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Abstract: Quality inspection in outdoor prefabricated storage yards is highly challenging due to the 
large volume, diversity, and complex management demands of components. Currently, these 
inspections are conducted manually, which is insufficient to fully meet industry needs. This study 
proposes an innovative approach to enable intelligent inspection for multiple prefabricated components 
in large-scale prefabricated storage yards by integrating Building Information Modeling (BIM), LiDAR, 
Unmanned Aerial Vehicles (UAVs), and Unmanned Ground Vehicles (UGVs). First, an intelligent 
sensing environment and stepwise collaboration mechanism are established, where UAVs are used to 
reconstruct a 3D comprehensive environment of the prefabrication site, providing a map to plan the 
optimal scanning path for LiDAR-equipped UGVs. Next, a point cloud-driven integrated geometric 
quality inspection method is introduced, where UGVs autonomously collect, and process point cloud 
data to extract precise geometric features of large components within expansive spaces. To verify the 
effectiveness of the proposed method, an experiment at a large-prefabricated component factory that 
produces a variety of types of prefabricated components is conducted. By integrating point cloud 
processing results with BIM model design information, this research achieves high-precision, large-
scale quality inspections of the non-structural performance of prefabricated components, significantly 
enhancing inspection efficiency and accuracy.  
 
Keywords:  Large-scale prefabricated storage yard, geometric quality inspection, prefabricated 
components, UAV/UGV integration, LiDAR. 
 
1. INTRODUCTION  
 During the manufacturing process of prefabricated components, quality issues often arise, 
such as dimensional deviations and surface defects, which can significantly impact the quality of 
engineering projects and subsequent assembly. Currently, quality inspection in outdoor prefabricated 
storage yards faces challenges due to the large quantity, diversity, and management complexity of 
components. Traditional manual inspection methods are limited by time and labor costs (Tan et al., 
2020), making them insufficient to meet the needs of large-scale storage yard inspections. 
 To improve the automation of geometric quality inspection for prefabricated components, 
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many researchers have explored new algorithms and technologies, including computer vision(B. Wang 
et al., 2022), 3D laser scanning (M.-K. Kim et al., 2015; Qian Wang, Kim, Cheng, et al., 2016; Qian 
Wang, Kim, Sohn, et al., 2016; Li et al., 2020), and augmented reality(Chi et al., 2022). Also known as 
reality capture technology, 3D laser scanning offers unique advantages in efficiency and precision. 
Laser scanning can generate high-density, accurate point cloud data, capturing the geometry of 
components in fine detail, including subtle features and curved surfaces. Building Information 
Modeling (BIM) provides a digital model of the construction that includes geometric, spatial, and 
attribute information of components. Combining LiDAR-based 3D laser scanning with BIM in 
component inspection enables a more comprehensive, accurate, and real-time approach to detection and 
management (Tan et al., 2023). By comparing the acquired point cloud data with the design BIM model, 
geometric deviations in components can be effectively detected(Bosché & Guenet, 2014; Tan et al., 
2024). 
 Although 3D laser scanning-based methods are fully automated, non-contact, and highly 
precise, current research primarily focuses on geometric quality inspection for single prefabricated 
components and typically requires manual intervention for point cloud data collection. This has clear 
limitations and does not meet the needs of diverse component detection in storage yards. With 
advancements in communication, machine intelligence control, and spatial positioning technologies, 
Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are increasingly used for 
environmental sensing and data collection in large-scale engineering contexts (Tan et al., 2021; 
Rachmawati & Kim, 2022). Therefore, combining UAVs with LiDAR-equipped UGVs could help 
address the current inefficiencies in point cloud data collection. 
 To address the above issues, this study aims to develop a framework for point cloud data 
collection and geometric quality inspection for multiple prefabricated components in large-scale 
prefabricated storage yards by integrating UAV, UGV, LiDAR, and BIM technologies. The innovations 
of this study include: (1) environmental sensing of the prefabricated storage yard and point cloud data 
collection method based on combining UAV and UGV. (2) A target component extraction method based 
on a density projection algorithm by utilizing the Z-axis projection distribution of the point cloud for 
stacked components to locate the position of timbers and extract target component. (3) A two-step 
classification and recognition process for identifying component types and providing reliable data for 
subsequent quality inspection. Initially, the PointNet++ detection method is used to classify the 
component, followed by a Scan-vs-BIM comparison to determine the specific component type. The 
proposed technical framework has significant potential to advance the intelligent management of large-
scale prefabricated storage yards and automate quality inspection of prefabricated components.  
 The organization of this paper is as follows: Section 2 presents background information, 
covering (1) research on data collection combining UAV and UGV, and (2) point cloud-based geometric 
quality inspection for prefabricated components. Section 3 details the proposed methodology for 
environmental sensing, point cloud data collection and geometric quality inspection of multiple 
prefabricated components in large-scale storage yards based on BIM-LiDAR-UAV/UGV. Section 4 
describes the experimental validation of the proposed technique. Finally, Section 5 concludes the study 
and discusses directions for future research. 
  
2. Literature review 
2.1 Data collection based on UAV/UGV 

To achieve integrated inspection of large-scale prefabricated components, it is crucial to rapidly 
and efficiently conduct comprehensive 3D sensing of the inspection environment. Traditional methods 
for manually reconstructing BIM models of building scenes are fraught with challenges, such as high 
costs and lengthy timelines, rendering them inadequate for continuously collecting dynamic project 
information throughout the lifecycle. Photogrammetry using UAV can quickly extract point cloud data 
to reconstruct 3D models of scenes or stitch images to create high-resolution panoramic views(S. B. H. 
K. H. Kim, 2017)，However, the precision of this data often falls short of the requirements for geometric 
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quality inspection of prefabricated components。Moreover, UGV control systems, as a core component 
of construction robotics, have attracted considerable attention from researchers both domestically and 
internationally. Scholars have utilized 3D laser point clouds (NamanPatel et al., 2019; Fei Yan, 2020), 
computer vision(Park et al., 2019) , and the fusion of computer vision with 3D laser point 
clouds(LiuYisha et al., 2018; Pierzchała et al., 2018) to construct and localize sparse semantic maps, 
thereby providing route navigation for UGVs operating in complex environments. The integration of 
BIM technology with UGVs for autonomous path planning and obstacle avoidance facilitates intelligent 
inspection in challenging settings. Nevertheless, UGVs possess limited global sensing capabilities 
within their operational environments during inspections, which can diminish their overall efficiency. 
By considering the respective advantages of UAVs and UGVs, employing UAVs as a complementary 
tool for UGVs' environmental awareness can effectively address challenges related to trajectory 
planning (Hernandez et al., 2014; FernandoRopero et al., 2019) , localization and navigation (O.Sivaneri 
& N.Gross, 2017, 2018) , and data collection (Heß et al., 2012; Asadi et al., 2020) in complex 
environments. Drawing on precedents established by scholars who have utilized heterogeneous 
collaborative control systems, this research intends to explore a collaborative control approach between 
UAVs and UGVs. The goal is to achieve comprehensive 3D sensing of the prefabricated component 
inspection environment, thereby enabling rapid and intelligent data collection for inspections. 

 
2.1 Point cloud-based geometric quality inspection for prefabricated components 
 A substantial amount of research has proposed methods for geometric quality inspection of 
prefabricated components based on 3D point clouds. Bosché (Bosché, 2010) proposed a method using 
3D CAD models to identify steel structures from laser scanning data and used them for dimension 
compliance control. Wang et al. (Q. Wang et al., 2017) used color laser scanning data and BIM to 
estimate the positions of rebars. The team also developed a mirror-aided laser scanning system for the 
geometric quality inspection of concrete elements (M. K. Kim et al., 2019). However, most of these 
algorithms primarily focus on the quality inspection of individual prefabricated components and do not 
adequately address the identification and measurement of multiple component types in complex 
scenarios. Deep learning methods have gained widespread attention in the Architecture, Engineering, 
and Construction (AEC) industry. Li et al. (Li et al., 2022) introduced a comprehensive indoor 
acceptance system that encompasses indoor semantic segmentation, component surface segmentation, 
as well as flatness and verticality quality assessments. Perez-Perez et al.(Perez-Perez et al., 2021) also 
presented Scan2BIM-NET to semantically segment building point clouds into structural, architectural, 
and mechanical subcomponents. Shu et al.(Shu et al., 2023) developed an automated recognition and 
measurement assessment method for prefabricated concrete components based on a Prefabricated 
Concrete Component Recognition Network (PCCR-Net) and 3D point clouds, succeeding in 
segmenting the synthetic point clouds dataset into rebars and concrete. In practical inspections of 
component storage yards, prefabricated components exhibit a variety of types and inspection criteria. 
Therefore, further research is needed to achieve classification of various components and identification 
of different inspection targets. 
 
3. METHOD 
   This study proposes an integrated data collection and assessment framework using UAV 
(Unmanned Aerial Vehicle), UGV (Unmanned Ground Vehicle), LiDAR, and BIM (Building 
information modeling) to automate and efficiently inspect the quality of large-prefabricated components 
in the yard. Figure 1 illustrates the proposed framework, which consists of three main parts: (1) UAV-
based environmental sensing; (2) UGV-based point cloud data collection; and (3) geometric quality 
inspection.  
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Figure 1. The framework of the proposed method. 

 
3.1 Prefabricated storage yard sensing based on UAV 
 The UAV-based environmental sensing system consists of two primary components: 
image data acquisition and 3D reconstruction, as depicted in Figure 2. Initially, the UAV employs 
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an HD camera to capture high-resolution images and utilizes advanced wireless technology to 
ensure real-time, seamless data transmission. Subsequently, this image data is processed to create 
a detailed and accurate 3D environmental model that effectively captures the intricacies and 
characteristics of the terrain. This system enhances the UGV's autonomous capabilities, enabling 
it to perform tasks like path planning and adaptive navigation with greater precision and efficiency. 

 
Figure 2. The process of 3D reconstruction of perceived environment. 

 
(1) Image collection and transmission 
 Before image acquisition, operators only need to set the reconstruction range and image 
overlap rate, allowing the UAV to automatically plan its flight path and collection strategy based 
on these parameters. These UAVs are equipped with advanced navigation and positioning systems, 
enabling precise task execution and ensuring comprehensive coverage and high-quality image 
capture. With onboard high-definition cameras, UAVs can obtain high-resolution images in critical 
areas. The cameras feature high pixel counts and wide-angle lenses, adapting to various lighting 
conditions to capture clear and detailed visuals, providing solid data support for subsequent 3D 
reconstruction. 
 To enhance transmission efficiency and reliability, UAVs utilize mainstream video 
compression technologies such as H.264 and H.265, which effectively compress images to reduce 
storage and bandwidth requirements while preserving image quality. This optimization improves 
both data transmission speed and cost-effectiveness. By optimizing data streams through RTSP 
(Real-Time Streaming Protocol), UAVs achieve fast and stable transmission from the air to ground 
workstations: RTP ensures real-time packet transmission and minimizes latency, while RTSP 
provides flexible streaming control mechanisms, enhancing the manageability and reliability of 
data transfer. The combination of these protocols significantly boosts the data transmission 
efficiency and system robustness of UAVs, ensuring stable operation in complex environments. 
 
(2) 3D reconstruction 
 During UAV data collection, changes in lighting and weather conditions significantly 
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impact image quality. Factors like strong sunlight, shadows, clouds, and haze can reduce image 
clarity, cause color distortion, and increase noise, all of which affect 3D reconstruction quality. 
Additionally, limitations of imaging equipment and transmission interference can further degrade 
image quality. To address these issues, this study employs a range of image processing techniques 
to enhance image quality, as illustrated in Figure 3. (a). First, the BM3D algorithm is applied to 
remove random noise while preserving details, making images captured in low light or complex 
weather conditions clearer. Then, the CLAHE algorithm is used to enhance local contrast and 
emphasize texture details, improving the accuracy of feature extraction in 3D reconstruction. 
Furthermore, image data processing includes geometric correction and optical calibration to 
eliminate image distortion and ensure geographical accuracy. This study uses Ground Control 
Points (GCPs) and resampling techniques to correct geometric distortions and improves image 
clarity and realism through lens distortion, chromatic aberration, and radiometric calibration, 
allowing images to more accurately reflect scene details and colors. 
 

 
Figure 3. 3D reconstruction process. 

 
 3D reconstruction is the process of converting processed 2D image data into accurate 3D 
models, involving 4 key steps: aerial triangulation, point cloud densification, point cloud meshing, 
and texture mapping, as illustrated in Figure 3(b). The process begins with aerial triangulation, 
which utilizes overlapping images to match ground features, allowing for the deduction of 
geometric relationships that determine the geographic coordinates of objects. This method 
effectively combines GCPs with automatic feature extraction, employing adjustment algorithms to 
ensure precise positioning. Next, dense matching generates depth maps using techniques such as 
semi-global matching and multi-baseline stereo vision. These depth maps are then integrated to 
create a detailed 3D point cloud model. Following this, point cloud meshing transforms the discrete 
point cloud into a continuous surface through triangulation. Notably, TIN (Triangulated Irregular 
Networks) are more efficient than DEM (Digital Elevation Model) for modeling complex terrains, 
facilitating effective local updates. Finally, the process concludes with texture mapping, where 
image textures are overlaid onto the mesh surface to enhance realism. By aligning the images with 
the mesh, color information is accurately mapped, employing techniques like image-by-image 
mapping and multi-image blending to produce a textured model that showcases realistic colors and 
details.  
 
3.2 High-Precision point cloud data collection based on UGV  
 After reconstructing the prefabricated component yard model, the UGV point cloud data 
collection is optimized for better efficiency and quality. First, optimal scanning station locations 
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are determined to ensure comprehensive coverage and reduce data redundancy. Then, considering 
the construction site conditions and using these stations, precise path planning and navigation 
strategies are established for the UGV.  
 
(1) Scanning station planning 
 Given the complex and obstructed environment of the prefabricated storage yard, a 
single scanning station is insufficient for capturing all target components effectively. Therefore, 
multiple scanning stations are necessary to obtain complete point cloud data. The process begins 
with the use of the CSF (Cloth Simulation Filter) ground filtering algorithm to distinguish between 
ground and non-ground points, where the ground points help identify suitable locations for 
scanning stations. Non-ground points are subsequently clustered using the Euclidean filtering 
algorithm to isolate the scanning targets. These targets are then transformed into voxel grids, and 
the voxel surfaces are analyzed to assess the visibility between the targets and potential scanning 
stations. For the scan planning, considerations include coverage, accuracy, detail, and overlap to 
ensure thorough coverage of all areas. A greedy algorithm is applied to solve the planning problem, 
iteratively choosing stations that offer the best coverage. With each selection, the additional 
coverage area is computed to minimize redundancy and optimize station placement and quantity. 
Lastly, the overlap between neighboring stations is evaluated to meet the requirements for global 
registration. Should the overlap be inadequate, the algorithm automatically adds new scanning 
stations to ensure effective global registration.  
 
(2) Path planning and navigation 
 In Section 3.2.2, the optimal scanning station for UGV data collection was determined 
and point cloud data can be collected according to the process shown in Figure 4. To ensure the 
UGV completes the task safely and cost-effectively, path planning is divided into three stages: map 
representation, path planning, and global path optimization. First, grid-based mapping is used to 
create an accurate environment map, dividing the 3D reconstructed area into grids marked as 
passable or impassable based on obstacles. Next, the A* algorithm is employed to find the shortest 
obstacle-free path from the UGV's starting point to the target scanning station, combining heuristic 
search with a cost function. Finally, a genetic algorithm is used to optimize the initial path, 
generating new path combinations through selection, crossover, and mutation, and evaluating the 
total cost to find the global optimum. 
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Figure 4. UGV data collection process. 
 

 However, the dynamic environment of the prefabrication plant requires adaptive 
navigation. This is achieved using SLAM (Simultaneous Localization and Mapping), which 
includes environmental sensing with LiDAR, cameras, and ultrasonic sensors to build real-time 
maps and identify obstacles; data fusion using Kalman and particle filtering to enhance accuracy; 
dynamic local path planning with the A* algorithm to ensure obstacle avoidance and efficient 
movement; and real-time decision-making and control to adjust the UGV’s actions for safe 
navigation. Once the UGV reaches a designated scanning point, the LiDAR scanner captures high-
precision 3D point cloud data of the surrounding environment. 
 
3.3 Geometric quality inspection for multiple components 

In the previous section, the high-precision point cloud data for the prefabricated 
component storage yard was obtained. This section introduces the processing of point cloud data 
and the methods for component recognition and inspection, including component stack extraction, 
target component extraction, component recognition, and quality inspection. 

 
(1) Component stack extraction 
 On-site prefabricated components are typically organized by lifting sequence and types, 
with components of the same template and batch stacked together to save space and facilitate 
management. In Section 3.2.1, feasible areas and scanning targets (component stacks) were 
extracted. This step presents a sparse-dense component stack point clouds extraction method.  
 In this process, a global registration algorithm is first applied to achieve an initial 
alignment of the UAV and the dense UGV point clouds after voxel down-sampling. Following this, 
the Iterative Closest Point (ICP) algorithm is used to refine the alignment and improving the 
precision of the registration. Noting that the sparse UGV point cloud remains fixed during the 
registration process. Subsequently, the sparse point cloud collected by the UAV is clustered using 
a fast Euclidean clustering algorithm proposed by Cao et al.[3], generating bounding boxes for 
each component stack. These bounding boxes are then applied to the original high-precision point 
cloud data from the UGV. Since scan point clouds often contain mixed pixels, the DBSCAN 
algorithm is used to remove mixed pixels, resulting in isolated component stacks ready for 
inspection. 
 
(2) Target component extraction 
 For small-prefabricated components with complex shapes, such as air-conditioning 
panels, balconies, and staircases, spacer blocks or beams are often added between stacked 
components for support. Since these prefabricated components are manufactured in a controlled 
factory environment following standardized processes, components of the same template and batch 
generally exhibit high consistency in dimensions and geometric features. As a result, a 
comprehensive inspection of a single component from the same template and batch can reasonably 
infer the quality and performance compliance of the other components. 
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Figure 5. Target component extraction: (a)point cloud density projection on Z-axis; (b) Gaussian 

smoothing and valleys and peaks detection; (c) position of the timbers 
 

 In a component stack, the top component typically has the most comprehensive scan 
coverage, capturing both the top and four side surfaces, while other components only have their 
four side surfaces scanned. Therefore, it is recommended to select the top component in the stack 
as the representative of the component stack. To extract the representative component, a Z-axis-
based point cloud density projection method is used. To minimize noise interference, Gaussian 
smoothing is first applied to the projected point cloud data. As shown in Figure 5. (a), the raw data 
with noise results in less distinct extremum points, while Figure 5. (b) shows the data curve after 
smoothing, where local extremum features become clearer. After smoothing, the distribution of 
point cloud data along the Z-axis is analyzed by calculating the first derivative to identify local 
maxima (peaks) and minima (valleys). Due to the lower number of scan points on spacer blocks 
between components, these blocks usually appear at the lowest valley in the Z-axis distribution. 
By identifying the lowest valley with a tolerance range, the location of the timber can be accurately 
determined, as illustrated in Figure 5. (c). 
 
(3) Component recognition 
 Prefabricated components come in a wide variety, including floor slabs, beams, columns, 
walls, and stairs. These components vary significantly in shape, size, inspection criteria, and 
standards. Based on functional requirements, even components of the same type can differ in 
design and performance. For instance, floor slabs include both composite slabs and hollow-core 
slabs, with different specifications across projects. To identify these diverse components, this study 
developed a two-step classification approach: first, the PointNet++ classification network 
architecture determines the component category, followed by the Scan-vs-BIM method to identify 
specific types according to project requirements. 
 To support this classification, a point cloud dataset resembling ModelNet40 was 
constructed, covering slabs, beams, columns, walls, and stairs. This dataset combines point cloud 
data from onsite scans and simulated scans, with data augmentation applied through noise addition, 
random dropout, and scaling. After creating the dataset, training and testing were conducted. 
Ultimately, the PointNet++ classification network is used to classify point clouds of detected 
components and output the component category. 
 The component recognition method based on Scan-vs-BIM is applied by registering the 
point cloud under inspection to each BIM point cloud within the same category, with the overlap 
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score used to evaluate the match. The component type corresponding to the BIM point cloud with 
the highest overlap score is assigned to the inspected point cloud. For any transformed scan point 
within the inspected point cloud, if a point from the BIM point cloud falls within the specified 
tolerance range, that point is considered overlapping. By Equation (1), the overlap rate (OR) is 
defined as the ratio of overlapping points to the total number of points, which is calculated on a 
scale from 0 to 1, where a score closer to 1 indicates a higher degree of overlap and better 
registration quality. 

OR =  𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄  × 100%                                   (1) 
 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ：the number of overlapping points 
 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : the total number of points 

 
(4) Geometric quality inspection 
 Through the previous step, the BIM model corresponding to the scanned component is 
identified, and the information of the component can be matched. The method based on support 
vector machine proposed by Wang et al. (Q. Wang et al., 2017) is used to segment concrete 
components and rebars. For concretes, horizontal and vertical points are extracted based on normal 
vectors. Subsequently, the RANSAC algorithm is employed to fit the planes of the nearest BIM 
model plane and the flatness is evaluated by the distance of each point to the corresponding BIM 
plane. For rebars, the center point of the bounding box of each rebar is calculated and compared 
with the center point of the adjacent BIM rebar to evaluate the position. 
 
4. RESULTS 
 To validate the proposed method, a case study was conducted at a prefabricated component 
yard in Guangzhou, which produces a variety of prefabricated components, including beams, columns, 
slabs, and stairs, as shown in Figure 6. (a) - (b).  
 

 
Figure 6. Experimental scenario and devices. 

 
  As shown in Figure 6. (c), a UAV (DJI M300 RTK) equipped with multifunctional HD 
camera (Zenmuse-P1) and edge computing module (Manifold-2) was used to capture environmental 
data for the prefabricated storage yard. First, during the UAV's waypoint mission, the HD camera 
captures real-time images of the site. The footage is then compressed into H.265 format in real-time 
using a compiled computing module and transmitted to the ground workstation via wireless network 
using the RTSP protocol. Finally, the images are processed to complete the 3D reconstruction, as shown 
in Figure 7. 
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Figure 7. 3D reconstruction of the prefabricated storage yard. 

 
Based on the 3D scene reconstructed by the UAV, feasible areas and the target component 

stacks are extracted to plan the scanning path for the UGV. Finally, the UGV was employed for high-
precision point cloud data acquisition of the prefabricated yard equipped with a Trimble X7 laser 
scanner. In this case, a total of 19 stations were collected with 224,493,417 points. 

 
Figure 8. Prefabricated storage yard sensing and data collection. 
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Figure 9. (a)sparse UAV point cloud; (b) dense UGV point cloud; (c) component stack 

extraction;(d) component recognition 
 

 After acquiring the high-precision point cloud data of the prefabricated component storage 
yard, individual component stacks were isolated using the proposed sparse-dense registration approach, 
bounding boxes, and DBSCAN for noise removal. Next, targeted components were extracted from the 
stacks based on point cloud density projection on Z-axis. As described in Figure 10. (b), the highest 
peak corresponds to the upper surface of the top component. Following this, the density curve sharply 
decreases and then levels off, representing the component's side edges. The lowest point in the density 
curve marks the spacer position between two components. Then, by extracting points with Z-axis values 
greater than the lowest valley, the target component point cloud is obtained (Figure 10. (c)).  
 

 
Figure 10. (a) a component stack; (b) the proposed method for target component extraction; (c) 

extraction of the target component 
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 Following that, the target component point cloud was input into the PointNet++ network for 
classification to identify the component category, Figure 9. (d) shows the result of the recognition of 
each component stack. The classified point cloud is then matched individually with BIM component 
point clouds within the same category. The component with the highest overlap score is identified as 
the corresponding component (Figure 11. (b)). 
 

 
Figure 11. (a) target component; (b) target component with the corresponding BIM point cloud; 
(c) scanned concrete planes; (d) result for the flatness of the concrete planes; (e) scanned rebars; 

(f) result for the position of the rebars 
 
 After identifying the component type, the scanned point cloud was then segmented into 
concrete points and rebars, as shown in Figure 11. For concrete, the distance of each point to the 
nearest plane of the BIM point cloud is calculated to evaluate the flatness of accuracy. For rebars, 
the center point of the bounding boxes of each rebar is calculated and compared with the center 
point of the adjacent BIM rebar. Through computational validation, it was found that the proposed 
method can maintain an error within 5mm, with the inspection time for a single component being 
approximately 2 minutes, compared to 8 minutes for manual inspection. This represents a 75% 
increase in efficiency, which becomes even more significant as the number of components 
increases, which fully meets the geometric quality inspection requirements for large- prefabricated 
component factories, as shown in Table 1. 
 

Table.1 Comparison of efficiency between manual and proposed method. 

Intelligent Geometric Quality Inspection Based on BIM-LiDAR-UAV/UGV Chen et al.

67



Method Processing Time Total time for 14 
components 

Manual method Flatness 5 mins 14*8=112 mins Rebars 3 mins 

Proposed method 
Environmental sensing 40 mins 

110 mins Data collection 42 mins 
Geometric quality inspection 28 mins 

 
5. CONCLUSIONS 
 To automate and efficiently inspect the quality of large-prefabricated components in the yard, 
this study proposes a data collection and assessment framework that integrates UAV, UGV, LiDAR, 
and BIM. First, the UAV performs 3D reconstruction of the storage yard. Based on this 3D model, 
feasible regions and scan targets are identified, and the A* and genetic algorithms are used to plan the 
UGV's scanning path. The UGV then uses SLAM with onboard sensors to perceive real-time 
environmental information, enabling adaptive navigation and the collection of high-precision point 
cloud data across the yard. Using this high-precision data, a density projection method extracts target 
components, and a PointNet++ classification network combined with a Scan-vs-BIM approach 
identifies and inspects the geometry of components. This innovative method demonstrates high 
efficiency and accuracy in data collection and component classification. 
 The proposed framework has been proposed and validated in large-scale prefabricated 
component yards, with the main contributions as follows: (1). A step-by-step collaborative mechanism 
for comprehensive intelligent environmental sensing based on UAV-UGV. (2). An intelligent matching 
and evaluation system for large-scale prefabricated components' 3D geometric features and inspection 
criteria based on point cloud processing has been developed. 
 However, several limitations remain: (1). The UGV’s scanning height is limited, requiring 
component stacks to be below this height for full surface scanning. Future work could focus on 
enhancing the UGV's scanning capabilities or optimizing stacking arrangements. (2). The study 
primarily addresses geometric dimensions and rebar inspection, but other quality criteria, such as 
surface appearance (e.g., cracks, honeycombing) and embedded parts, need further consideration. 
Future research should aim for a more comprehensive inspection approach.  
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