
EPiC Series in Computing

Volume 82, 2022, Pages 131–140

Proceedings of 37th International Confer-
ence on Computers and Their Applications

Hearthstone Battleground: An AI Assistant with Monte

Carlo Tree Search

Namuunbadralt Zolboot1, Quinn Johnson1, Dakun Shen1, and Alexander Redei1

Central Michigan University, Mount Pleasant, Michigan, U.S.A.
{zolbo1n, johns1qr, shen2d, redei1a}@cmich.edu

Abstract

We are in the golden age of AI. Developing AI software for computer games is one of
the most exciting trends of today’s day and age. Recently games like Hearthstone Bat-
tlegrounds have captivated millions of players due to it’s sophistication, with an infinite
number of unique interactions that can occur in the game. In this research, a Monte-Carlo
simulation was built to help players achieve higher ranks. This was achieved through
a learned simulation which was trained against a top Hearthstone Battleground player’s
historic win. In our experiment, we collected 3 data sets from strategic Hearthstone Bat-
tleground games. Each data set includes 6 turns of battle phases, 42 minions for battle
boards, and 22 minions for Bob’s tavern. The evaluation demonstrated that the AI assis-
tant achieved better performance — loosing on average only 9.56% of turns vs 26.26% for
the experienced Hearthstone Battleground players, and winning 56% vs 46.91%.

1 Introduction

Hearthstone is an online digital collectible card game (CCG) that has reached critical acclaim
and commercial success. According to Blizzard’s data, the game had 23.5 million players
worldwide in 2020[12]. Hearthstone has a few variations of game modes that players can choose
depending on how they want to play the game. Of the game modes, Battleground[10] has been
the most popular with a large player base. A typical battleground game consists of 8 players
at the time by using selections of 54 heroes with unique powers and 128 different minions that
have various effects and attributes. Players compete against each other through matches in a
turn-by-turn style, with randomly assigned opponents, where heroes and minions have unique
strengths and weaknesses. The goal of the player is to survive until all other opponents are
eliminated. Due to a vast number of possible combinations with the use of minions and heroes,
the outcome of the game can be drastically different. Hearthstone Battleground is an example
of a game where each action has a high value. Even top players must adapt and use their
given opportunities wisely since any decision may not result in long-term success. During the
game, the players are unaware of each other’s battle board and what combinations they have
built until the match begins. The only information given to the player is the most common
type of minion present, which can appear as mixed minions. It is difficult to predict what
each opponent will do as players will change their combinations rapidly as everyone advances

B. Gupta, A. Bandi and M. Hossain (eds.), CATA2022 (EPiC Series in Computing, vol. 82), pp. 131–140



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

into higher tiers. Furthermore, since a player can perform many actions, each turn such as
buy, sell, upgrade, change positions, refresh freeze, hero power, end turn, and combinations of
said actions, Battleground mode is exceptionally complex when building a model that could
outperform a higher-ranking player.

A successful Hearthstone Battleground AI assistant makes high-value decisions quickly,
adapts to the randomness presented in the game through the minions selected for the player.
In this paper, we leveraged Monte Carlo Tree Search (MCTS) to narrow down which actions
have high value by simulating all the possible actions and determining the values of each ac-
tion. In doing so, we built an AI that could assist players with advancing into higher ranks
through use of MCTS. A key aspect of this research was the development of our own simulator
of the Hearthstone Battleground. The experiment results prove that the proposed AI assistant
achieves a good performance, in terms of winning rate and damage done.

2 Related Works

In recent years, Hearthstone has become a popular game for building simulators and AI research
[13]. Many developers and researchers came up with phenomenal tools such as Hearthstone
Deck Tracker, HReplay[15], HearthSim[14], Fireplace[16], Sabberstone[17], Bob’s Buddy[20],
and many more[9]. HearthSim started with a few community developers who had a passion for
building Hearthstone Simulation for the purpose of helping players predict the battle win-rate
using given information. From there, they have built an overlay application called Hearthstone
Deck Tracker(HDT), which is widely used by players today.

HDT helps players to predict the win percentage of the battle phase by simulating 10,000
instances. When it is finished, it displays the win, tie, and lose percentages on the player’s
screen. In addition, HDT uploads every match history to their database website called HReplay.
HeartSim has also developed and partnered with few other simulation tools like Fireplace,
Sabberstone, and, Hearthbreaker[14]. Fireplace is Hearthstone simulator written entirely on
Python 3. The purpose of the project is to capitalize on the Hearthstone CardDefs XML files
in order to collect accurate data of game’s cards and have a default implementations of all
the minions [16]. It allows other projects like HearthSim to simulate games efficiently without
worrying about minion original effects with use of API. It also helps to keep track of the game
state. Sabberstone is another simulator written on entirely on C#. Sabberstone’s intention is
to build fast AI that could play and perform better than an average player on Hearthstone’s
standard mode. Developers of Sabberstone have implemented methods that can clone any
board state of any Hearthstone game and simulate on its own application with the use of
SabberStoneGui [17]. This method allows applications like HDT to adapt their simulation on
any given game state.

There is also a Hearthstone AI Competition where teams compete against each other through
the use of AI developed with specific decks. This competition ran from 2018 through 2020 [4].
Dockhorn Competition provides its own AI platform for competitors to use. The platform makes
it easier for competitors to implement their AI without building a base simulator. Although
the goal of the competition is building an AI that can beat professional players, the agent only
makes decisions with a custom designed deck. Therefore, it does not work well when making
complex decision that involves randomness and restricted information, as would occur in a real
Hearthstone Battleground game.

Dota 2 is one of the biggest multiplayer online battle arenas (MOBA) game that has about
half a million active players daily since 2013. MOBA type games often are incredibly complex to
learn due to many factors that involves multitasking, strategic planning and paying attention to

132



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

game state. Dota 2 is team-based game that has numerous possible combinations of heroes that
players can choose. Dota 2 consist of 119 different heroes that categorize into carry, support,
nuker, disabler, jungler, durable, escaper, pusher, and initiator. Each role has important role
for building strong team. Ideal team wants to have a carry, a durable hero, a support hero, a
jungler, and other roles depending on how the team wants to progress throughout the game.
The goal of the game is to destroy enemies main base which is guarded by 11 towers and enemy
heroes and every 2 minutes with minion waves spawning throughout the map. Heroes generate
gold by killing enemy minions, heroes, and destroying tower. When players have some gold,
there are about 208 items to buy from main shop and secret shop. Items helps heroes to get
stronger such with benefits such as raw stat increase, special effects like invisibility, movement
speed etc.[21]. In addition to the AI having to learn the basic mechanics, the agent needs to
learn how to make a team play with this environment. OpenAI Five have made it possible to
teach OpenAI Five to learn and think like real player through reinforcement learning since 2017.
Developers have started to train AI agent to play one on one game against its previous version
repeatedly recursively. After years of training, OpenAI Five have successfully achieve its current
state with team composition and strong ability to make good team play. Currently OpenAI has
played against many world champion teams and won against them in 2018. It shows that the
AI could potentially get better at complex games like Dota 2 with endless possibilities of game
mechanics. OpenAI is an artificial intelligence organization that is founded in San Francisco in
2015 by Elon Musk. The goal of the company is to research and develop AI so it would benefit
humanity. Originally OpenAI was a non-profit organization, but it has changed to for-profit
when Elon Musk resigned as its board member. Since then, OpenAI has successfully release
various projects and solutions to modern AI world such OpenAI Gym, Infrastructures for Deep
Learning, and evolution to Reinforcement Learning. It has changed state of AI since 2017 when
they have started their OpenAI Five self-playing Dota 2 AI project. In 2018, OpenAI has
successfully competed in the world championship of Dota 2 with the grand prize of 25 million
dollars. Although OpenAI did not win the prize, they have successfully defeat world champions
by incredible score by 2-0 [18]. Since 2018, team of OpenAI Five has been actively competing
against top players of Dota 2 in the world.

Fundamentals of OpenAI Five is based on Large Scale Deep Reinforcement Learning [2].
Deep Reinforcement Learning is to think and learn like human by solving small problems until
it has ability to tackle bigger problems.[2] Like human, agents should able act humanly, act
rationally, think human, and think rationally. These concepts are essential when developing
AI that can play just like humans [19]. In addition, agents can learn from small obstacle and
challenges, and it helps them to handle bigger issue later. Furthermore, the idea of reward
or punishment is main concept of reinforcement learning. If agents can solve the problem, it
goes to next one whereas if it could not solve then agent would go back to smaller problem.
By having its experience and data, the AI can make better judgement on related matters.
Large Scale Deep Reinforcement Learning means that it runs with uses a lot more actions and
observations to help agent learn. By using high number of CPU’s and Memories LSDR is done
faster and efficiently to train. Due to less complex and smaller size whereas Dota 2 requires
long time horizons, partially observed state, high-dimensional state, and observation spaces.
All these states must meet to make AI better at playing Dota 2. Although players play Dota
2 using mouse, keyboard, and monitor, the OpenAI Five does not need them to train against
itself. OpenAI Five team designed their training models to run on the cloud server machine,
so AI could learn the game from scratch from playing against each other millions of million
iterations in short amount of time.

OpenAI Five team can analyze the game from beginning to see where and which areas agents

133



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

could improve on. OpenAI Five had gathered about 3 million batch of data after running 10
months to face against top players of Dota 2 mostly one on one. Although AI was able maneuver
and play against some interesting plays against them. However it was not nearly enough to beat
top teams due to lack of predicting what the enemy team is going to do [1]. Even though team
of OpenAI Five is has accomplished to train the basics of the games and fundamentals though
large-scale deep reinforcement, they still need to manually script what items are recommended
to buy for each hero which is done by surgery method [2]. Because the iteration to calculate
each item’s value to too high, it is easier to maximize the optimization of items manually.
OpenAI Five is consistently improving itself every day since they have more time to run more
simulations and train the AI agent through LSDR. However, when Dota 2 gets new updates or
new mechanics, it’s difficult to re-run the some of the databases that previous mechanics are
used.

3 Methodology

3.1 Hearthstone Battleground Game Simulation

Creating an effective AI agent requires a good model of the environment. Building our own
simulator was necessary because the average Hearthstone Battleground game lasts between 20
to 40 minutes, which was impractical for training our agent. In later turns of the game, the
MCTS grows so large that the computations take exponentially longer. We can reduce the
time it takes to simulate each game result with the use of additional computation power and
optimized set rules. Developers of Hearthstone Battlegrounds are regularly updating the game
to make it more entertaining for the players every month. However, it was time consuming
for us to update all the changes that they had made while building the game simulation. For
the purposes of our project, we have decided to stick with Hearthstone Battleground v20.0.2
for our agent[11]. With updates, our method could be extended for use on the most recent
version. Building a simulation of Hearthstone Battleground was a key contribution of this
paper, allowing us to simulate game results efficiently.

In this project, we used Python 3 to build a simulator of the Hearthstone Battleground game.
The most important parts of constructing a simulation were building an accurate game system
that has the exact same abilities and effects of minions and heroes as in the original game. It
includes accurate game system, details of heroes and minions, actions during buy and sell phase,
and most importantly the battle phase. We have painstakingly implemented precise models of
all the minions with exactly same attributes described in the Hearthstone Battleground’s official
website[10]. Furthermore, building an exact copy of Hearthstone Battleground’s Battle Phase
was important for gathering better results. Implementation of Bob’s tavern was paramount for
the simulation since players interact with it by buying minion, selling minion, freeze, refresh,
and upgrade. Not only, Bob’s tavern helped us to simulate multiple turn interaction, it also
added more interaction for more complex decisions leading up to MCTS. The patch notes 20.0.2
consist of 54 heroes, each hero has their unique ability. It was challenging to apply all the unique
effects of the heroes due to making custom changes that requires to restructure battle phase
and bob’s tavern phase.

Although Hearthstone Battleground requires 8 players in the lobby, only two players will
play against each other in one turn. Therefore, we only implemented the battle phase for
two players in each turn. This strategy reduces the computational power needed significantly,
even though we still need to calculate all possibilities of battle in every turn. Battles with
the same minions often have a completely different outcome because the game mechanics rely

134



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

heavy on randomness. There are 128 minions with various effects, that have been categorized
into 19 different variations, with each variation including different ranks of the minion within.
For example, we have combined all the minions that have the ”Deathrattle” effect into the
same category. The term ”Deathrattle” refers to a mechanism that triggers when a minion
dies during battle phase. The mechanism that occurs can be a multitude of different actions:
creating other minions on the board, increasing the health and attacking of other minions, or
impacting the game in some other way. Due to the large scale of how many unique variations of
minions there are and the exponential effect of how they interact with each other, it is critical
to make sure they are sectioned by each variation and that they work properly. Thus, the
solution created was to categorize down further than base mechanisms and be as specific as
possible. Condensing into further subcategories also improved the simulation’s ability to handle
randomness. For example, there are ”Deathrattle” mechanisms that can select and create a
minion from a large pool of different minions. This large scale of randomness is also seen in
other variations of minions. However, by condensing into very specific categories, we can predict
what the variations might be doing and thus know if our results are accurate or not.

Finally, we built generic battle phase functions and battled one-on-one to compute the
outcome of the battles. When we generate battle between players, we make a deep copy of
their board states first. Then we determine which players have the highest number of minions
on their board and player with higher number of minion attacks first. However, if both players
have the same number minions on the board, the game will choose randomly. The result of
the battle differs radically depending on who gets to attack or defend. Although there are
advantages to attacking first, for some cases it can be quiet opposite. Our simulation tracks
the full history of each player action including who wins or loses, and the resulting game data
such as damage taken. We use this data to evaluate the outcome of each decision.

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an algorithm best suited for evaluating complex game
simulations and predicting the best possible move [3]. This makes it ideal for our application.
With the implementation of a MCTS, our model accurately discovers all the possible nodes
and makes suitable moves depending on the information it’s given. Our MCTS model follows
the basic concepts of regular tree search, but with four core fundamentals that distinguish it
from regular tree searches. MCTS finds the best move by selection, expansion, simulation, and
back-propagation as explained below.

1. Selection. The Selection starts at the root node of the tree. It recursively determines
the next node to be selected among its child nodes based on the node’s Upper Confidence
Bound (UCB) value. This step selects the child node with the highest UCB value, which
represents the best action the player can make under a given circumstance.

The UCB value is calculated based on the equation shown below:

UCB(nodei) =
wi + di

ni
+ c

√
logNi

ni

where nodei is the UCB value of nodei, wi is the winning rate of nodei after simulation,
di is the average damage made of nodei after simulation, ni is the number of visits of
nodei, c is a constant value, and Ni is the number of visits of the parent of nodei.

2. Expansion. After a child node is selected from the Selection step, all the possible actions
for the node are discovered in the Expansion. To get the best action for the player,

135



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

Selection Expansion Simulation Back-propagation

Repeated until every valid move is evaluated

Figure 1: A diagram of the four core fundamentals in our MCTS implementation

it’s crucial to check all the attainable actions that the player could make in each turn,
including buying minion, selling minion, playing minion, and upgrading Bob’s tavern.
After the Expansion randomly selects an action among all the possible actions, it creates
a node for the action and appends it as a child node to the tree. This step keeps selecting
actions until there are no more actions that can be made.

3. Simulation. After the Expansion adds a child node, the Simulation begins to evaluate
the performance of the node. Specifically, it simulates the battle between the player and
a random opponent to determine the wining rate and the average damage taken for the
selected action. Because of the randomness of the game, each simulation simulates the
battle phase multiple times to get the most accurate outcomes. We simulated the battle
phase 200 times for each node, which is further described in section 4.

4. Back-propagation. Once the simulation is finished, the Back-propagation returns to
the root node. While traveling back to the root, all the child node values are updated,
including the iteration time, the number of visits, and the UCB value. After the Back-
propagation completes, the model goes back to the Selection to find the next action.

Figure 1 shows the diagram of our MCTS algorithm. The four steps are repeatedly executed
to test every possible action under a given state. Each iteration selects the node with the highest
UCB value, which represents the best move under the current game state. In later phase of the
game, players have access to more resources. Hence the number of action combinations grows
at an exponential rate. As a result, the MCTS algorithm takes exponentially more time to
evaluate all possible actions. To reduce the computing power, we added some limitations and
optimizations to reduce the number of actions to simulation in each turn. More details can be
found in Section 5.

136



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

4 Evaluation

4.1 Simulator Evaluation

Hearthstone Battleground Simulator includes 128 models of minions with special attributes and
abilities. Minions with similar effects are categorized together. Categorization allowed us to
implement minions efficiently and precisely. This includes minions that trigger its effect at the
start of the game, end of the game, during the battle, during the buy sell phase, continuous,
divine shield, overkill, deathrattle, and battlecry, as mentioned in Section 3.1. After the imple-
mentation of the minions, it was important to build an accurate game system that interacts with
Bob’s tavern with actions such as buy, play, sell, upgrade, freeze, refresh, change positions, and
end turn. Therefore, we extensively tested Bob’s tavern functions for correctness. Since Bob’s
tavern generates random minions based on the current player’s tier, we simulated the Bob’s
tavern generation method more than 100 times to check if it accurately generates minions for
each tier. In addition, we also examined all other Bob’s tavern mechanics with implementation
of basic battle phase. Initially we only tested minions with no special effects in battle phase to
evaluate the calculations. Then we started to use minions that have less complicated abilities
such as deathrattle and battlecry. When we deal with minions with the battlecry effect, we
need to make sure the effect was correctly triggered. Minions with the deathrattle effect were
by far the easiest minions to check since it was purely based on if the minion died or not.

For testing purposes, we randomly generated minions from the database and used a single
turn battle simulation to test the correctness of battle phase. After the battle simulation, we
manually checked the result to ensure that more complex minions work as intended. As we were
testing different scenarios with the simulation, we faced difficulties implementing the minions
that trigger their effect twice: such as during the start of battle phase and during the buy
phase. Some of the issues caused by trigger effects were fixed easily, however there are some
cases we had to rewrite completely.

Furthermore, we have made sure all the players actions work as intended and corresponds
to all other minion’s abilities. Thus, we can accurately determine which actions have highest
value with using of MCTS. It’s important to calculate battle win rate for each player by run-
ning simulation at least 100 times to find the ratio between players for each action sequence.
Evaluating the win-rate per-action helps our agent to learn the patterns. This was achieved by
optimizing the UCB value.

4.2 AI Assistant Evaluation

To evaluate the effectiveness of our AI assistant of the game, we collected 3 data sets from a
rank 1 competitive Hearthstone Battleground player whose alias is Dogdog[7]. These data sets
represent strategic wins for Dogdog which we aimed to emulate or beat with our AI assistant.
Each data set includes 6 turns of battle phases, 42 minions for battle boards, and 22 minions
for Bob’s tavern. In this evaluation, we applied the data sets into the AI model and evaluated
whether the model can achieve the same or better results as the rank 1 player. The win rates
and player damage taken are demonstrated in Figures 2, 3, and 4.

A highlight is the skill of our AI as shown in Figure 2. On average, the assistant wins 56%
of turns vs 46.92% for the rank 1 player, and looses only 9.56% vs 26.26% of turns. Figures
2 (a), 3 (a) and 4 (a) highlight this effect and demonstrates that our AI assistant crushes the
expert player. Specifically, in turn 6 of Figure 2 (a), the AI assistant achieves a winning rate
of 50% and a losing rate of 6%, while the expert player had a winning rate of 13% and a losing
rate of 17.1%. Top players like Dogdog gamble on high risk and high reward plays to make for

137



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

1 2 3 4 5 6

Turns

-100

-50

0

50

100

W
in

n
in

g
 r

a
te

(%
)

AI

Player

(a) Winning rates

1 2 3 4 5 6

Turns

-4

-2

0

2

4

6

8

D
a

m
a

g
e

s

AI

Player

(b) Damages

Figure 2: Simulated results of Dogdog’s battle with our AI assistant (data set 1) [5]

1 2 3 4 5 6

Turns

-100

-50

0

50

100

W
in

n
in

g
 r

a
te

(%
)

AI

Player

(a) Winning rates

1 2 3 4 5 6

Turns

-5

0

5

D
a

m
a

g
e

s
AI

Player

(b) Damages

Figure 3: Simulated results of Dogdog’s battle with our AI assistant (data set 2) [6])

1 2 3 4 5 6

Turns

-20

0

20

40

60

80

100

W
in

n
in

g
 r

a
te

(%
)

AI

Player

(a) Winning rates

1 2 3 4 5 6

Turns

-5

0

5

D
a

m
a

g
e

s

AI

Player

(b) Damages

Figure 4: Simulated results of Dogdog’s battle with our AI assistant (data set 3) [8])

138



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

an exciting game. The AI assistant, by contrast, chooses safer and stable plays, which higher
likelyhood of success in preserving the player’s Health Points (HP).

In addition, our model focused more on dealing higher damage in the early phase, as shown
in 2 (b), and 3 (b). Specifically, in turn 5 of Figure 2 (b), the AI assistant made a damage of
6 to the opponent, while the expert player only made a damage of 4 to the same opponent.
Making more damages to other players forces them to play defensively rather than rush through
higher tiers quickly if players want to survive the early phases.

Throughout the extensive simulation, Hearthstone AI assistant came up with some fasci-
nating decisions compared to a top player. It was done by optimizing the use of sell mechanics,
board space and calculating every single UCB outcome with use of MCTS in later turns.

5 Discussion

5.1 Limitations

While MCTS’s performance does not slow down much before turn 6, it takes a lot longer to
calculate remaining turns. Initially, each player starts with 3 coins and 3 selections of minions
from Bob’s tavern. Not only does Bob’s tavern offer additional unique minions as players
upgrade their tavern tier, but it also adds an extra slot for a minion to appear each turn
at tavern upgrades 2, 4, and 6. Therefore, the MCTS tree becomes massive requiring more
computational resources by the third tavern tier upgrade. Currently, our model focuses on
one-on-one battles up to turn 6 due to not having enough computational resources beyond
that.

5.2 Future Optimizations

Deciding when the agent will optimize sell mechanics can be crucial to reduce computational
power that it takes to calculate MCTS. The sell action can be tricky since the agent needs
to calculate each outcome after using sell action. Players often tend maximize their resources
by predicting future outcomes, however, that isn’t feasible for our model given the resource
constraints at higher turns. Nevertheless, the calculation time can be reduced by optimized set
rules. Currently, the model uses optimization rules such as do not sell if the player has less
than 2 coins, but it can be further enhanced by a more better set of rules. For example, the
agent should be able to calculate the best use of coins by calculating the upgrades and most
valuable minions first, then figure out how many coins it would need to do those actions rather
than trying to sell it first. In addition, current set rules can be upgraded more with use of fixed
coin number like 2, 5, 8. It would help the agent maximize the impact of their coins and buy
as many valuable minions as possible.

6 Conclusion

We modeled the 3 strategic wins of a rank 1 - expert level - Hearthstone Battleground player
whose alias is Dogdog. We developed an AI assistant that outperforms the expert player,
helping you achieve higher ranks and a better understanding of the game. This was a complex
challenge involving the implementation of 128 minions, each with their own attributes and
special abilities. In addition, we simulated 54 heroes and all outcomes up to turn 6. In the
future, more computational power and a few optimizations would allow us to simulate the entire
match (beyond turn 6). We custom built a simulator that allowed us to train efficiently and

139



An AI Assistant for Hearthstone Battleground Zolboot, Johnson, Shen and Redei

gather accurate results without having to wait 20-40 minutes for the game to play at human
speed. In conclusion, our AI assistant achieves better performance in terms of win rate, damage
dealt, and loose rate.

References

[1] Open AI. Open ai five. https://openai.com/projects/five/, Jul 2021.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[3] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A
survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1):1–43, 2012.

[4] Alexander Dockhorn and Sanaz Mostaghim. Introducing the hearthstone-ai competition, 2019.

[5] Dogdog. At the End of the Turn, Gain +21/+24 — Dogdog Hearthstone Battlegrounds. https:
//www.youtube.com/watch?v=IrLGJGikcos&ab_channel=dogdog, March 2021.

[6] Dogdog. George vs George: Bubble Battle — Dogdog Hearthstone Battlegrounds. https://www.
youtube.com/watch?v=syrrusvSSNs&ab_channel=dogdog, March 2021.

[7] Dogdog. Hearthstone Battleground Player: Dogdog. https://www.youtube.com/channel/

UCdKdlJV1DsRHtKMBPqEhJww, 2021.

[8] Dogdog. The Whole Game Comes Down to a 50/50 — Dogdog Hearthstone Battlegrounds. https:
//www.youtube.com/watch?v=hGE3jvCbGhs&ab_channel=dogdog, April 2021.

[9] Teng-Sheng Moh Dylan Wang. Hearthstone ai: Oops to well played. In ACM SE ’19: Proceedings
of the 2019 ACM Southeast Conference, 2019.

[10] Blizzard Entertainment. Battlegrounds. https://playhearthstone.com/en-us/battlegrounds,
2020.

[11] Blizzard Entertainment. 20.0.2 patch notes. https://playhearthstone.com/en-us/news/

23658923/20-0-2-patch-notes, Apr 2021.

[12] Blizzard Entertainment. Year of the phoenix in review. https://playhearthstone.com/en-us/

news/23625669, Nov 2021.

[13] Pablo Garćıa-Sánchez, Alberto Tonda, Giovanni Squillero, Antonio Mora, and Juan J. Merelo.
Evolutionary Deckbuilding in Hearthstone. In 2016 IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 1–8, 2016.

[14] HearthSim. Hearthsim: Hearthstone Simulation & AI. https://hearthsim.info/simulators/,
2015.

[15] HSReplay. Battlegrounds status. https://hsreplay.net/battlegrounds/heroes/?hl=en, 2020.

[16] Jerome Leclanche and Benedict Etzel. Fireplace Hearthstone Simulator. https://github.com/

jleclanche/fireplace/wiki, 2015.

[17] Milva and Darkfriend77. Sabberstone: Hearthstone Simulators. https://github.com/HearthSim/
SabberStone, 2016.

[18] OpenAI. Open AI Five Defeats Dota 2 World Champions. https://openai.com/blog/

openai-five-defeats-dota-2-world-champions/, Sep 2020.

[19] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson, 3 edition,
2009.

[20] Jonathan Segal. Introducing bob’s buddy. https://articles.hsreplay.net/2020/04/24/

introducing-bobs-buddy/, Oct 2020.

[21] Fandom Dota 2 Wiki. Fandom wiki: Dota 2 role. https://dota2.fandom.com/wiki/Role, 2017.

140

https://openai.com/projects/five/
https://www.youtube.com/watch?v=IrLGJGikcos&ab_channel=dogdog
https://www.youtube.com/watch?v=IrLGJGikcos&ab_channel=dogdog
https://www.youtube.com/watch?v=syrrusvSSNs&ab_channel=dogdog
https://www.youtube.com/watch?v=syrrusvSSNs&ab_channel=dogdog
https://www.youtube.com/channel/UCdKdlJV1DsRHtKMBPqEhJww
https://www.youtube.com/channel/UCdKdlJV1DsRHtKMBPqEhJww
https://www.youtube.com/watch?v=hGE3jvCbGhs&ab_channel=dogdog
https://www.youtube.com/watch?v=hGE3jvCbGhs&ab_channel=dogdog
https://playhearthstone.com/en-us/battlegrounds
https://playhearthstone.com/en-us/news/23658923/20-0-2-patch-notes
https://playhearthstone.com/en-us/news/23658923/20-0-2-patch-notes
https://playhearthstone.com/en-us/news/23625669
https://playhearthstone.com/en-us/news/23625669
https://hearthsim.info/simulators/
https://hsreplay.net/battlegrounds/heroes/?hl=en
https://github.com/jleclanche/fireplace/wiki
https://github.com/jleclanche/fireplace/wiki
https://github.com/HearthSim/SabberStone
https://github.com/HearthSim/SabberStone
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://articles.hsreplay.net/2020/04/24/introducing-bobs-buddy/
https://articles.hsreplay.net/2020/04/24/introducing-bobs-buddy/
https://dota2.fandom.com/wiki/Role

	Introduction
	Related Works
	Methodology
	Hearthstone Battleground Game Simulation
	Monte Carlo Tree Search

	Evaluation
	Simulator Evaluation
	AI Assistant Evaluation

	Discussion
	Limitations
	Future Optimizations

	Conclusion

