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Abstract 
Word recognition is to identify words in images of printed or handwritten documents. It is especially 

challenging to recognize words from cursive handwriting documents. In this paper, we present a 
framework of using density-based clustering for word segmentation in printed or handwritten 
documents, including cursive handwriting. First, we performed various strategies for data 
preprocessing, including converting images to B/W images, adjusting the tilted images, and removing 
the background noises. K-means clustering and/or neighborhood density are used in finding parameters 
for the preprocessing steps. The preprocessing has shown to be very effective. For the word 
segmentation, we proposed density-based clustering to segment the words using multiple steps, 
including blurring, plotting, and clustering. We also developed a system for the framework, including 
preprocessing and clustering functionalities. Our approach works very well for printed documents. It 
works reasonably well for handwriting documents if words are relatively far from each other. The 
performance on handwriting documents can be further improved by using line segmentation.  

1 Introduction 
Word recognition is to identify words in images of printed or handwritten documents. There are 

abundant handwritten documents available, which carry a lot of potentially useful information. 
Handwriting recognition, also called handwritten text recognition, is a challenging task, especially 
cursive handwriting recognition [1, 2]. Extensive research has been conducted on handwriting 
recognition [3, 4], leveraging deep learning and neural network methods [5, 6, 7], but most of them are 
based on character recognition. In this paper, we propose to perform word recognition instead of 
character recognition, because for cursive handwritings, the latter is too difficult and unreliable. The 
first step of this process will be image segmentation in which an entire document is segmented into 
words.  

A sample image of cursive handwritten document is given in Figure 1. As can be seen from this 
sample, the data present the following characteristics: 
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• The useful information is in black and white, but the image has a gray scale and there are 
noise colors on the background.  

• The handwriting is tilted, but the lines are relatively straight. 
• There are noise pixels on this image, which could be ink, dust, or dirt. 
• Words overlap, especially the ones from different lines. Sometimes the distances between 

lines are smaller than the distances between words on the same line. 
• Words are in arbitrary sizes and shapes. 

 

 
Figure 1. A sample cursive handwriting image 

The images of handwritten documents are usually scanned from paper documents. To be in good 
quality, the resulting image must comprise a large number of pixels. All the characteristics make it 
challenging to segment cursively handwritten documents into separated images of words. Previous 
work has addressed this kind of segmentation using neural networks [8]. In this paper, we will tackle 
this problem using a data mining approach, in particular, the density-based clustering approach.  

This image segmentation problem differs from others in that, for handwriting documents, words are 
in lines and not in random locations. Words on different lines should be separated, even though they 
may be connected physically. Therefore, the first step should be to find the lines. Also, line information 
can help adjust tilted images, when it is assumed that all lines are horizontal.  

From a data mining point of view, word segmentation resembles clustering of the dark pixels. In 
addition, since the clusters are in arbitrary shapes, density-based clustering seems promising for an 
acceptable result. In this paper, we propose a framework to perform word segmentation on printed or 
handwriting documents through various strategies of data preprocessing and density-based clustering.  

2 Data Preprocessing 
To prepare the document images for word segmentation, we perform multiple steps to preprocess the 
images, including converting them to black/white images, adjusting the tilted images, and removing the 
background noises. 

2.1 Converting to B/W images 

In handwritten documents, information lies in the words themselves, instead of the sizes of the 
words or the colors and darkness of the pixels. Therefore, our first step is to change the images into 
black and white ones, or other kinds of two-color pictures.  
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A simple way to do this is thresholding. Choose a “darkness” threshold, and if the pixel is dark 
enough, it will be considered as a valid pixel, which can be replaced by a black pixel. If it is bright 
enough, it is regarded as a background pixel, which can be replaced by a white pixel. 

Since the original pictures have simple colors, as long as we choose a reasonable threshold, the 
result will be acceptable for subsequent steps. We performed a 2-means clustering on the brightness of 
all the pixels in a given image. The cutoff point of the two result clusters is used as a threshold. The 
result of this method is acceptable, as shown in Figure 2, but it also relies on the quality of the raw 
documents. In this image, the brightness of the word pixels is quite different from the background 
pixels.  

 

 

 
Figure 2. Converting to B/W image 

2.2 Angle Adjustment 

Because the original images are often tilted, we need to find the optimal angle to rotate the image. 
To perform the rotation, line information can be helpful. If we count the number of black pixels in each 
line of the image, the lines with words will have very different numbers from the lines in the gap.  When 
the image is rotated in the best angle, this difference will be the biggest.  

Again, for this step, we performed 2-means clustering of these numbers of pixels, and used the 
distance between the two resulting centers as the difference between lines and gaps. We rotated the 
image to find the best angle, in which this distance is the largest.  

The result of this process is promising. The adjustment works fine when the original images are not 
tilted much (by just a couple of degrees). Figure 3 shows the performance of this process. The left one 
is the result from the previous step, and the right one is the result after angle adjustment. 

 

 

 
Figure 3. Result of angle adjustment 

2.3 Noise Removing 

There can be ink, dust, or dirt on the original documents. They left random black dots in the image. 
Auto contrast cannot remove them, because they can be as dark as the valid pixels. They must be 
removed in data preprocessing, because they can affect the results of clustering later.  

We did not distinguish noise from outliers. For example, in handwriting, the dot in letter “i” can be 
considered an outlier in clustering, but it should not be removed, and it is not a noise. In this step, we 

Original Picture Black and white image 

Black and white image Image after angle adjustment 
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simply counted the number of black pixels in the neighborhood of each black pixel. Pixels without 
enough neighbors would be considered as noise and removed.  

For this process to work, we have to specify the size of the neighborhood and minimal number of 
points for each image. The result varies with the parameters. If the parameters are carefully chosen, the 
result is acceptable. Figure 4 shows the performance of this process. 

 

 

 
Figure 4. Result of noise removal 

3 Density-based Clustering for Word Segmentation 
Intuitively, we can just perform clustering on black pixels to get words. Since the words are in 

arbitrary shape, a density-based clustering algorithm such as DBScan [9] will do the job, with 
specifically chosen parameters. Basically, the clustering algorithm will find “connected” pixels and 
group them into one cluster. However, a straightforward clustering will not work well for this problem, 
the reasons for which are listed below. 

First, it is hard to choose the parameters. The strokes of the handwriting have different thickness 
everywhere. It is hard to find the perfect minimal number of points. Second, there are too many pixels. 
If we use an EPS distance of 1, the result will not be good, because pixels in one word do not necessarily 
connect to each other. If we use any larger EPS distance, the neighborhood will have too many pixels. 
The algorithm will never stop or will take too much time to be practical. 

Because of the above reasons, we developed our own method. The intuition behind this is that we 
do not have to care about every single pixel. We can draw dots to denote the area of each word and 
apply clustering on these dots, which have a much smaller count. The step-by-step process is given 
below. 

 
3.1 Blurring 

Blurring marks the area of a word. With a good parameter, blurring will fill the gaps within one 
word, and leave the blanks among words out. With blurring, we can easily see the area of each word. 

In this step, we used a weighted sum method. For each pixel in the image, we obtain its 
neighborhood and the black pixels in it. For every black pixel in this neighborhood, we calculate its 
distance to the center. We add the reciprocals of all the distances together. This way we get the 
importance of every pixel in this image. This importance factor will be used to re-draw this image. This 
step is necessary. Without this step, the parameters in the following steps will be very hard to specify.  

The result varies from the size of the neighborhood that we define. The larger this size is, the blurrier 
the image gets. If we use size of 0, the resulting image is the same as the original image. Figure 5 shows 
the performance of this process. 

 

Image after angle adjustment Image after noise removal 
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Figure 5. Result of blurring 

3.2 Plotting 

We then plotted the blurred image with uniformly distributed dots. We used a threshold at this step 
to avoid the entire image being dotted, since the blurred words may cover the whole canvas. We can 
also specify the distance between dots. Figure 6 shows the results.  

 

 

 

Figure 6. Result of plotting 

3.3 Clustering 

With the dots left on the image, the clustering process is very straightforward. The algorithm will 
find the clusters with the given parameters. Using this clustering information, we can cluster the pixels 
in the preprocessed data, because we can simply put each pixel to the cluster which its closest clustered 
neighbor is in. Figure 7 shows the clustering result. 

 

 

 

Figure 7. Result of clustering 

To this point, we have the result, which is the preprocessed image with cluster information. Words 
are separated. For printed images, this process works perfectly. An example is shown in Figure 8. 

 

Image after preprocessing Blurred image. Neighborhood Radius = 10 

Plotted image with distance 5 Plotted image with distance 2 

Image after preprocessing Result 
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Figure 8. Clustering result for printed words 

3.4 Line Segmentation 

In the steps above, line information is not used. If words in different lines are connected physically, 
it will be difficult to separate them using the process above. This is because if we do not define lines, 
connected letters or strokes are supposed to be in the same word, which is not always true. An example 
is given in Figure 9.  

 

 

Figure 9. An example with connected letters or strokes 

We already have the number of pixels in each line of the image. This number has to be large enough 
to be an actual line. Each actual line can result in multiple image lines with high pixel counts. Therefore, 
we tried to find where this number becomes larger than a threshold and where this number drops below 
the threshold. This way we can find the duration of large numbers, which indicates existence of an 
actual line.  

This method worked for the first image we tested. However, when the image gets larger, it is hard 
to find a good universal threshold. We have to find a way to detect local maximums and keep in mind 
that they do not necessarily in turn indicate actual lines. 

One threshold does not work well. Therefore, we took a closer look at the numbers (as shown in 
Figure 10). X-axis is line number from the top of the image to the bottom while Y-axis is number of 
black pixels in that line. We can see that one high threshold, say 300, will work for most part of this 
image. But it will also miss the first two lines. A smaller threshold, say 100, will find these two lines, 
but other peaks, which are not actual lines, will also be marked.  
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Figure 10. Pixel distribution of lines (X-axis is line number from the top of the image to the 
bottom while Y-axis is number of black pixels in that line) 

Currently we use two parameters to find the lines. However, this method is not perfect. To determine 
a line, the number has to go higher than the threshold and drop back below it. And in between, the 
number has to be higher than a much higher threshold in order to be a peak. The result is shown in 
Figure 11. Blue lines show positions of lines. We can use their middle lines as gaps (red). 

 

 

Figure 11. Determining the position of lines 

We can see that with this information guiding, the original cluster can be further separated into three 
clusters, i.e. three words.  

4 Implementation 
We implemented a system to perform preprocessing and clustering process discussed above. Figure 

12 is a screenshot of the interface as well as the output.   
For the preprocessing functionalities, Auto Contrast can make the picture black and white using 2-

means algorithm. Angle Adjustment will find the best angle according to details about number of black 
pixels in each line. Show Lines will show lines of words according to the parameters. The lower 
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threshold is specified in the Text Box. The higher threshold is the lower threshold multiplied by the 
number in the drop-down list. Pressing this button will also generate a BMP file named “lined.bmp”. 
Outlier Removal will delete the pixels that have less than MinPts points in its neighborhood with radius 
of EPS. The image in the memory will be updated accordingly.  

For the clustering functionalities, Blur button blurs the image according to the size of the 
neighborhood. Dots button plots the blurred image according to the distance between dots and a 
coverage threshold. Blurring has to be done before this step. DBScan clusters the remaining dots. 
Plotting must precede this step. In this step, the image won’t be updated. A user has to click “Combine” 
to get the result and a BMP file named “result.bmp” will be saved on disk. If a user wants to do the 
clustering again, he/she can start from Blur, without the need to reload the picture or preprocess it again. 
After any step above, clicking the DUMP button will get a copy of the showing picture. The saved file 
will be named “dump.bmp”. 

 

 

Figure 12. Screenshot of the interface and the output 

5 Discussions 
With good parameters, our approach can segment printed images perfectly. For handwriting images, 

our approach can find the words correctly if the words are relatively far from each other.  
For preprocessing, to convert to B/W images, we used 2-means clustering on brightness of all the 

pixels to get a threshold. This works for the documents at hand. However, if the images were in different 
colors, this may not work well, because it will only divide the pixels into two clusters. For example, if 
an image contains words in both black ink and red ink, red ink could get discarded, because it is possible 
that the red color is not dark enough according to the 2-means result. Similarly, angle adjustment will 
also have different results on different documents, since it is also based on the 2-means clustering 
algorithm. This method works well on average. In our testing, it rotates only one testing image by 0.5 
degrees when it should not have. Outlier removal yields satisfying results. However, it is sensitive to 
parameters. We have to find the appropriate EPS and MinPts values to make the result optimal. Also, 
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it uses two universal parameters, instead of local ones. As we can see from the sample, one image may 
have different parts that require different parameters.  

For clustering, blurring and plotting make clustering more efficient. However, blurring may cause 
the plotting to put dots where there were not any black pixels originally. Blurring spreads the ink. The 
original intent is to fill the gaps within each word. But blurring not only fills the gaps within a word, 
but also spreads ink outside the word. This leads to inter-word connection, which makes the clustering 
less reliable. To choose a good blurring parameter, we have to find the radius large enough to fill the 
blanks within a word, but not large enough to connect two words. Plotting, on the other hand, can break 
a word. Usually a smaller distance works better.  

Density-based clustering approach has some limitations [10], as discussed below.  
• Sensitive to parameters 
Even for printed images, parameters have to be chosen carefully to get a perfect segmentation. Each 

image is different. However, with a batch of similar documents, the parameters do not have to change 
much.   

• Universal parameters 
When choosing a good pair of parameters, we cannot separate certain words without breaking other 

words. Also, we cannot connect letters/stokes in one word without connecting words that are not 
supposed to. This is because density-based clustering uses universal parameters, while the image has 
different characteristics on different parts. One possible solution is to use different local parameters. 
The simplest variation will be to separate vertical and horizontal parameters, e.g. to use a vertical EPS 
distance and a horizontal EPS distance. This way we can separate words on different lines without 
breaking a horizontally long word.  

• Connectedness 
Density-based clustering only considers pixels that are connected to each other as being in the same 

cluster. This is not exactly the case for cursive handwriting segmentation. Words can be connected to 
each other, or separated within themselves, which goes against the nature of clustering. Number of 
black pixels in each line gives sufficient information on the line segmentation. However, the method 
we used for line segmentation is very sensitive to parameters.  
     Here are some possible solutions. To detect the lines, an algorithm should be able to detect peaks. 
Local maximum is not enough. The peak point has to be much higher than the neighboring point. One 
actual line may have multiple peaks, and we should use the dominating one. Also, universal thresholds 
may not work well. Note that there may be different numbers of words in different lines. For example, 
in the beginning of a letter, the name of the recipient takes one line, but there is only one word in it. The 
number of pixels is relatively small, but is still much higher than the neighboring gaps. Wavelet analysis 
could be a reliable method for this task. Our current system did not combine line information with word 
clustering, but it is considered for our future work. Here are some ideas about applications of line 
information in word clustering. One possible method is to apply line information before the clustering. 
We can put in white pixels in the line gaps, which will separate words in different lines. Or we can 
simply perform clustering for each line. Putting white pixels in gaps may erase valid pixels. This could 
potentially delete useful information, especially if the line segmentation is not perfect. Performing 
clustering for each line may seem plausible, and it gives us a chance to use different parameters for 
each line.  However, we should keep in mind that lines are not strict. In handwriting, it is hard to keep 
all words in a straight line. There will be overlaps. Each line may contain small parts of words from 
other lines. They will end up with separate clusters.  

We may also want to pay attention to the clusters that cross the lines after clustering. After the word 
clustering, line information is only useful to those clusters that cross the line. We can use line 
information to break them. However, there is no way to know how many clusters to break one into. 
This problem can be as hard as adding line information before clustering.  
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6 Conclusions 
In this paper, we present a framework of using density-based clustering for word segmentation in 

printed or handwritten documents. The framework also includes multiple steps of preprocessing using 
2-means clustering or neighborhood density. Preprocessing converts an image into black/white image, 
adjusts its angle, and then removes the noise. The preprocessing of the images has provided very good 
results. After preprocessing, the images will go through multiple steps, including blurring, plotting, and 
density-based clustering. We also developed a system for the framework, including preprocessing and 
clustering functionalities. Word segmentation using density-based clustering has achieved very good 
results on printed images. The results on handwritten documents vary depending on whether the words 
are relatively far from each other. For our future work, we plan to use line segmentation to further 
improve the result.    

References 
 

[1] H. Lee and B. Verma, "Binary segmentation algorithm for English cursive handwriting 
recognition", Patten Recognition, Vol. 45, Issue 4, 2012, pp. 1306-1317.  

 

[2] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, "A Novel 
Connectionist System for Unconstrained Handwriting Recognition", IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 31, Issue, 5, 2009.  

 

[3] A. Senior and A. Robinson, "An off-line cursive handwriting recognition system", IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 3, 1998, pp. 309-321.  

 

[4] R. Plamondon and S. Srihari, "Online and off-line handwriting recognition: a comprehensive 
survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 1, 2000, 
pp. 63-84.  

 

[5] R. Vaidya, D. Trivedi, S. Satra, and M. Pimpale, "Handwritten character recogniztion using deep-
learning", International Conference on Inventive Communication and Computational 
Technologies, 2018. 

 

[6] N. Shun, G. O. Hiroshi, T. Ogata, and J. Tani, "Handwriting Prediction Based Character 
Recognition using Recurrent Neural Network", IEEE International Conference on Systems Man 
and Cybernetics, 2011. 

 

[7] A. Graves and J. Schmidhuber, "Offline Handwriting Recognition with Multidimensional 
Recurrent Neural Networks", Conference on Neural Information Processing Systems, 2009. 

 

[8] M. Liwicki, A. Graves, and H. Bunke, "Neural Networks for Handwriting Recognition", Studies 
in Computer Intelligence, 2012, pp. 5-24.  

 

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters a 
density-based algorithm for discovering clusters in large spatial databases with noise", Proceedings 
of International Conference on Knowledge Discovery and Data Mining (KDD), 1996, pp. 226-231. 

 

[10] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd edition, Morgan 
Kaufmann, 2011.  

 

A Framework for Word Segmentation in Images using Density-based Clustering H. Guo and Q. Ding

196


