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Abstract

Modern theorem provers such as Vampire utilise premise selection algorithms to control
the proof search explosion. Premise selection heuristics often employ an array of continuous
and discrete parameters. The quality of recommended premises varies depending on the
parameter assignment. In this work, we introduce a principled probabilistic framework for
optimisation of a premise selection algorithm. We present results using Sumo Inference
Engine (SInE) and the Archive of Formal Proofs (AFP) as a case study. Our approach
can be used to optimise heuristics on large theories in minimum number of steps.

1 Introduction

Theorem provers use heuristics at various points in their operation, such as in search control and
premise selection. These heuristics often have parameters that greatly influence the practical
performance of a prover. Existing approaches to selecting such parameters require human
supervision, rules of thumb or extensive testing [4]. Such testing is often conducted on large
theory sets, and is thus computationally expensive. Every assignment to the collection of
parameters forms a point in parameter space, and as the parameters grow in number and
range, an exhaustive search for optimal parameters becomes infeasible. An alternative is to
sparsely navigate the space of parameters in search of the optimal point using probabilistic
search.

A simple probabilistic approach to parameter selection is to use a variation of ε-greedy
search [13]. Given a metric that determines the value of each parameter combination within
the parameter range, the algorithm starts at a random point and proceeds with exploring the
local neighbourhood. The best point found becomes the starting point for the next iteration.
As a result, the agent is approaching a local optimum. With probability equal to ε, the agent
randomly draws a new point for exploration. In theory, the ε-greedy search is an exhaustive
search given unlimited time, and therefore in the limit it should give us the global optimum.
In practice, it makes inefficient use of resources since the points it tests tend to be densely
clustered. The key issue here is that the knowledge gained by testing any point is discarded.
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The knowledge gained from every tested point in the parameter space can be used to reduce
the uncertainty about the shape of the objective function. We can use our understanding of
the objective function within this uncertainty to make an informed decision about the next
point to test. Every test further reduces our uncertainty. Furthermore, we often have a priori
knowledge of certain aspects of the objective function. For example, we may have an idea of
how close we expect neighbouring points to be. If we construct a probabilistic model of the
objective function with this a priori knowledge, we can then use the knowledge gained from
testing arbitrary points to increase our certainty, thereby improving our prediction of the next
best point to test.

Bayesian Optimisation [9] is a principled method for this purpose and Gaussian Processes
(GPs) [11] provide a means for probabilistic modelling of functions using prior knowledge and
machine learning. We can thus search for the parameter assignment that optimises the heuristic
(such as an established premise selection algorithm) without the cost of extensive testing.

We conduct a case study using a state-of-the-art heuristic SInE [4], a premise selection
algorithm used in Vampire. Our framework based on GPs takes 4.3 minutes under expectation
to find the optimal set of parameters in an AFP article. The premises recommended by the
optimised SInE are sufficient to prove 85.3% of the conjectures using Sledgehammer [1].

2 Background

2.1 Related work

The Sequential Model-based Algorithm Configuration framework (SMAC) [5] is a similar ap-
proach to efficient optimisation of algorithm parameters, in particular SAT solvers [7]. SMAC
employs Expected Improvement criterion while our framework uses Upper Confidence Bound
(UCB), as explained in Section 2.3. The parameter κ available in UCB allows a fine tuning of
the exploration-exploitation trade-off in parameter search.

2.2 Premise selection and SInE

Here, we focused on the task of premise selection which can be defined as follows:

Definition 1. Given a set of premises P, an ATP system A and a new conjecture C, select the
premises from P that will most likely lead to a proof of C by A.

The size of the modern mathematical corpora creates a “needle in a haystack” problem
for automated theorem provers. Only a small subset of available premises is relevant to any
given conjecture. For instance, Open CYC [8] contains over 3 million axioms while each of the
problems has a proof involving up to 20 premises.

SInE is a simple heuristic-based premise selection algorithm introduced to optimise reasoning
in large theories. The algorithm aims to estimate the importance of function and predicate
symbols based on their frequencies in the conjecture and in the premises at hand. The least
frequent symbols indicate a trigger relation between the goal statement and a premise. This
basic variant of the trigger relation is defined as follows:

Let occ(s) be the number of premises in which the symbol s occurs and S the set of all
symbols in a premise p. We define the least general symbol s′ as the symbol for which:

∀s ∈ S : occ(s′) ≤ occ(s)
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and use it as a trigger for p. If the symbol s′ appears in the conjecture, the algorithm
selects the premise p. This basic heuristic suffers from low robustness since small changes in
the number of frequencies can lead to a loss of important premises. The heuristic was thus
extended in the following way:

trigger(s′) ⇐⇒ {occ(s′) ≤ g} ∨ {∀s ∈ S : occ(s′) ≤ t · occ(s)}

where the parameters t ≥ 1, g ≥ 1 are referred to as the tolerance threshold and generality
threshold, respectively.

Finally, premises triggered by the goal may contain symbols that lead to other relevant premises.
This introduces another parameter k ≥ 0 referred to as depth. It leads to the inductive con-
struction of triggering symbols and premises:

1. All symbols s of the goal are 0-step triggered.

2. If s is k-step triggered and it triggers a premise p, then p is k + 1-step triggered.

3. If p is k-step triggered and s occurs in p, then s is k-step triggered.

The algorithm is therefore parameterised by one continuous parameter t and two discrete
parameters g and k. These parameters were shown to greatly influence the performance of
the algorithm. The disparities between the optimal parameter assignment depending on the
problem set can be significant. For instance, premise selection on SUMO and CYC problems
from the TPTP library benefits from setting the depth parameter k to infinity, while using a
problem set from Mizar results in selection of the sufficient number of premises with the depth
limit set to one [4]. Bayesian optimisation framework provides an automatic suggestion of the
optimal parameter assignment based on the problem set.

2.3 Bayesian optimisation

Bayesian optimisation methods construct a probabilistic model of the objective function f
and use it to determine informative sample locations. Under some prior on f , the points
in the parameters space are repeatedly evaluated based on the posterior mean and variance
predictions.

In our setting, the unknown objective function represents the usefulness of SInE given a
parameter assignment. We assume this function was sampled from a Gaussian process. As
we evaluate the performance of SInE given the point in the parameter space, the Bayesian
optimisation framework improves the posterior distribution for the objective function as the
agent becomes more certain of the regions worth exploring. In our implementation we choose
the point in the parameter space to be evaluated in the next iteration based on the posterior
distribution and upper confidence bound of a Gaussian process which is one of the standard
methods referred to as the Gaussian Process-Upper Confidence Bound (GP-UCB) algorithm
[12].

A Gaussian Process is a distribution over functions specified by a mean µ and a covariance
function κ:

f(x) ∼ GP (µ(x), κ(x, x′)).

Common choices of covariance function include the finite dimensional linear, squared exponen-
tial and Matérn kernels [2]. We used the Matérn kernel which can be seen as a generalisation
of the Gaussian radial basis function.
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We define the upper confidence bound in the maximisation problem as:

UCB(x) = µ(x) + κσ(x)

where κ ≥ 0. The first part of the update rule favours the points x which are likely to give a
high reward in terms of the objective function. The second part prefers the points where the
function f is uncertain, thereby negotiating the trade-off between exploitation and exploration.
The amount of exploration is controlled by the constant κ.

3 Case study

3.1 Dataset

The Archive of Formal Proofs (AFP) is a collection of proofs formalised in Isabelle [10]. We
used a parsed version of the dataset that meets the input requirements of MaSh [6], the machine
learning premise selector currently implemented in Isabelle. Here, we report the results on 10
articles containing various theories of sizes ranging from around 100 to around 1500 conjectures.
Each conjecture was paired with a history of key premises necessary to prove the conjecture
with Sledgehammer [1]. These logs provide the ground truth for our experiments – we assume
that a successful premise selection includes all of the premises required by Sledgehammer.

3.2 Evaluation metrics

In premise selection, it is acceptable to provide more premises than necessary to prove a con-
jecture in order to minimise the risk of missing a key lemma. However, the main purpose of
filtering is to lower the cost of considering irrelevant lemmas, and so an efficient algorithm
should minimise the number of unnecessary recommendations.

To let this trade-off guide the optimisation process, we propose a metric based on precision
and recall. In our setting, recall is represented by the ratio of the relevant premises recom-
mended by the selection algorithm to the total number of premises needed for the proof. We
experimented with several approaches to expressing precision in our setting and found that using
a ratio of relevant premises recommended by SInE to an expression that increases exponentially
with the size of the recommended set:

1. leads to an objective function that is strongly correlated with the main goal of recom-
mending all of the premises needed to prove a conjecture;

2. favours a small number of redundant recommendations over the risk of missing one of the
key premises, but penalises large sets of recommendations;

3. reduces sparsity that arises from directly optimising the number of theorems proved, which
improves the optimisation process.

This metric is computed individually for each conjecture as follows:
Assuming we have a set of n conjectures, let i = 1, 2, . . . , n be the index of a conjecture to

be proved. Let Pi be a non-empty set of lemmas required to prove the conjecture i and P̃i a set
of lemmas recommended by a premise selection algorithm. Here, Pi is the set of premises used
by Sledgehammer to prove the conjecture i, and P̃i refers to the set of premises recommended
by SInE. If |P̃i| 6= 0:
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AFP article Nr of goals Proofs found [%] Time [s] Optimal parameters

Polynomials 135 87% 57s t: 16.3, g: 58, k: 131
AbstractHoareLogics 793 63% 249s t: 17.6, g: 57, k: 130

Completeness 475 89% 151s t: 18.9, g: 63, k: 134
FinFun 263 95% 73s t: 19.6, g: 57, k: 132

HeardOf 716 93% 331s t: 19.5, g: 57, k: 131
InductiveConfidentiality 1425 82% 451s t: 19.6, g: 58, k: 130

RefineMonadic 1509 95% 522s t: 14.7, g: 64, k: 123
MiniML 345 84% 104s t: 19.1, g: 58, k: 131

RecursionTheory 656 85% 205s t: 19, g: 57, k: 130
SortEncodings 776 80% 437s t: 14, g: 64, k: 123

Table 1: Premise selection for AFP. We report the time required to find the global optimum
for each of the articles. Next, we compare the premises recommended by SInE controlled by
the optimal set of parameters to the set of premises used by Sledgehammer in the actual proof
search. We assume that all of the premises used in the proof search are crucial. Consequently,
the values in the “Proofs found” column can be considered as the lower bound.

Si =
|P̃i ∩ Pi|
|Pi|

+
|P̃i ∩ Pi|

2|P̃i|
.

For |P̃i| = 0 we set the score Si to zero since the conjecture could not be proved. After
computing the value of Si for each conjecture, we define the objective function across the whole
dataset as follows:

S =

n∑
i=1

Si.

At the testing stage we evaluate the algorithm based on the number of conjectures that
would be proved in practice by Sledgehammer using the premises recommended by SInE. We
assume that all of the premises used by Sledgehammer are necessary to prove the conjecture
whereas in practice the prover might be able to find an alternative solution that requires a
different set of premises. Consequently, this testing metric will tend to underestimate the
number of conjectures proved using the SInE recommendations.

3.3 Results and analysis

GPs assume continuous input variables. Discrete-valued parameters require additional approx-
imations. We followed a common approach which is to use a surrogate continuous variable
for each discrete parameter, and round its value to the closest integer before evaluating the
objective.

The results of our case study using ten AFP articles (see Table 1) suggest that the framework
is efficient in finding the optimal parameter combination across different theories. This allows
us to explore a wider range of parameters and produce an offline heuristic recommendation to
a theorem prover.
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4 Future Work

An interesting consecutive study involves comparing SMAC to Bayesian optimisation in terms of
time and accuracy, in the context of optimising the heuristics used in theorem proving. Another
possible direction would be to experiment with recent approaches to handling discrete-valued
parameters in Bayesian optimisation with GPs [3].

5 Conclusion

Motivated by the challenges in algorithm configuration in theorem proving, we proposed a
principled approach to finding a global optimum in a minimum number of steps. The framework
can be used to improve the existing heuristics, as well as to draw an accurate comparison
between the rule-based heuristics and new methods for premise selection.
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