
Formal Replay of Translation Validation for Highly

Optimised C

Work in Progress

Thomas Sewell

NICTA & UNSW, Sydney, Australia
thomas.sewell@nicta.com.au

Abstract

In previous work [6] we have implemented a translation validation mechanism for check-
ing that a C compiler is adhering to the expected semantics of a verified program. We used
this apparatus to check the compilation of the seL4 verified operating system kernel [2]
by GCC 4.5.1, with some optimisations disabled. We obtained this result by carefully
choosing a problem representation that worked well with certain highly optimised SMT
solvers. This raises a question of correctness. While we are confident the result is correct,
we still aim to replay this result with the most dependable tools available.

In this work we present a formalisation of the proof rules needed to replay the translation
check within the theorem prover Isabelle/HOL. This is part of an ongoing effort to bring
the entire translation validation result within a single trusted proof engine and derive a
single correctness theorem. For the moment such a single correctness theorem is our gold
standard of trustworthiness.

We had hoped to present the formal rule set in action through a worked example.
Unfortunately while we have all the theory we need, the mechanisms for selecting and
applying the rules and discharging the resulting proof obligations remain a work in progress,
and our example proof is incomplete.

1 Introduction

In their study on compiler testing, Yang et al reported 325 previously unknown defects in 11
different C compilers [8]. Even the formally verified CompCert was found to exhibit 5 defects,
albeit in its unverified front-end only. Ideally the C compiler should have a correctness proof,
such as CompCert’s, to eliminate internal defects, and additionally the source correctness proof
should connect directly the correctness proof for the compiler.

In our previous work [6] we used a compiler-checking approach to establish the correctness
of GCC’s operation. The strength of the approach is that it connects directly upwards to the
program proofs via the NICTA C semantics parser [7] and directly downwards to the semantics
of the underlying hardware as seen through the Cambridge ARM semantics [1] via Myreen’s
decompilation apparatus [3, 4]. Formally, the various notions of refinement proved at different
levels of this overall verification compose with each other, or rather, they would compose if
they existed as theorems in a single logic. The weakness of this approach is that it requires a
number of translations between tools to make use of their varying strengths and to connect to
previously existing artefacts. The various artefacts and the toolchains that hosted them at the
time of we completed our previous work are sketched in Figure 1 - the tools Z3 and SONOLAR
here are the SMT solvers used in our experiments.

The existing SMT-based proof tool and some of the relevant Isabelle theories are available
from http://www.ssrg.nicta.com.au/software/TS/graph-refine/.

A. Lisitsa, A. Nemytykh (eds.), VPT 2014 (EPiC Series, vol. 28), pp. 99–111 99

http://www.ssrg.nicta.com.au/software/TS/graph-refine/

Formal Replay of Translation Validation for C Thomas Sewell

ARM Binary
Semantics

Decompiled
Functions

Adjusted C
Semantics

C Semantics

C Program Binary ProgramCompilation

Im
p

o
rt

Im
p

o
rt

P
ro

o
f

C Graph
Program

P
ro

o
f

Compiled C
Graph Program

Decompiled
Functions 2

Import

E
x
p

o
rt

Decompiled
Graph Program

E
x
p

o
rt

Proof

Isabelle/HOL HOL4

Graph Proof Script

ARM ISA
Model

Reference

C
o
n

v
e
rt

Z3

SONOLAR

Figure 1: Artefacts in the correctness proof

Our current objective is to replay the proofs performed by our custom “graph proof script”
within the theorem prover Isabelle/HOL [5]. The correctness of this argument then depends
only on Isabelle’s trusted core, its proof kernel, and not on any of the tools we have built to
specifically address this problem. To perform this replay, we must formalise in Isabelle/HOL
both the proof rules used by the graph script to structure its proofs, and also the logic by which
the proof obligations are reduced to SMT queries.

To complete the overall theorem in Isabelle/HOL, we will additionally need to import
Myreen’s decompilation proofs from HOL4 into Isabelle/HOL. We will also need further guid-
ance from our SMT solvers to address the largest and most difficult of the proof obligations
generated in this proof framework. This is difficult, because the most effective solvers are the
ones that do not produce proof traces. We leave both these problems to future work.

In the rest of this report, we introduce an example program and its compilation in Section 2,
sketch a proof of compilation correctness in Section 3, define the problem formally in Section 4
and introduce the formalisation of the key rules of the proof in Section 5. In Section 6 we sketch
our work in progress on reducing the remaining proof obligations to SMT-compatible form.

2 An Example Program

Consider the simple example program of two functions and one loop defined in Figure 2b. While
this is a simple program, when we compile it with GCC 4.5.1 at optimisation level 2, it becomes
far more complex. The control flow graph (CFG) of the program, together with the simplified
CFG of the compiled binary, are also shown in Figure 2b.

As Figure 2b shows, the call to the function g has been inlined. The compiler has also
introduced far more conditionals. The intent here is to unroll the central loop, with a single
iteration of the loop starting at address 0x68 performing the actions of two iterations of the
loop in the source. This combined iteration only checks i < 100 once, which saves a lot of
time. This works if i is always even at this point. The additional code complexity before the
loop entry in the binary CFG helps ensure this.

The first two checks of the binary CFG handle specifically the cases where the source loop

100

Formal Replay of Translation Validation for C Thomas Sewell

int

g (int i) {

return i * 8 + (i & 15);

}

void

f (int *p, int x) {

int i;

for (i = x; i < 100; i ++) {

p[i] = g (i);

}

}

(a) Example source code

start

loop test loop body

end

return

function g

(b) Example C CFG

0xC-0x14

0x18-0x40

0x100-0x104

0x44-0x48

0x4c-0x64

0x68-0x9c

return

(c) Example binary CFG

is executed 0 or 1 times. The first execution of the source loop is also performed. The next key
conditional checks whether the loop is to be executed an even number of times in total. If so,
an additional copy of the loop body is executed, followed by a test for the case in which the
loop was to be executed exactly 2 times and execution is now finished. The binary loop body
then begins, executing the source loop actions twice and then checking whether to continue.

3 Informal Proof

We have introduced a function f and the structure of its compilation. The body of our work will
be to check that the semantics of these programs match, and to prove this fact as completely
as possible.

The explanation we have given so far takes the compiler’s view, performing a series of
transformations on the source structure to result in the binary structure. It would be possible
to prove the correctness of the compilation in the same style, guessing which transformations
had been applied and showing that each transformation was valid. The correctness proofs we
will produce do not take this approach.

Instead, we approach this problem analytically. We consider some arbitrary collection of
inputs to our function, and think of the function as a mathematical function which calculates
a resulting value of memory as an expression over those inputs. We will show that the two
expressions computed by the source and binary program are equal.

If the CFG of our function was acyclic, we could indeed convert the source and binary
programs into expressions in the SMT language and have an SMT solver check the equality
directly 1. Since the CFG structure for f and its binary contain loops, we cannot simply express
the effect of these programs as SMT expressions. Instead we must address the looping structure
specifically.

Our proof works by induction on the sequence of visits to a particular point in the binary
loop. We will prove a relationship to the sequence of visits to a matching point in the source

1This is a substantial simplification, since the conversion is somewhat involved and a number of side condi-
tions must be checked also. For further details, see the full paper describing our previous work [6].

101

Formal Replay of Translation Validation for C Thomas Sewell

loop. To complicate this, the relationship between visits to the binary loop and visits to the
source loop of f changes depending on which of the entry paths was taken in the binary loop.
These two paths correspond to the cases where the loop in f would be executed an even or odd
number of times. To avoid this complication, the first step of our proof is a case division on
whether or not the instruction at binary address 0x4c (see Figure 2b) is ever executed. We will
sketch the proof of the case where it is visited, the even case, here. The odd case is essentially
the same with different parameters.

The next step of our proof is to show by induction that a sequence of visits to the address
0x68 within the binary (the start of the loop basic block) correspond to a sequence of visits to
the start of the loop body of the source CFG. Because two executions of the source loop are
handled specially in the binary, the first such visit to the binary point actually corresponds to
the third visit to the source point. Because the binary loop is unrolled, the subsequent visits
will correspond to every second source visit. So the binary sequence matches the subsequence
of the 3rd, 5th, 7th etc visits to the source loop.

We prove the binary sequence and the source subsequence correspond by induction. By
correspondence, we mean that the given visits occur in the same cases, so, if the binary point
is visited 3 times but not a 4th time, the source point must be visited 7 times, but not 9 times.
The corresponding visits also have related variable values. So the contents of memory will be
the same at corresponding visits and the values of the relevant registers can be expressed as
functions of i, x, etc. We are omitting the details here: our automated proof process discovers
this relationship and we are not interested in the specifics.

The induction proof must establish that, given related n-th visits of these visit sequences,
the two loops either proceed to related (n + 1)-th visits or they both exit. It must also show
that the 1st visits to the visit sequences (which are the 3rd and 1st visits to the actual points
of the CFGs) either both occur or both do not occur. These checks all concern only a bounded
number of steps of the source and binary programs, and the relevant proof obligations can be
converted to a bounded expression in the SMT language, and can be checked by an SMT solver.

Having proven that the visit sequences are related, we now consider three cases for the
length of the visit sequences. The first case is that they are both infinite, which is possible for
loops in C. It happens we can exclude this case since our source loop is bounded, but we don’t
need to use this reasoning. If both programs execute forever, then the compilation was valid2.

The second case is where both sequences are empty. This means that the binary point is
not visited and the source point is visited at most 2 but not 3 times. In this case the number of
possible paths through the two CFGs is bounded again, and we can once again derive expressions
for the total effect of the two functions. The output memory equality we need to check can
once again be exported to SMT and checked.

The third case is where the sequences contain some finite number of visits. If we call this
number of visits n, then we know that the two executions reach related n-th visits, but that the
(n+ 1)-th visits are not reached. This once again limits us to a single path through the CFGs,
and we can derive expressions for the total effect of the functions, this time as expressions over
the unknown but related values of the variables at the n-th visits. Once again we can prove
the needed equality on the return values.

This is a sketch of a proof of correct compilation for the even case. Together with the
odd case, which is similar, we have a proof that the compilation of this program was correct.
The mechanism for finding and checking this proof already existed in our previous work[6]
although we have extended it somewhat for this problem, including additional logic for finding

2In principle our program might have external effects that can be observed even when it does not terminate.
For the moment we are ignoring this issue.

102

Formal Replay of Translation Validation for C Thomas Sewell

 struct node *
 find (struct tree *t, int k) {
1 struct node *p = t->trunk;
2 while (p) {
3 if (p->key == k)
4 return p;
5 else if (p->key < k)
6 p = p->right;
 else
7 p = p->left;
 }
8 return NULL;
 }

1

2

38

4 5

Ret 6 7

1: p := Mem[t + 4];

2: p == 0 ?

8: ret := 0
3: Mem[p] == k ?

4: ret := p;
5: Mem[p] < k ?

6: p := Mem[p + 4];
7: p := Mem[p + 8];

True

Fa
lse

Tru
eFa

ls
e

Tru
e

Fa
lse

Figure 3: Example Conversion of Structure and Statements to Graph Language

the matching subsequences when one loop has been unrolled, and additional logic for finding
and performing the kind of case split with which this proof began.

The challenge will be to formalise this proof fully in Isabelle/HOL.

4 Graph Language and Semantics

The first step in formalising this proof is to formally define the problem. We begin by formally
defining a language in which to describe the source and binary encodings of f. The language
we will use is a graph based program representation, which we call a “graph language”. This
language was described in detail in our earlier work [6], we will provide an overview here.
Note that the graph language is not the same as the CFGs we have mentioned already. Those
CFGs are substantial simplifications of the graphs we use here, which encode the full program
semantics and have a lot more nodes. The full graph structure of the program graph for f and
its binary is shown in Appendix A.

The graph language provides a semantics somewhere between machine language and C.
Like in C, statements can perform compound calculations. Like in machine language, however,
control flow is governed by an explicit graph representation rather than by statement level
syntax such as semicolons or while loops. All statements are numbered, and the steps between
them are drawn as graph edges, giving us a labelled, directed graph. The advantage is that the
context-dependent effects of break, continue and others are replaced by graph edges which
simply specify the number of the next statement. The special label Ret represents return from
the function. The other special label Err represents immediate failure, e.g. illegal pointer use
or assertion failure.

The graph consists of three types of nodes. Conditional nodes are used to pick between
execution paths, and correspond closely to decisions made by if and while statements in C.
Basic nodes represent normal statements, or normal instructions in the binary, and update the
value of variables with the result of some calculation (memory is represented as a variable, as are
registers). Call nodes are used to represent function calls, which are distinguished from other
statements. A number of restrictions enforced by the C parser are relevant here: function calls
may be embedded in other expressions and statements only in very limited ways, statements
with multiple effects are forbidden, and switch statements must always be convertible into a
chain of if-else statements. An example conversion of a C function to graph representation is
sketched in Figure 3.

The graph language was designed so its semantics would be straightforward to formalise in
Isabelle/HOL or HOL4. The node types are introduced as a datatype:

103

Formal Replay of Translation Validation for C Thomas Sewell

datatype next_node = NextNode nat | Ret | Err

datatype node =

Basic (next_node * (string * acc) list)

| Cond (next_node * next_node * acc)

| Call (next_node * string)

The types here have been amended for simplicity and the syntax is slightly fictional. The
precise definitions are given in the GraphLang Isabelle/HOL theory that is provided as an
appendix.

In this representation variables are indexed by name (a string) only. A Basic node is a tuple
of a next program address and list of variables to update with expressions, a Cond node a pair
of successors and a decision expression, and a Call node is a tuple of a successor, a function
name to call, a list of argument expressions and a list of return variables to overwrite.

A graph function is a tuple of an input variable list, output variable list, graph body and
entry point.

datatype graph_function = GraphFunction (string list * string list

* (nat -> node option) * nat)

The semantics of the graph language is defined by a small-step relation. The configuration
of the system at any step is represented by a stack of running programs. This formal model
introduces a number of complexities into our proofs, but is nonetheless desirable because it
allows us to model recursion without having to incorporate a user-supplied proof of recursion
bound or termination. Each stack frame contains an executing address, the state mapping of
variables to values, and the name of the currently executing function. The step relation also
takes an environment parameter that maps function names to bodies.

type_synonym stack = (next_node * (string -> value) * string) list

constant exec_graph_step :: ((string -> graph_function option)

-> (stack * stack) set)

The full semantics of the step relation are omitted for space reasons. The steps associ-
ated with the three node types are intuitive; there are also steps for returning from functions
(normally and in error) and additional details for fetching the currently executing node.

We are proving refinement, a formal property which can be defined by appeal to the set of
possibly-infinite traces generated by the small-step relation. Refinement means each trace of
the binary program has a matching trace in the set of traces of the source program. Matching
usually means that the matching traces must have the same termination behaviour as each
other and, if terminating, return matching values. However, if the source program transitions
to Err by performing undefined behaviour, any trace of the binary program matches.

We have a choice of semantics to apply when the source program would diverge, either by
looping forever or recursing without bound. C programmers would usually expect the compiler
to respect their intentions even if an infinite loop clearly serves no other purpose. We call
this the precise semantics. However GCC provides a language extension for const and pure

functions. The compiler may remove calls to these functions if their results are discarded. In
principle this means that a non-terminating program might be optimised into a terminating one.
We also allow an imprecise semantics, which allows this optimisation. It is certainly debatable
whether these attributes should ever be used for a possibly-nonterminating function, but we
support the option.

104

Formal Replay of Translation Validation for C Thomas Sewell

The source program f and its compiled implementation can both be represented in the graph
language. The conversion of the C program semantics is straightforward. An experimental
version of Myreen’s decompiler can target the graph language directly, producing a graph
language version of the binary.

5 Proof Rules

In our previous work [6] we introduced a type of proof scripts which have three rules, Split,
Restrict and Leaf with which they capture a refinement argument. The proof script captures
the part of the proof which must be discovered heuristically. Once the proof script is known,
the problem reduces to a collection of decidable proof obligations. In this work we convert these
rules into proof rules in Isabelle/HOL.

We have already discussed these rules, in some sense, in the informally sketched proof we
gave already in Section 3. Recall the logic we used in multiple cases of the proof, where we
observed that there were now only finitely many possible paths through the CFGs, and we can
thus define the equality on the output memories as a concrete expression. We formalise this
logic with the concept of a restriction on a trace. A restriction is placed on the number of visits
to a given node in a graph, for instance, we might restrict the number of visits to the start of
the loop body in f to be 0, 1 or 2.

We can restrict the total number of visits within a trace. We also use restrictions to identify
different visits to the same node within a trace. In our sketched proof we considered a sequence
of visits to a point p within the loop. We can identify the 3rd visit to p as the visit to p where
the number of previous visits to p is restricted to the set {2}.

type_synonym trace = (nat -> stack option)

type_synonym restrs = (nat -> nat set)

constant restrs_condition :: (trace -> restrs -> nat -> bool)

constant visit :: (trace -> next_node

-> restrs -> (string -> value) option)

constant restrs_eventually_condition :: (trace -> restrs -> bool)

constant pc :: (trace -> next_node -> restrs -> bool)

constant restrs_list :: ((nat * nat list) -> restrs)

Formally the constant restrs condition defines if, at a given step in a trace, the re-
stricted nodes have already been visited a matching number of times. From this we derive
visit, which gives us the variable state at the first satisfying visit, if there is one, and
restrs eventually condition which tells us if the restrictions hold eventually (at some point
and then forever afterwards) on the trace. We define pc, the path condition of a visit, as the
condition that a satisfying visit occurs.

The restrs list constant defines a set of restrictions by explicitly listing them.

constant restr_trace_refine :: (bool

-> (string -> graph_function option) -> string

-> (string -> graph_function option) -> string

-> restrs -> restrs -> output_relation

-> trace -> trace -> bool)

105

Formal Replay of Translation Validation for C Thomas Sewell

The restr trace refine predicate captures our proof obligation: trace refinement given
restrictions. The first argument specifies the precise or imprecise semantics mentioned pre-
viously. The next four arguments specify the graph functions (by name) and the execution
environments they exist in. The restrictions are a collection of restrictions on the total trace
which we may assume. The output relation defines the equalities that must hold on the values
returned by the two programs. In this formalisation we also specify the two traces, allowing us
to also name them in assumptions3 We will formalise our key proof rules as introduction rules
for this predicate.

The Restrict rule is the key rule which introduces a new restriction the visits to node n.
The rule introduces the restriction that n is visited at least i times and less than j times overall.
When we said in our informal proof that “the source point is visited at most 2 but not 3 times”
we were appealing to the Restrict rule, with n the address of the source point, i = 0 and j = 3.

This rule adds to a restriction set listed by the restr list operator. We add to a list with
the list constructor #. The restriction is added in the sense that we must finish the proof by
proving the same goal with the additional restriction.

The restriction is on visits to node n. We show n must be reached (pc is true) at a point
where n has been encountered i− 1 times. Likewise we show n cannot be reached (pc is false)
when it has already been encountered j − 1 times. Thus n is reached at least i times and less
than j times overall.

theorem restr trace refine Restr1:
j 6= 0
−→ distinct (map fst rs)
−→ wf graph function f ilen olen −→ Γ fn = Some f
−→ (i 6= 0 −→

pc (NextNode n) (restrs list ((n, [i − 1])
(restrs visit rs (NextNode n) f))) tr)

−→ ¬ pc (NextNode n) (restrs list ((n, [j − 1])
(restrs visit rs (NextNode n) f))) tr

−→ restr trace refine prec Γ fn Γ ′ fn ′

(restrs list ((n, [i ..< j]) # rs)) rs ′ orel tr tr ′

−→ restr trace refine prec Γ fn Γ ′ fn ′ (restrs list rs) rs ′ orel tr tr ′

Formalising this rule led to the discovery of a number of side conditions that were only
checked implicitly in our previous work. Arithmetic on naturals underflows in Isabelle/HOL,
so we must check for the case of zero. We also require some simple wellformedness properties
on our graph functions, such as that all graph arcs go to nodes defined within the graph.
Another difference is that the previous work put both program graphs within a single numerical
namespace. It had a single set of restrictions, where we now have two. We must therefore
distinguish between this and a symmetric symmetric Restrict2 rule which restricts the right-
hand-side trace. These are expected variations between the formal and informal developments.

The adjustment performed by the constant restrs visit was a more interesting omission.
We check pc for our node of interest n relative to the restrictions we have already proven hold
on the trace. The restrs visit constant relaxes these restrictions, however, dropping any
restrictions to nodes still reachable from n. We know these restrictions hold eventually, but we
do not necessarily know they already hold when we visit n. Without this adjustment, we could
get spurious contradictions for j and rule out possible traces. The distinct constraint above is

3This works because we currently formalise our programs as deterministic. The C and binary semantics are
deterministic until we begin reasoning about multithreading and I/O, which for the moment we are avoiding.

106

Formal Replay of Translation Validation for C Thomas Sewell

needed for restrs visit to have the correct effect. Our previous tool had no equivalent check,
and could have admitted an unsound proof in this case. For technical reasons it would never
have considered such a proof, and we retain confidence in our results. Nonetheless this clearly
demonstrates the value of formalisation.

The Leaf rule is the terminal rule of proof scripts. Our informal proof ended once the num-
ber of possible paths through the CFGs was finite, and we could express our output equalities
directly. The Leaf rule encodes this logic, checking the output relation of the traces directly
under the assumption that enough restrictions are in place that the visit to the return points
can be described concretely. It requires the return point of the binary trace to be reached,
which essentially means that possibly-nonterminating loops have been handled. In the precise
semantics, we need to know the source trace reaches its return point also.

theorem restr trace refine Leaf:

wf graph function f ilen olen −→ Γ fn = Some f

−→ wf graph function f ′ ilen ′ olen ′ −→ Γ ′ fn ′ = Some f ′

−→ pc Ret rs tr −→ (prec −→ pc Ret rs ′ tr ′)

−→ output rel orel (f, f ′) (rs, rs ′) (tr, tr ′)

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′

The most involved of these rules is the Split induction rule, which provides the mechanism
for reasoning about loops. In the proof sketch in Section 3 we proved by induction a relation
on subsequences of visits to a source and binary graph node. We then considered three cases,
the case of infinitely many visits, which automatically implies refinement, the case where the
subsequence does not begin, and the case where the subsequence contains exactly n visits for
some positive n. The Split rule bundles together these two reasoning steps. The complication
over our informal description is that the Split rule is designed for k-induction, where k previous
visits n . . . n+ k − 1 are used to show the inductive step to visit n+ k. The case we described
previously is the special case where k = 1.

theorem restr trace refine Split:

let vres = λi. restrs list ((sp, [start + i ∗ step]) # rs);

vres ′ = λi. restrs list ((sp ′, [start ′ + i ∗ step ′]) # rs ′);

vpc = λi. pc (NextNode sp) (vres i) tr;

vpc ′ = λi. pc (NextNode sp ′) (vres ′ i) tr ′;

visits = λi. (visit tr (NextNode sp) (vres i),

visit tr ′ (NextNode sp ′) (vres ′ i));

rel = λi. vpc i ∧ vpc ′ i ∧ vrel i (visits 0) (visits i)

in (∀ i. vpc (i + 1) −→ vpc i)

−→ (∀ i. i < k −→ vpc i −→ rel i)

−→ (∀ i. vpc (i + k) −→ (∀ j < k. rel (i + j)) −→ rel (i + k))

−→ k > 0 −→ step > 0 −→ step ′ > 0

−→ (¬ vpc k −→ restr trace refine prec Γ f Γ ′ f ′

(restrs list rs) (restrs list rs ′) orel tr tr ′)

−→ (∀ i. ¬ vpc (i + k) −→ (∀ j < k. rel (i + j))

−→ restr trace refine prec Γ f Γ ′ f ′

(restrs list rs) (restrs list rs ′) orel tr tr ′)

−→ restr trace refine prec Γ f Γ ′ f ′

(restrs list rs) (restrs list rs ′) orel tr tr ′

107

Formal Replay of Translation Validation for C Thomas Sewell

Here we abbreviate vpci as the path condition of the i-th subsequence visit in the binary
program. The binary subsequence is defined by start and step. We abbreviate reli the con-
dition that the i-th subsequence visits occur in both programs and match according to the
given variable relation vrel. The rule requires that the subsequence visits happen in order, in
particular that a visit to i+ 1 implies a visit to i.

The initial condition of the induction is that the first k binary visits have matching visits if
they occur. The inductive condition is that if binary visit i+ k occurs and there are matching
visits in {i..i+ k − 1} there must be a matching source visit for i+ k.

The two cases left to be addressed are the case where the binary subsequence does not reach
k visits, and the case where {i..i+k−1} are the last k binary visits. No restrictions are added,
but the rules are designed so that in each case sufficient information exists to immediately
restrict the visits to the two split points using the Restrict rule.

Unlike the proof of Restrict, the proof of the induction rule did not result in any unexpected
discoveries. The formal constraints that k and the subsequence step sizes must be positive, and
that the binary path conditions must be monotonic, were unsurprising formal additions.

In addition to these rules we presented in the previous work, we also include three new rules.
The PCCases rule is the path-condition case-split which we appealed to at the beginning of
the informal proof in Section 3. We divide into subproofs depending on whether a given node
is visited. This is logically trivial but necessary for our tool to produce Split rules handling
unrolled loops like the one we have seen, with different entry paths for different cases.

theorem restr trace refine PCCases1:

(pc nn rs1 tr

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′)

−→ (¬ pc nn rs1 tr

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′)

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′

The Err rule generates the assumption that Err is not visited, with any restrictions that
are appropriate. The previous tool applied this second rule implicitly with various restriction
choices when generating all proof obligations. Here we make this process explicit.

theorem restr trace refine Err:

(¬ pc Err restrs tr ′

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′)

−→ restr trace refine prec Γ fn Γ ′ fn ′ rs rs ′ orel tr tr ′

The final structural rule we add is the Call rule. We decompose our refinement proof at
function boundaries, and this is the rule that allows us to appeal to the separate proof done
for the called functions. The Call rule is technically intricate both to state and prove, and the
version we have proven is still insufficiently general. We omit further details of this aspect for
space reasons.

These proof rules can, for a given problem, be assembled into a single proof method and
applied to a proof problem. In our example program f, the proof structure begins with a
PCCases on the path into the loop, each possibility being addressed by a Split rule. Each
split rule generates an initial (< k) and inductive (≥ k) case, a total of 4 cases, each of
which is addressed by a pair of Restrict rules to fix the number of visits to the two loops
followed by a Leaf rule. We have implemented an automatic mechanism for composing and
applying this compound proof rule. When applied to our example problem, it discharges all

108

Formal Replay of Translation Validation for C Thomas Sewell

restr trace refine goals, leaving 70 remaining proof obligations, 30 of them non-trivial.

6 Conclusions and Further Work

The rules we have described here handle the trace refinement logic, and reduce our problem
to a series of proof obligations about specific visit instances. These instances can in turn
be reduced to SMT-compatible expressions, and our next task is to perform this reduction in
Isabelle/HOL also.

The complementary proof rules to the structuring rules we have just described are the
visit rules, which allow us to evaluate the variable state at a visit to the variable state at
the immediately previous visit, depending on whether the previous visit was to a Basic, Cond
or Call node. Additional logic is needed for nodes with multiple predecessors, visits whose
restrictions are impossible, etc.

We have proven what we think is the essential rule set for this work, including all these
visit rules. What we have not done is produced an automated proof method for applying these
rules, which means they remain as yet untested. We hope in the near future to remedy this,
and present a completed proof of the correct compilation of our program f.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy and the Australian Research Council through the ICT

Centre of Excellence program.

A Full Problem Graph

This is a rendering of the overall structure of the refinement problem for f. The binary graph
program in orange is produced by Myreen’s decompiler, and the source graph program in green
is derived from the Isabelle/HOL import of the C syntax of f. This shows the arcs and types of
the nodes (g is inlined here and all nodes are conditionals or basic) but not any of the semantics;
the full problem is more complex again.

109

Formal Replay of Translation Validation for C Thomas Sewell

ass_1

ass_5

C

ass_8

C

ass_2

15

N

ass_6

F

ass_70

T

ass_3

ass_10

N

13

C

ass_4

32

N

ass_20

T

ass_80

F

ass_35

C

ass_17

N

ass_19

C

ass_7

ass_30

C

31

C

44

C

ass_9

ass_33

N

34

C

T

ass_78

F

ass_11

ass_46

N

ass_47

C

ass_12

ass_36

N

ass_37

C

t_Err_78

N

ass_14

ass_43

C

45

C

N

ass_16

ass_52

C

C

ass_21

C

ass_18

ass_51

C

ass_41

C

ass_23

C

40

N

ass_22

T

ass_81

F

ass_24

C

t_Ret_22

N

ass_26

C

ass_27

C

25

ass_64

T

ass_71

F

N N

ass_28

C

29

C

T

ass_79

F

t_Err_79

N

F

ass_72

T

N

t_Err_80

N

F

ass_74

T

N

T

ass_83

F

ass_38

C

ass_39

C

42

C

T

ass_82

F

t_Err_81

N

C

t_Err_82

N

ass_73

T

ass_75

F

t_Err_83

N

NN

ass_48

C

ass_49

C

50

C

T

ass_84

F

t_Err_84

N

ass_53

ass_65

C

54

N

ass_61

T

ass_76

F

ass_69

C

t_Ret_76

N

ass_55

ass_77

C

N

ass_56

C

57

T

ass_85

F

t_Err_85

N

ass_58

C

59

T

ass_86

F

t_Err_86

N

ass_60

C

68

N

ass_62

C

ass_63

N

ass_66

C

ass_67

C

T

ass_87

F

t_Err_87

N

110

Formal Replay of Translation Validation for C Thomas Sewell

References

[1] A. Fox and M. Myreen. A trustworthy monadic formalization of the ARMv7 instruction set archi-
tecture. In M. Kaufmann and L. C. Paulson, editors, 1st Int. Conf. Interactive Theorem Proving,
volume 6172 of LNCS, pages 243–258, Edinburgh, UK, July 2010. Springer.

[2] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verification of an OS
kernel. In Proc. 22nd SOSP, pages 207–220, Big Sky, MT, USA, 2009. ACM.

[3] M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-code verification for multiple architectures
- an application of decompilation into logic. In A. Cimatti and R. B. Jones, editors, Formal Methods
in Computer-Aided Design (FMCAD), pages 1–8. IEEE, 2008.

[4] M. O. Myreen, M. J. C. Gordon, and K. Slind. Decompilation into logic — improved. In G. Cabodi
and S. Singh, editors, Formal Methods in Computer-Aided Design (FMCAD), pages 78–81. IEEE,
2012.

[5] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[6] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified OS kernel. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language design and imple-
mentation, pages 471–482. ACM, 2013.

[7] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hofmann and
M. Felleisen, editors, Proc. 34th POPL, pages 97–108, Nice, France, Jan. 2007. ACM.

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers. In
M. W. Hall and D. A. Padua, editors, Proc. 32nd PLDI, pages 283–294, San Jose, CA, USA, June
2011. ACM.

111

	Introduction
	An Example Program
	Informal Proof
	Graph Language and Semantics
	Proof Rules
	Conclusions and Further Work
	Full Problem Graph

