fc(x̂p)

∂x̂p
fp(x̂p, x̂c + ω)︸ ︷︷ ︸

=fω(x̂p,x̂c+ω)

, (124b)

x̂p(0) =xp,0, (124c)

x̂c(0) =fc(xp,0), (124d)

ω ∈Ω. (124e)

It can be seen that x̂c = fc(x̂p), as the initial condition x̂c(0) matches

x̂c(0) = fc(xp(0)) (125)

and the dynamics are the same due to

d

dt
fc(x̂p) =

∂fc(x̂p)

∂x̂p
˙̂xp

(124a)
=

∂fc(x̂p)

∂x̂p
fp(x̂p, x̂c + ω)

(124b)
= ˙̂xc. (126)

Consequently, this state x̂c is not actually required as it can computed directly from x̂p.

B.3.4 Iterative Analysis

The concept of assuming bounds, analyzing under this assumption and then checking the bound
(cf. Theorem 3.7) is similarly used in the examples given in [4]. It is therefore not discussed
further.

B.4 Example F2: Error Bounds

The following example highlights why it is not sufficient to derive bounds on ω merely from the
continuous approximation:

B.4.1 Original Control Loop

Let the control loop be given by [4, Model 1] with the parameters

ẋp =bxc, b ∈ R, b > 0, (127a)

x′c =− xp at t = kT, T = 1, (127b)

xp(0) =1, (127c)

xc(0) =− 1. (127d)

238

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

The explicit solution of this system is

xc(t) =− xp(kT), kT ≤ t < (k + 1)T, (128a)

xp(t) =xp(t0) + b

∫ t

t0

xc(τ)dt ∀t0, (128b)

=xp(kT)− b xp(kT) · (t− kT), kT ≤ t ≤ (k + 1)T, (128c)

xp((k + 1)T) =xp(kT) · (1− bT). (128d)

This is exponentially stable iff |1− bT | < 1, i.e., for 0 < bT < 2. It is diverging in an infinitely
increasing oscillation for bT > 2. To examine that problematic case, b = 3 and T = 1 are
considered in the following.

B.4.2 Continuous Approximation

The continuous approximation is

˙̃xp =bx̃c, (129a)

˙̃xc =− bx̃c, (129b)

x̃p(0) =1, (129c)

x̃c(0) =− 1. (129d)

Its solution is

x̃c(t) =e−btx̃c(0) = −e−bt ∈ [−1; 0] (130a)

and, due to symmetry, x̃p = −x̃c. For completeness, an explicit computation follows:

x̃p(t) =x̃p(0) + b

∫ t

0

x̃c(τ)dτ (130b)

=x̃p(0) + b

(
1

−b
e−bt − 1

−b
e0

)
x̃c(0) (130c)

=1 + (−e−bt + 1)(−1) (130d)

=1 + e−bt − 1 (130e)

=e−bt ∈ [0; 1]. (130f)

Therefore, the continuized system is exponentially stable for b > 0. This is true for b = 3, so
the continuized system is stable while the original is unstable, as illustrated by the simulation
in Fig. 10.

B.4.3 Applying Lemma 1

Apply [4, Lemma 1], interpreted as follows: Let K be an interval bound on the first derivative
of x̃c in the continuous approximation:

˙̃xc = −bx̃c ∈ [0; b] = K (131)

(Using the second derivative instead would also lead to a bounded interval K.) Then,

ω ∈ Ω = [−T ; 0]⊗K = [−bT ; 0]. (132)

This result is dubious, since xp is unbounded for b = 3, so its sampling error ω should be
unbounded as well. Next, examine the resulting abstraction:

239

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

0 1 2 3 4

−20

0

20
xp

xp,continuous

0 1 2 3 4

−10

0

10

t

xc
xc,continuous

Figure 10: Plots for Example F2: Original System and continuous approxima-
tion without error. (Source code can be found in the subdirectory notes/

continuization-counterexample-f1-f2/ of the repository referenced in Section 5.)

B.4.4 Continuized Abstraction

The Continuized Abstraction (124) is

˙̂xp = bx̂c + bω, (133a)

˙̂xc = −bx̂c − bω, (133b)

x̂p(0) = 1, (133c)

x̂c(0) = −1, (133d)

ω ∈ Ω = [−bT ; 0]. (133e)

Again, due to symmetry, x̂p = −x̂c. This exemplifies the claim from Appendix B.3.3 that the
x̂c-state is redundant per x̂c = fc(x̂p).

To derive bounds on the states, consider the solutions of x̂c: The x̂c-system is decoupled from
x̂p, so it is one-dimensional. For this simple system, the extremal solutions are for ω = ωmin

and ω = ωmax: Because there is no oscillation or overshoot, time-varying ω can not make it
worse. The maximum of ω is ω = 0, for which the previous result (130a) can be reused:

x̂c(t) = e−btx̂c(0) = −e−bt ∈ [−1; 0]. (134)

The minimum of ω is ω = −bT , which yields the step response of a first-order lowpass plus the
decaying initial condition:

x̂c(t) = e−btx̂c(0) + (1− e−bt)(−1)(−bT) ∈ [−1; 0]⊕ [0; bT] = [−1; bT] (135)

As said before, x̂p = −x̂c, so x̂p is also bounded. According to Lemma 1, this means that x̂p
is bounded for any finite b and T . However, x̂p is unbounded for b = 3, which is a contradiction.

240

Analysis of Real-Time Control Systems Using First-Order Continuization Maximilian Gaukler

B.5 Conclusion

If these thoughts are correct, then [4, Lemma 1] should be modified as follows (Additions and
deletions are highlighted):

Lemma B.2 (Sampling Deviation using Lipschitz Constant). Assume a state-feedback con-
troller controller updatei(xp, xc) = gi(xp), i.e., the controller must not depend on xc. Then,
given interval bounds, K = [Kmin,Kmax] on the rate of change of the derivative of ci, [i.e.,
fω(xp, xc) ∈ K with fω per (117)], in the continuous approximation sampled CPS, and the
period of the associated strictly-periodic (Model 1 from [4, Fig. 1]) controller, T , a sampling
deviation function is ωi = [−T, 0]⊗K.

In summary, even though the results of [4] appear to contain some typing errors if taken
literally, their intended meaning correctly describes Zero-Order Continuization in the same
spirit as Section 4.1.

C Implementation Details

This section gives some details on the implementation of the experiments shown in Section 5.
The first-order continuization of the linear case used here is

ẋpc =

[
Apxp +Bpcfc(xp + δp, x̃c + δc)
1
T (fc(xp + δp, x̃c + δc)− x̃c − δc)

]
(136)

=

[
Apxp +Bpc (Bcp(xp + δp) +Ac(x̃c + δc))

1
T (Bcp(xp + δp) + (Ac − I)(x̃c + δc))

]
(137)

=

[
Ap +BpcBcp BpcAc BpcBcp BpcAc

1
T Bcp

1
T (Ac − I) 1

T Bcp
1
T (Ac − I)

]
xp
x̃c
δp
δc

 (138)

= fpc(xpc, δpc). (139)

Intervals are used for the sets X and ∆. Analogous to Remark 4.4, X = �X ′pc is used. The
bloating ε in Theorem 4.7 is chosen as ε = 10−10. However, soundness is not strictly guaranteed
because SpaceEx uses unsound numerics for the scenario used here.

The analysis is executed as follows:

1. The iteration starts with the empty set ∆ = {} as initial guess.

2. Repeat up to five times:

• If the condition of Theorem 4.7 is not satisfied, enlarge ∆ by ∆ = 2�∆′.

• If it is satisfied, the analysis was successful. To reduce excess growth, shrink ∆ to
∆ = ∆′ and re-run the analysis per Theorem 4.7, which will succeed by construction.
Return the resulting bounds.

3. If the maximum number of iterations was reached, return “Continuization failed”.

For the randomized simulations with PySim, the automaton was adapted to PySim’s subtly
different semantics analogous to [9, p. 198 f.]. For SpaceEx, the used settings are scenario =

stc, directions = oct (octagonal set approximation) and set-aggregation = "none" (no
set aggregation at discrete transitions).

241

	Introduction
	Notation
	Abstraction of Hybrid Automata
	Definition of Hybrid Automaton
	Continuous-Variable Reachability and Equivalence
	Abstraction of Hybrid Automata Within Bound

	Continuization
	Zero-Order Continuization
	First-Order Continuization

	Experiments
	Conclusion and Outlook
	Formal Details and Proofs
	Formal Definition of Hybrid Automata
	Bounded Abstractions: thm:abstraction-within-bound
	Zero-Order-Continuization
	First-Order-Continuization

	Comparison with Results of Bak and Johnson (2015)
	Definitions and Notation
	Example F1: Controller with Internal Dynamics
	Original Control Loop
	Continuous Approximation
	Continuized Abstraction

	Interpretation of Bak and Johnson's Lemma 1 without c
	Original Hybrid Automaton
	Equivalent Rewriting of Original Automaton
	Continuized Abstraction
	Iterative Analysis

	Example F2: Error Bounds
	Original Control Loop
	Continuous Approximation
	Applying Lemma 1
	Continuized Abstraction

	Conclusion

	Implementation Details

