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Abstract: Installed fire safety equipment within buildings plays a crucial role in ensuring the safety of 

personnel and minimizing losses. Nevertheless, if not maintained appropriately, these devices may fail 

to function optimally in emergency situations. As building sizes continue to grow, traditional manual 

inspection methods encounter significant challenges, including a heavy workload and complex 

information recording tasks. To tackle these issues, advanced emergency equipment detection 

frameworks and improvement plans have been put forward. This framework is specifically designed to 

overcome the problem of remote inspection being unable to accurately locate objects by establishing 

spatial relationships among devices, cameras, and trajectories. Firstly, the improved detection algorithm 

is utilized to detect objects of interest. Subsequently, these objects are located through a tracking 

algorithm and Visual Simultaneous Localization and Mapping (vSLAM). The on-site experimental 

results clearly show that the framework can effectively solve various types of equipment detection 

problems in a wide range of complex scenarios and holds great promise for replacing manual labor. 
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1. INTRODUCTION  

Emergency equipment, designed for crisis response, safeguards individuals during unforeseen 

events, reducing harm. For instance, fire extinguishers combat fires, exit signs guide evacuations, and 

alarms prompt action (Xin & Huang, 2013). Diverse buildings require tailored emergency setups, like 

fire extinguishers, lighting, and communication devices (Ivanov & Chow, 2022). Hospitals, for instance, 

need medical gear and backup power (Tang, Fitzgerald, Hou, & Wu, 2014). The state of emergency 

equipment is crucial for overall safety. Inadequate gear or outdated regulations in buildings impair 

emergency responses, emphasizing the need for well-maintained equipment (Dong, You, & Hu, 2014; 

Walters & Hastings, 1998). Regular checks are vital to ensure equipment integrity and functionality. 

Assessment of emergency equipment status occurs during installation, ensuring compliance with 
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regulations, and during daily maintenance to prevent lapses in upkeep. Checks during installation 

guarantee regulatory adherence and adequate emergency preparedness, aiding construction progress 

tracking (Cao, Kamaruzzaman, & Aziz, 2022). In daily operations, maintenance gaps can lead to issues 

like inaccessible fire extinguishers or obstructed hose reels, impeding swift fire control (Xu, Chan, 

Leong, & Borondo, 2023). Routine inspections by authorities and community managers are essential to 

uphold equipment functionality (Guan, Fang, & Wang, 2018; Tse, 2002). Therefore, regular monitoring 

and maintenance of emergency equipment are vital for operational readiness, ensuring prompt and 

effective responses during crises. 

During construction, delivery, daily operation, and maintenance phases, emergency equipment 

status checks rely on manual inspection at the current stage. However, manual checks are inefficient 

and costly. According to Hong Kong Fire Department guidelines (Lo, 1998), emergency equipment 

should be inspected annually by a registered contractor. As buildings grow larger, the number of fire 

safety facilities increases, straining manpower and time, potentially compromising inspection quality. 

This results in subpar maintenance practices (Kobes, Helsloot, de Vries, & Post, 2010). Intelligent 

inspection technologies (Spencer, Hoskere, & Narazaki, 2019), particularly computer vision, offer a 

solution by enhancing automation and data collection, potentially replacing manual labor. This 

technology enables automatic data recording and analysis, generating detailed reports for maintenance 

planning and equipment management. Ultimately, it streamlines inspections, boosts equipment 

reliability, and enhances maintenance efficiency. 

Currently, emergency equipment management research primarily focuses on platform 

construction. For instance, Wang et al. (S.-H. Wang, Wang, Wang, & Shih, 2015) introduced a 

maintenance module for emergency equipment based on BIM. This module uses BIM's data storage to 

help maintenance personnel access fire safety equipment data swiftly. However, this data is manually 

verified, leading to concerns about accuracy. Vijayalakshmi et al. (Vijayalakshmi & Muruganand, 2017) 

applied IoT to monitor emergency facilities, enhancing management in two stages: improving 

firefighting product quality and employing Radio Frequency Identification (RFID) for equipment 

tracking and deficiency identification. Li et al. (Li, Becerik-Gerber, Krishnamachari, & Soibelman, 

2014) proposed an intelligent emergency response framework using metaheuristic algorithms for 

optimal solutions, integrating emergency equipment positions for decision-making. Existing research 

relies heavily on manual methods, leading to outdated information on equipment status, a major 

challenge in equipment management. On-site emergency facility management is still emerging, facing 

issues due to long life cycles and high costs. Neglected concerns include facility integrity, configuration, 

and hazards. Damaged or outdated firefighting facilities due to neglect pose risks during emergencies. 

Some buildings may lack adequate or properly placed fire protection equipment, impacting safety 

standards. Hidden dangers like obstructed fire extinguishers pose risks if not addressed promptly. The 

gap between emergency facility management platforms and actual equipment status highlights the need 

for intelligent frameworks for equipment status detection to enhance emergency response efficiency 

and reliability. Addressing these issues is crucial for ensuring the effectiveness and safety of emergency 

responses. 

While computer vision technologies have found application in civil engineering 

inspections, they currently face limitations in effectively assessing the status of emergency 

equipment. Key challenges include the scattered placement of emergency devices throughout 

buildings, leading to difficulties in spatially locating targets during long-distance inspections. 

Additionally, dynamic perspectives in video detection hinder the accurate identification and 

counting of objects. Moreover, the varying sizes of emergency equipment, coupled with image 

quality issues in videos featuring different-sized targets, necessitate detectors with enhanced 

performance to address these complexities. 
 

2. METHOD 
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This study presents an efficient automated inspection framework that utilizes cutting-edge 

computer vision and deep learning technologies for accurate positioning and identification of 

emergency equipment. The framework not only quickly detects the status of equipment but also 

compiles statistics on the equipment, facilitating enhanced management and maintenance tasks.  

The proposed visual-based method, depicted in Figure 1, comprises three main 

components: an advanced object detection network, object ID allocation and tracking, and 3D 

mapping with detailed device information. Initially, the framework captures both RGB and depth 

images using a depth camera, which are used to create an inspection map by matching 2D and 3D 

features. The RGB images are processed through an enhanced detection network to identify 

emergency equipment, while depth images are converted into a point cloud using camera 

parameters to establish spatial relationships. Features within each equipment's bounding box are 

analyzed to assign unique IDs, enabling effective tracking. These devices are then mapped onto 

the inspection trajectory to generate a comprehensive device distribution map. This method 

facilitates precise detection and tracking of emergency equipment, essential for monitoring 

progress, managing emergencies, and performing maintenance tasks. 

 

 
Figure 1. Fire safety equipment inspection framework 

 
 

2.1  Improved Fire Safety Equipment Detection Network 

Deep learning-based object detection algorithms like YOLOv5 are prevalent in industrial 

inspection but face challenges in detecting fire safety equipment due to issues like varying object sizes 

and image blurring from camera motion. To enhance performance, we propose an improved detection 

network that integrates C2F modules for advanced feature extraction, CPCA modules to accentuate and 

merge features, and DyHead to boost feature perception capabilities. This combination significantly 

improves detection accuracy and stability for device tracking in dynamic environments. 

In the proposed network, the C2F module (Reis, Kupec, Hong, & Daoudi, 2023) is introduced 

instead of the C3 module. It combines three interlaced layers with 1×1 kernel and includes the DarkNet 

bottleneck. This module adds more skip connections, eliminates branch convolution operations, and 

adds splitting operations. This enriches feature information while reducing computational complexity. 
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The C2F module optimizes the feature extraction network's information flow and ensures lightness with 

gradient diversion connections. It also draws on the ELAN module's ideas to optimize the network 

structure for easier training. By using feature vector diversion and multi-level nested convolution, it 

learns multi-scale features, expands the receptive field range, and improves the network's trainability 

and object detection performance. The attention mechanism highlights key features, removes 

background interference, and fuses features effectively. The proposed network uses the CPCA attention 

mechanism (Huang, Chen, Zou, Lu, & Chen, 2023) to address the network's limitations in handling 

different-scale, -shape, and -direction information. The CPCA attention mechanism consists of two sub-

modules: the channel attention module and the spatial attention module. Compared to traditional ones, 

CPCA has innovative designs for better capturing and enhancing key information. The proposed 

network adds the CPCA attention mechanism before outputting three-sized feature maps on the 

backbone to enhance neck section feature fusion. The model reassigns weights to different-resolution 

feature maps, enhancing useful features and suppressing irrelevant ones. This makes the model focus 

on potential fire safety equipment areas. Adding CPCA before outputting feature maps in the backbone 

network can globally select and weight feature map channels and spatial positions. Thus, the model can 

interpret the entire image's contextual information, distinguish objects and backgrounds, improving 

detection accuracy. The backbone network's downsampling causes object information loss, especially 

for small objects. Video factors also degrade object quality. To enhance head module's feature 

perception, DyHead (Dai et al., 2021) with multiple self-attention mechanisms is adopted. After 

inputting the feature map into DyHead, it becomes a 3D tensor. Features are input to scale, spatial, and 

task perception attention modules. DyHead unifies these perceptions, enabling the network to focus on 

useful info. Its cascade attention mechanism allows handling multiple tasks. Three-scale feature maps 

are input to a unified branch and processed by DyHead. 

 

 
Figure 2. Enhanced architecture of the detection network 

 

Object detection is a supervised learning task. The loss function measures the difference 

between predicted results and ground truth labels to guide model training. Minimizing the loss function 

helps object detection models learn more accurate bounding boxes and classification predictions, 

improving detection accuracy. For localization loss, IoU is commonly used to measure the overlap 

between predicted and actual bounding boxes. However, when IoU is used as a loss function, there are 

two issues: inability to distinguish bounding box shape differences and the problem of non-overlapping 
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objects. For aspect ratio bounding boxes, they may have the same overlap but can't accurately surround 

objects. IoU can't distinguish them, resulting in the same value and inability to make reasonable weight 

adjustments. When predicting small objects, there may be no overlap between the ground truth and 

prediction box, with an IoU of 0 and a gradient of 0, making the model unable to optimize effectively. 

The introduction of GIoU (Rezatofighi et al., 2019) helps alleviate the gradient problem caused 

by variations in the shapes of bounding boxes. The concept of minimum closure region C is added on 

the basis of IoU. The minimum closure region is a minimum box C that can completely enclose the two 

bounding boxes A and B. By incorporating the area of the minimum closure region into the calculation, 

GIoU can better consider the position and shape differences between bounding boxes. In addition, to 

address the issue of small objects, the Normalized Wasserstein Distance (NWD) (Liu, Johns, & Davison, 

2019; J. Wang, Xu, Yang, & Yu, 2021) is used instead of the degree of overlap to evaluate the prediction 

accuracy. For most objects, their bounding boxes are usually not strictly rectangular and may contain 

some background pixels. In these bounding boxes, the object is often concentrated at the center of the 

bounding box, while the background pixels are distributed at the boundaries. To better describe the 

weights of different pixels in the bounding box, the bounding box is regarded as a two-dimensional 

Gaussian distribution. In this model, the importance of pixels from the center of the bounding box to 

the boundary gradually decreases to distinguish the importance of the object and the background. 

The loss of the proposed GNLoss  function can be expressed as Eq.(1). Among them, G  and N

are dynamic parameters based on the size of gradients for different loss weights. A faster decrease in 

loss indicates a quicker learning speed. Nevertheless, for losses with higher learning speeds, the weight 

values should be controlled to strike a balance among various losses (He, Zhu, Wang, Savvides, & 

Zhang, 2019; Liu et al., 2019; Rezatofighi et al., 2019; J. Wang et al., 2021). The dynamic learning 

weight is defined as Eq. (2), which represents the loss ratio at time 1t −  and time 2t − . Next, 

Equation (3) is employed to normalize the learning speed through exponential processing to obtain the 

weights for each type of loss. Here, B is the equilibrium coefficient that serves to adjust the degree of 

difference in different loss weights. As the value of B rises, the disparity in weights is reduced, leading 

to a more even distribution of weights. A larger B implies a greater emphasis on balancing the weights 

among different components or tasks. 

 GN G G N NLoss Loss Loss = +  (1) 
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2.2  Equipment Spatial Positioning Based on vSLAM and Improved Visual Tracking 

The DeepSort algorithm (Lu et al., 2021) is used to distinguish different fire safety equipment 

by tracking various objects in the video and assigning unique IDs to each object. The detector provides 

DeepSort with information such as location, size, and appearance features. DeepSort uses the kalman 

filtering algorithm to predict the position and state of objects in the current frame based on the 

parameters detected in the previous frame. It also uses deep neural networks to extract object RGB 

features. Cosine distance measures the similarity of appearance features, while mahalanobis distance 

calculates the similarity of motion features to form a cost matrix. Hungarian algorithm evaluation cost 

matrix. If the matching distance is less than the predefined threshold, it is considered that the IDs are 

the same, indicating a successful match. For mismatched trajectories, perform secondary matching 

based on IoU. If successful, use the kalman filter to update the object state. Determine whether to 

remove based on the trajectory that does not match the lifespan assessment. Unlike previous tracking 

tasks that used mobile cameras as inspection sensors, this results in more intense object motion in the 

image. The IoU matching strategy based on bounding box position similarity is prone to errors or 
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omissions. Additional object depth information can improve tracking stability. Considering the uniform 

variation of distance between objects and cameras, we introduce a depth change rate based on depth 

cameras to optimize the data association evaluation method. When the matching distance is near the 

threshold, depth information can be used as an auxiliary judgment to improve the robustness of tracking 

accuracy. 

Once the 2D bounding box and ID details of every fire safety equipment are obtained, the next 

step is to get the 3D position information of the equipment with respect to the camera. Since a depth 

camera is used, the depth value d  of each pixel in the image is known. The camera model allows us 

to combine the camera's internal parameters and depth values to obtain the 3D coordinates of any pixel 

point in the camera coordinate system. Given that the framework only needs an approximate position 

of the fire safety device, which is sufficient for subsequent maintenance or information updates on the 

management platform. Hence, we take the center of the 2D bounding box as input to acquire the 3D 

coordinates of that point, representing the 3D positional information of the equipment. The projection 

process is presented. For the single frame, only the spatial transformation relationship ( ),wc wcR T  from 

the camera coordinate system cO xyz−  to the 3D coordinate system wO xyz−  needs to be obtained, and 

the target point can be projected into world coordinates by rigid transformation.  

Fire safety equipment in buildings is scattered in distribution. As a result, cameras need to obtain 

the status of all such equipment from multiple frames. Hence, it is necessary to establish a unified world 

coordinate system and convert the fire safety equipment detected from each perspective into this 

coordinate system. In the case of multiple frames, when dealing with multiple frames, it is crucial to 

determine the spatial transformation relationship 
1 1

( , )
i i i ik k k kR T

+ +
 between adjacent frames, which indicates 

the camera's spatial pose at each moment. In order to obtain the set of spatial poses of the camera at 

different timestamps, the proposed framework computes the correspondence between feature points in 

adjacent images to determine the camera's pose during motion, which includes transformation and 

rotation. Suppose the rigid spatial variation matrix between the two frames of the camera at time k  

and time 1k +  is 
4 4

: 1k kT 

−  , it can be expressed follows: 

 
: 1 : 1

: 1
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k k k k
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  (4)  

where, 3 3

: 1k kR 

−   is the rotation matrix and 
3 1

: 1k kt 

−   is the translation matrix. As can be seen 

in Figure 5(c), along the inspection path of the camera. By setting  1: 1:0 2:1 : 1, , ,k k kT T T T −=  as the set of 

cameras pose transformations, it can be achieved through spatial coordinate transformation. It is 

assumed that at a certain time step k , the spatial coordinate of any point under the camera's perspective 

can be converted into a unified world coordinate system by using Equation (5), as shown below. 

 1:0 2:1 1: 2 : 1

1 1

k
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z z
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  (5)  

To attain higher accuracy and robustness, our framework employs one of the most advanced visual 

SLAM algorithms, ORB-SLAM3 (Campos, Elvira, Rodriguez, M. Montiel, & D. Tardos, 2021) to 

obtain 1 1
( , )

i i i ik k k kR T
+ + . Moreover, for the purpose of obtaining a real-scaled camera trajectory, the RGB and 

depth maps gathered by the depth camera are employed as inputs to the SLAM system. Within this 

system, first, all 3D coordinates related to the same device ID are retrieved. Then, after setting a 

threshold to remove outliers, the average of the remaining points is regarded as the 3D position of the 
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equipment. Eventually, by projecting the detected devices onto the SLAM map, a map containing 3D 

device location information can be constructed, as depicted in Figure 3. 

 

 
Figure 3. Creation of an equipment information map 

 

 

3. RESULTS 

3.1  Dataset and training 

The existing public datasets are insufficient for meeting the training and testing requirements 

of this study as they lack consideration of an adequate amount of emergency equipment. The study 

identified eight crucial emergency equipment types: alarm bell, alarm button, emergency shower, 

escape sign, fire extinguisher, sand bucket, hose reel, and warning light. To address this gap, a 

dataset featuring 2793 instances of diverse emergency equipment was meticulously curated. 

Images, captured using smartphones or D435i depth cameras under varying lighting conditions, 

were intentionally marred by occlusion, lighting inconsistencies, and motion blur to simulate real-

world challenges. Leveraging the LabelImg annotation tool, bounding boxes were meticulously 

marked around each item, followed by data augmentation using Mosaic to enhance dataset 

diversity. Figure 4 presents several annotated and enhanced images. The dataset was then 

partitioned randomly into training, validation, and testing subsets, each comprising 70%, 15%, and 

15% of the total images, respectively. 

 

 

 

 

 

 

 

 

 

Figure 4. The dataset after data augmentation 

 

In Figure 5, information regarding bounding boxes in the dataset is depicted. Figure 5(a) 

illustrates the object quantities for each type within the dataset, primarily influenced by the 
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frequency of emergency equipment use and their placements in buildings. Meanwhile, Figure 5(b) 

showcases the diverse sizes and aspect ratios of object bounding boxes. The distribution of the 

center points of the bounding boxes is depicted in Figure 5(c), highlighting their concentration in 

the central region of the image data. Finally, Figure 5(d) displays a scatter plot representing the 

width and height of the bounding boxes, with the darkest hues clustered in the bottom left corner, 

indicating a prevalence of small targets within the dataset. 

 

 
(a)                 (b)                 (c)                 (d) 

Figure 5. Information about the manually labeling of objects in dataset. 
 

3.1  Experimental validation 

To assess the effectiveness of the proposed method and establish a direct link between 

equipment status and the corresponding devices, four distinct corridor scenarios were selected for 

on-site experiments (refer to Figure 6). Corridors, typically housing a high density of fire safety 

equipment, were chosen due to their significance in this context. Scenario ① features a straight 

corridor with consistent artificial lighting, offering a uniform background that facilitates the easy 

identification of fire safety equipment in a structured environment. In contrast, scenario ②, also a 

straight corridor, transitions from an outdoor section with strong natural light to an indoor area 

with relatively weaker illumination, potentially causing fire safety equipment to be obscured by 

debris. Finally, scenario ③ presents an indoor Z-shaped corridor with even artificial and natural 

lighting. Despite this, the corridor's spaciousness results in some emergency maps appearing as 

small objects in the images.  

 

              
(a) Scenario ①             (b) Scenario ②               (c)Scenario ③      

Figure 6. Four on-site scenarios 

 

Figures 7 to 9 show the distribution of camera inspection paths and fire safety equipment, 

comparing the results of the original method and the improved method. The statistical results are 

shown in Tables 1-3, respectively. Both the original method and the improved method can 

effectively cope with this scenario ①, counting the correct number, thanks to the strong contrast 
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backgrounds. In scenario ②, due to the issue of obstruction and debris, the original method is 

unable to detect one of the fire extinguishers, while poor lighting caused an alarm bell to be missed. 

The improved method can detect these two ignored devices. In scenario ③, the improved method 

can also provide similar improvements, especially for smaller emergency devices such as alarm 

bells and warning lights. 

 

                  
(a) Inspection map of the original method          (b) Inspection map of the improved method 

Figure 7 Inspection map for scenario① 

 

Table 1. Scenario ① fire safety equipment inspection statistics 

Scenario ① Ground truth Original method Improved method 

Alarm_bell 3 3 3 

Alarm_button 2 2 2 

Emergency_showers 0 0 0 

Escape_sign 7 7 7 

Fire_extinguisher 0 0 0 

Sand_bucket 0 0 0 

Hose_reel  2 2 2 

Warning_light  0 0 0 

 

                     
(a) Inspection map of the original method            (b) Inspection map of the improved method 

Figure 8 Inspection map for scenario② 
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Table 2. Scenario ② fire safety equipment inspection statistics 

Scenario ② Ground truth Original method Improved method 

Alarm_bell 7 6 7 

Alarm_button 3 2 3 

Emergency_showers 0 0 0 

Escape_sign 4 4 4 

Fire_extinguisher 5 4 5 

Sand_bucket 0 0 0 

Hose_reel  3 3 3 

Warning_light  5 5 5 

 

             
(a) Inspection map of the original method            (b) Inspection map of the improved method 

Figure 9 Inspection map for scenario ③ 

 

Table 3. Scenario ③ fire safety equipment inspection statistics 

Scenario ④ Ground truth Original method Improved method 

Alarm_bell 9 7 9 

Alarm_button 3 3 3 

Emergency_showers 3 3 3 

Escape_sign 8 8 8 

Fire_extinguisher 0 0 0 

Sand_bucket 1 1 1 

Hose_reel  3 3 3 

Warning_light  19 16 19 

 

4. DISCUSSION 

Buildings often face the issue of fire safety equipment malfunctioning due to insufficient 

maintenance (Dong et al., 2014). As building scales increase, the workload for regular inspections 

grows significantly, necessitating substantial manpower and time. To address this, it is crucial to invest 

in automated inspection and maintenance systems for fire safety equipment to ensure they remain in 

optimal working condition, providing reliable safety for the building and its occupants. We have 

developed an advanced detection framework that leverages vSLAM to construct a three-dimensional 
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relationship among equipment, cameras, and trajectories, effectively pinpointing the spatial positions 

of dispersed devices. DeepSort is utilized to track objects in video feeds, assigning unique IDs and 

enabling accurate object counting and identity recognition. Additionally, feature enhancement strategies 

and improvements to the loss function have been integrated to boost the detection network's 

performance, minimizing missed detections and false positives. The results demonstrate that this 

method adeptly handles various inspection scenarios, significantly improving accuracy and reliability 

of the system.  

 

5. CONCLUSIONS 

Compared to the original method, the improved method significantly enhances the robustness 

and accuracy of emergency equipment detection, offering more reliable support for emergency 

management and response. Looking ahead, developing an integrated management platform for fire 

safety equipment could be a priority. This platform would integrate with existing detection frameworks 

to provide comprehensive oversight and operational support for equipment. It could include features 

like intelligent scheduling and advanced path planning algorithms to streamline inspection processes, 

thus reducing inspection times and distances traveled. Furthermore, the integration of mobile terminals 

and apps could transform inspection management, enabling robots to remotely handle and execute tasks. 

This would allow inspection personnel to seamlessly receive task allocations, access optimized path 

plans, retrieve device-specific information, and easily record and submit inspection results. Such a 

holistic approach promotes real-time data sharing, boosts work efficiency and precision, and ultimately 

improves operational workflows in fire safety equipment management.  
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