
The use of types in designing unification algorithms: two
case studies∗

Serdar Erbatur1, Santiago Escobar2, and Paliath Narendran3

1 Universitá degli Studi di Verona, serdar.erbatur@univr.edu
2 Universitat Politècnica de València (Spain), sescobar@dsic.upv.es

3 University at Albany–SUNY (USA), dran@cs.albany.edu

Abstract

We discuss the use of type systems in a non-strict sense when designing unification algorithms.
We first give a new (rule-based) algorithm for an equational theory which represents a property of
El-Gamal signature schemes and show how a type system can be used to prove termination of the
algorithm. Lastly, we reproduce a termination result for theory of partial exponentiation given earlier.

1 Introduction
In this work, we study the use of types to show termination of unification algorithms defined
for equational theories. We give two nontrivial examples of such theories, which are both shown
to have decidable unification problems. First, we investigate unification modulo the theory1,
denoted as E , which consists of following axiom:

B(m1, r1) ∗B(m2, r2) = B(m1 ∗m2, r1 ~ r2)

Second, we focus on the theory of partial exponentiation, denoted as F , for which unification
was shown to be decidable in [9]. There are two axioms in F :

exp(g(X), Y) = g(X ~ Y)

exp(X ∗ Y,Z) = exp(X,Z) ∗ exp(Y,Z)

We introduce type systems for both equational theories and show termination of inference-rule-
based algorithms by proving some results on equivalence classes of terms that have a special
type. Namely, for E we define the following type system:

B : α × γ → α, ∗ : α × α → α, ~ : γ × γ → γ

For F , we use a different type system:

exp : α × γ → α, g : π → α, ∗ : α × α → α, ~ : π × γ → π

Termination in both cases is based on giving rules for detecting infinite applications of
inference rules. We construct such rules by defining a relation among the equivalence classes
with a certain type such that this relation becomes cyclic if and only if applications of inference
rules can go on forever.
∗Paliath Narendran and Serdar Erbatur were partially supported by the NSF grant CNS-09-05286, while

Serdar was in the Department of Computer Science of the University at Albany. Santiago Escobar has been
partially supported by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN 2010-21062-C02-02,
and by Generalitat Valenciana PROMETEO2011/052.

1An abridged version of this decidability result is presented in [4].

S. Escobar, K. Korovin, V. Rybakov (eds.), UNIF 2012 (EPiC Series, vol. 24), pp. 7–16 7

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

The type systems we introduce are not strict. In fact, we keep in mind that E and F are
not typed theories. We consider types as attributes that are attached to variables while running
the algorithm. For instance, let us consider E and its associated type system. A term such
as B(X,X) would be problematic for strict typing but types can be understood as attributes
in this case. This also explains how types are assigned to existing variables. As an example,
the equation U1 =? V ∗W and U2 =? V ~W are typed properly in this discipline: U1 with
α, U2 with γ and both V and W with α and γ, respectively. Similar ideas apply to F and its
type system. Assignment of types to variables is based on the same idea for any given theory,
however, details differ since each theory has a different set of types — see Section 3 and 4.

The outline is as follows. We give some basic definitions in Section 2. We follow the
standard notation in the literature, see [2] for more details. Unification modulo E is explained
in Section 3. In Section 4, use of types in unification modulo F is described.

2 Preliminaries and Notation
Let Σ be a signature, i.e., a set of function symbols and E be a set of identities based on Σ.
We call E an equational theory and define unification modulo E or E-unification as follows.
Let S = {s1 =?

E t1, . . . , sm =?
E tm} be a set of equations where si, ti are terms based on Σ and

variables. Then S is called an E-unification problem. An E-unifier for S is a substitution σ
such that σ(si) =E σ(ti) for all 1 ≤ i ≤ m. That is, equality modulo E, =E , in S is satisfied if
we apply σ to every equation. We use V ar(S) to denote the set of variables that occur in S.

A set of equations S is said to be in standard form over a signature F if and only if every
equation in S is of the form X =? t where X is a variable and t, a term over F , is one of the
following: (a) a variable different from X, (b) a constant, or (c) a term of depth 1 that contains
no constants. We say S is in standard form if and only if it is in standard form over the entire
signature.

A set of equations (i.e., a unification problem) is said to be in dag-solved-form [8] (or d-solved
form) if and only if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not
occur in tj . It is not hard to see that a unification problem in dag-solved form has a unique
most general unifier which can be obtained in a straightforward way [8]. If a set of equations
EQ is in dag-solved form, we say that EQ is solved.

3 Unification modulo E
In this section, we consider an axiom which is observed in El Gamal encryption. We briefly
explain how a message is encrypted within the El Gamal scheme. Let p be a prime, g a generator
of Zp and x the private key obtained from the range 1 to p − 2. Define h = gxmod p. The
public key is the tuple (p, g, h). A message m is encrypted by first selecting a random integer
r such that gcd(r, p− 1) = 1 and then computing

a ≡ grmod p, b ≡ m ∗ hrmod p

The ciphertext of m is the pair (a, b). Let us define B(m, r) = m ∗ hr. When using this
functionality, there is an important property of B that could be taken into account. This

8

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

property is unfolded as follows:

B(m1, r1) ∗B(m2, r2) = m1 ∗ hr1 ∗m2 ∗ hr2

and

B(m1, r1) ∗B(m2, r2) = m1 ∗m2 ∗ hr1+r2 (mod q)

where hr1+r2 can be written (abstracted) as r1 ~ r2. Therefore the equality of interest in this
protocol is

B(m1, r1) ∗B(m2, r2) = B(m1 ∗m2, r1 ~ r2)

We present decidability of E-unification by constructing an algorithm along with a proof
of correctness. First, we define a set of inference rules based on standard forms and observe
that those rules are complete and sound similarly to the case in [1]. This is not very different
from our approach in earlier papers, but the novelty is that termination of the algorithm (i.e.,
inference rules) is obtained by introducing a type system for function symbols of E . Note that
E is not defined as a typed theory. However, using types as described later in this section allows
us to identify a set of equivalence classes that does not grow. Then through a series of lemmas
we show how to detect infinite splitting, which is the hardest type of failure to detect since
new variables are continuously introduced into an E-unification problem. Thus, the algorithm
either transforms an E-unification problem to dag-solved form or returns failure by finding (i) a
function clash, (ii) (extended) cycle induced by relations among the variables, or (iii) variables
which split indefinitely.

The function symbols in B, ∗ and ~ are cancellative, i.e., if s1, t1, s2, t2 are ground terms in
normal form, then B(s1, t1) =E B(s2, t2) if and only if s1 =E s2 and s2 =E t2; similarly for ‘∗’.
This can be shown using the fact that E can be oriented either way to get a convergent rewrite
system.

We now define several relations among variables:

• U �r∗ V iff there is an equation U = T ∗ V

• U �l∗ V iff there is an equation U = V ∗ T

• U �r~ V iff there is an equation U = T ~ V

• U �l~ V iff there is an equation U = V ~ T

• U �rB V iff there is an equation U = B(T, V)

• U �lB V iff there is an equation U = B(V, T)

• U �~ V iff U �r~ V or U �l~ V

• U �∗ V iff U �r∗ V or U �l∗ V

• U �B V iff U �rB V or U �lB V

Let ∼lp(∗) and ∼lp(B) be the reflexive, symmetric and transitive closures of �l∗ and �lB

respectively. Also, let �=�~ ∪ �∗ ∪ �B . The inference rules for E-unification are as follows.

9

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

(a) Variable Elimination:
{X =? V }] EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(b) Cancellation on B:
EQ] {X =? B(V, Y), X =? B(W,T)}
EQ ∪ {X =? B(V, Y), V =? W, Y =? T}

(c) Cancellation on ‘∗’:
EQ] {X =? V ∗ Y, X =? W ∗ T}

EQ ∪ {X =? V ∗ Y, V =? W, Y =? T}
(d) Cancellation on ‘~’:

EQ] {X =? V ~ Y, X =? W ~ T}
EQ ∪ {X =? V ~ Y, V =? W, Y =? T}

(e) Splitting:
EQ] {X =? B(V, Y), X =? W ∗ Z}

EQ ∪ {X =? W ∗ Z, V =? V0 ∗ V1, Y =? Y0 ~ Y1, W =? B(V0, Y0), Z =? B(V1, Y1) }

(f) Failure Rule 1:
EQ] {X =? B(V, Y), X =? W ~ T}

FAIL

(g) Failure Rule 2:
EQ] {X =? V ∗ Y, X =? W ~ T}

FAIL

(h) Occur-Check:
EQ
FAIL

if X �+ X for some X

The variable X in the splitting rule is called an e-peak . That is, an e-peak is a variable X such
that X �l∗ W , X �r∗ Z, X �lB V and X �rB Y for some variables V, Y,W,Z. The rules
(a) – (h) can be applied in any order but we propose the following strategy for efficiency in
reaching the dag-solved form. Rules (a), (f), (g) and (h) have the highest priority, followed by
(b), (c) and (d). Finally the rule (e) has the lowest priority.

Lemma 3.1. Rules (a) – (h) are sound and complete for E-unification.

Proof. The result is obtained in a similar way to that of [1].

By Lemma 3.1 we find that Infinite Splitting is a failure case. A necessary and sufficient
condition that uses this as a reason for non-unifiability will be given later in this paper. Two
example cases that rule (e) applies infinitely by using a variable shared between the first ar-
gument of B and an argument of ∗ are given below. We underline those equations that are
repeated after applying the inference rule.
Example 1: Infinite Splitting

EQ] {X =? B(V, Y), X =? V ∗ Z}
EQ ∪ {X =? V ∗ Z, V =? V0 ∗ V1, Y =? Y0 ~ Y1, V =? B(V0, Y0), Z =? B(V1, Y1) }

Example 2: Infinite Splitting
EQ] {X =? B(V, Y), X =? W ∗ V }

EQ ∪ {X =? W ∗ V, V =? V0 ∗ V1, Y =? Y0 ~ Y1, W =? B(V0, Y0), V =? B(V1, Y1) }

Note that the case where a variable is shared between the second arguments of B and ∗
does not lead to infinite splitting:

10

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

Example 3:
EQ] {X =? B(V, Y), X =? W ∗ Y)}

EQ ∪ {X =? W ∗ Y, V =? V0 ∗ V1, Y =? Y0 ~ Y1, W =? B(V0, Y0), Y =? B(V1, Y1)}

This results in a Function Clash (failure rule (f)). In contrast, note that infinite splitting
takes place in Examples 1 and 2 since both cases give rise to e-peaks repeatedly. To explain
this, we first assign the set of types {α, γ} to arguments of function symbols as follows:

B : α × γ → α, ∗ : α × α → α, ~ : γ × γ → γ

This type mechanism is not strict: in fact one may consider {α, γ} as a set of attributes.
As mentioned earlier, a term such as B(X,X) would be problematic for strict typing but it is
reasonable to assume that X has both α and γ as “attributes” in this case 2. This also explains
how types are assigned to existing variables. As an example, the equation U1 =? V ∗W and
U2 =? V ~W are typed properly in this discipline: U1 with α, U2 with γ and both V and W
with α and γ, respectively.

We, in general, assign types to variables as follows. A variable V is assigned type α if and
only if there exists a variable U such that one of U �∗ V , U �lB V , V �∗ U , or V �lB U
holds. Likewise, a variable V is assigned type γ if and only if there exists a variable U such
that U �~ V or U �rB V or V �~ U or V �rB U .

We can now observe that in (1) and (2) the new peaks have type α. However, the set
V ar(S) for a problem S may get larger because of splitting. Also, if V is the representative of
an equivalence class of variables with respect to a relation R ∈ {∼lp(∗),∼lp(B)}, i.e., [V]R, then
obviously all variables in [V]R have the same type as V .

As seen in rule (e), a variable T can split in two ways: either as T = T0 ∗ T1 or as
T = T0 ~T1. The splitting rule (e) may be applied further to new variables, and in general we
may obtain a variable Tω where ω ∈ {0, 1}∗ is a string of 0’s and 1’s. Therefore we adopt the
general discipline for creating new variables as: Tω = Tω0 ∗ Tω1 or Tω = Tω0 ~ Tω1

3. Also,
if ω = λ, i.e., the empty string, then Tω = T , which implies T is an original variable. For a
variable V , define V = {Vω | ω ∈ {0, 1}∗}. Note that V may be infinitely large.

Lemma 3.2. Let V be of type α and |V | be infinite. Then any descendant Vω, where ω ∈ {0, 1}∗
and V �+

∗ Vω, joins an originally existing ∼lp(B)-equivalence class which has type α.

Proof. By induction on |ω| and definition of �+
∗ and ∼lp(B).

Our main observations are (i) if a variable splits, then its descendants have the same type,
see Lemma 3.2 and (ii) in case of infinite splitting the new e-peaks are always α-typed. We
justify (ii) later in this section. Thus (i) and (ii) allow us to effectively leave γ-typed variables
out.

Definition 3.3. Let V = {Xw | X is α-typed and ω ∈ {0, 1}∗} i.e., the set of variables which
have type α in a given problem. In other words, V includes the original variables with type α
and the new variables that α is assigned as type.

Lemma 3.4. Let S be an E-unification problem and X ∈ V ar(S) such that X is an e-peak.
Then X has type α, i.e., X ∈ V.

2In an order-sorted environment, one could have a sort µ such that α < µ and γ < µ and µ would represent
the combination of both sorts, i.e., the case {α, γ}

3Using the type discipline given earlier, we assume that T is α-typed in the former case and γ-typed in the
latter.

11

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

Proof. Immediate.
Let us consider grouping elements of V with respect to the equivalence relation ∼lp(B).

That is, we write V =
⊎

[X]∼lp(B)
where X ∈ V. Therefore, we have a set of ∼lp(B)-equivalence

classes such that the number of them remain the same even if the splitting applies infinitely.

Lemma 3.5. The number of ∼lp(B)-equivalence classes in V does not increase.

Proof. Follows from the definition of V. Note that any α-typed variable derived from splitting
joins an ∼lp(B)-equivalence class that already exists in V. Hence the result.

Let us define β =∼lp(B) ◦ �∗ ◦ ∼lp(B). Then the following result gives us a way to detect
infinite splitting.

Lemma 3.6. If rule (e) applies infinitely, hence there is no solution, then there exists a β-cycle
among ∼lp(B)-equivalence classes in V.

Proof. By Lemmas 3.2 and 3.5 the equivalence classes remain the same and the new peak
variables join existing classes. For every variable X ∈ V created by splitting there exist another
variable Y ∈ V suct that Y �∗ X holds. Thus in case that splitting applies indefinitely we
form arbitrarily long chain such as

Xi1 �∗ Xi1 . . .

But since ∼lp(B)-equivalence classes do not increase, there are indices j and k s.t. j < k and
Xij ∼lp(B) Xik . Then we are done since this will cause β to be cyclic among the ∼lp(B)-
equivalence classes in V after finitely many steps.

We define an interpretation which gives a valid model for E . If B is interpreted as projection
to its first argument, i.e., left projection, then we get m ∗ n = m ∗ n out of E . This is useful
since the unification problem is solvable only if its interpreted version is also solvable.

Lemma 3.7. If β is cyclic, the E-unification problem is not solvable.

Proof. Let P be an E-unification problem and β is cyclic. When B is interpreted as explained
above, the variables in the same ∼lp(B)-equivalence class will be equal to each other. If we
denote the interpreted problem as P ′ then one should detect that �∗ is cyclic (Note that �∗ is
what remains from β after interpretation). Thus P ′ is not solvable. This implies that P is not
solvable.

Therefore we can define the following failure rule which deals with infinite splitting.

(i) Infinite Splitting:
EQ
FAIL

if β is cyclic in V

Lemma 3.8. Unification modulo E is decidable using rules (a)-(i) above.

Proof. Let P be an E-unification problem. If P is unifiable, then rules (a) - (e) will return an
E-unifier. But if P is not unifiable, one has to consider the possible failure. Two of them, namely
extended occur check and function clash, are handled by rules (f), (g) and (h). In addition,
there might occur infinite splitting. This case is detected by rule (i) which was justified by
Lemmas 3.2 through 3.7.

12

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

4 Unification modulo F

The theory below is called partial exponentiation, and denoted as F here.

exp(g(X), Y) = g(X ~ Y)

exp(X ∗ Y,Z) = exp(X,Z) ∗ exp(Y,Z)

The signature of F is {exp, g,~, ∗}, where exp is the exponentiation operator, g stands for
exponentiation over a fixed base and ~ and ∗ are the multiplication operators modulo different
primes. This theory represents the interaction between exponentiation and multiplication in
various cryptographic protocols.

Unification modulo this theory was shown to be decidable in [9]. Hence we merely give
the inference rules from [9] here, skipping the proof of their completeness and soundness. Our
main focus is on proving termination of the inference rules using a type system. A slightly
different theory was proved terminating for unification in an order-sorted environment in [5].
The following relations are used to detect failure cases as in [9].

• U �b V iff there is an equation U = exp(V,W)

• U �e V iff there is an equation U = exp(W,V

• U �r∗ V iff there is an equation U = T ∗ V

• U �l∗ V iff there is an equation U = V ∗ T

• U �r~ V iff there is an equation U = T ~ V

• U �l~ V iff there is an equation U = V ~ T

• U �~ V iff U �r~ V or U �l~ V

• U �m V iff U �r∗ V or U �l∗ V

• U �g V iff there is an equation U = g(V)

• U � V iff there is an equation U = t where t is a non-variable term that contains V .

We introduce the following type system on F ;

exp : α × γ → α, g : π → α, ∗ : α × α → α, ~ : π × γ → π

We assign types to variables as follows. A variable V is assigned type α if and only if there
exists a variable U such that one of U �m V , U �b V , V �m U , V �b U or V �g U holds.
Likewise, a variable V is assigned type γ if and only if there exists a variable U such that
U �r~ V or U �e V . A variable X is assigned type π if and only if there exists a variable W
such that one of W �l~ X or X �l~ W or W �g X holds.

The algorithm in [9] consists of the following inference rules along with failure rules which
we do not list here:

13

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

(a) Variable Elimination:
{X =? V }] EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(b) Cancellation on ‘exp’:
EQ] {X =? exp(V, Y), X =? exp(W,T)}
EQ ∪ {X =? exp(V, Y), V =? W, Y =? T}

(c) Cancellation on ‘g’:
EQ] {X =? g(V), X =? g(W)}
EQ ∪ {X =? g(V), V =? W}

(d) Cancellation on ‘∗’:
EQ] {X =? V ∗ Y, X =? W ∗ T}

EQ ∪ {X =? V ∗ Y, V =? W, Y =? T}
(e) Cancellation on ‘~’:

EQ] {X =? V ~ Y, X =? W ~ T}
EQ ∪ {X =? V ~ Y, V =? W, Y =? T}

(f) Splitting 1:
EQ] {X =? exp(V, Y), X =? g(W)}

EQ ∪ {X =? g(W), V =? g(V ′), W =? V ′ ~ Y }
(g) Splitting 2:

EQ] {X =? exp(V, Y), X =? W ∗ Z}
EQ ∪ {X =? W ∗ Z, V =? V0 ∗ V1, W =? exp(V0, Y), Z =? exp(V1, Y) }

These rules are applied according to the following priorities: first, rule (a) is applied eagerly,
then rules (b) - (e), finally one of rules (f) or (g).

4.1 Proof of Termination
Termination of the algorithm relies on showing how to detect infinite splitting. Note that all
rules except (g) can be shown to terminate by defining a measure which decreases each time
they are applied. Therefore we construct a necessary and sufficient failure rule by making use
of types introduced for F .

For our purpose, we recall the definition of a relation and its corresponding equivalence
relation in [9]. We define the equivalence relation ∼ to be the reflexive, symmetric, transitive
closure of �b. Note that rule (f) increases the number of ∼-equivalence classes, while rule
(g) does not. Also, rule (g) may be applied infinitely many times, for instance in the case
{X =? exp(V, Y), X =? V ∗ Z}.

As in the previous section, we define the set V = {Xw | X is α-typed and ω ∈ {0, 1}∗}, i.e.,
variables which have type α in a given problem. Also, we consider V as a union of ∼-equivalence
classes, that is, we write V =

⊎
[X]∼lp(B)

where X ∈ V.

Lemma 4.1. The number of ∼ equivalence classes in V never increases.

Proof. Note that rule (f) introduces a new ∼-equivalence class, namely the class of V ′. However,
the type of V ′ is π according to the type system defined above. Thus V ′ /∈ V. Rule (g) does
not introduce new ∼-equivalence classes, since we have W ∼ V0 and Z ∼ V1 and V0 and V1 are
α-typed. Therefore we are done.

Let us define β =∼ ◦ �m ◦ ∼. Then we obtain the following two results similar to
Lemmas 3.6 and 3.7. We skip the proofs.

14

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

Lemma 4.2. If rule (g) applies infinitely (hence there is no solution), then β is cyclic among
the ∼-equivalence classes in V.

Lemma 4.3. If β is cyclic, the F-unification problem is not solvable.

Hence we can define the following failure rule that detects infinite application of rule (g).

(h) Infinite Splitting:
EQ
FAIL

if β is cyclic in V

Thus the following result is immediate:

Lemma 4.4. The algorithm terminates.

5 Conclusion

We have shown two case studies for the use of types in designing unification algorithms for equa-
tional theories E and F , which are observed as properties cryptographic protocols. The theory E
satisfies a property of El Gamal encryption and F is the theory of partial exponentiation that
is observed in various protocols (see [5] for example).

Although E and F are not typed, it turns out that the type systems defined for each are
useful in developing inference rules that are necessary and sufficient to detect infinite splitting.
This leads us to a new method to prove termination of designed unification algorithms. Future
work involves extending this method to a larger class of equational theories.

References
[1] S. Anantharaman, S. Erbatur, C. Lynch, P. Narendran, M. Rusinowitch. “Unification modulo

Synchronous Distributivity”. Technical Report SUNYA-CS-12-01, Dept. of Computer Science, Uni-
versity at Albany—SUNY. Available at www.cs.albany.edu/~ncstrl/treports/Data/README.html
(An abridged version was presented at IJCAR 2012 : Lecture Notes in Computer Science 7364,
14–29.)

[2] F. Baader, W. Snyder. “Unification Theory”. Handbook of Automated Reasoning , pp. 440–526,
Elsevier Sc. Publishers B.V., 2001.

[3] S. Erbatur, C. Lynch, P. Narendran. “Unification in Blind Signatures”. FTP 2011 –
International Workshop on First-Order Theorem Proving, Bern, Switzerland. Available at
www.cs.albany.edu/~se/blindsig_ftp2011.pdf

[4] S. Erbatur, S. Escobar, P. Narendran. “Unification modulo a property of the El Gamal Encryption
Scheme”. UNIF 2012 – The 26th Workshop on Unification, Manchester, UK, 2012.

[5] S. Escobar, J. Hendrix, C. Meadows, J. Meseguer. “Diffie-Hellman Cryptographic Reasoning in
the Maude-NRL Protocol Analyzer”. In: Informal Proceedings of 2nd International Workshop on
Security and Rewriting Techniques (SecReT 2007) , 2007.

[6] S. Escobar, C. Meadows, J. Meseguer. “Maude-NPA: Cryptographic Protocol Analysis Modulo
Equational Properties”. In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures LNCS 5705, pages 1–50.

[7] S. Escobar, C. Meadows, D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Narendran, R. Sasse.
“Protocol analysis in Maude-NPA using unification modulo homomorphic encryption”. In: Proceed-
ings of the 13th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 20-22, 2011, Odense, Denmark , pages 65–76.

15

The use of types in designing unification algorithms: two case studies Erbatur, Escobar, Narendran

[8] J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a rule-based survey of
unification.” In: Computational Logic: Essays in Honor of Alan Robinson, pp. 360–394, MIT Press,
Boston (1991).

[9] D. Kapur, A. M. Marshall, P. Narendran. ‘Unification modulo a partial theory of exponentiation”
Proceedings 24th International Workshop on Unification , EPTCS (42) pp. 12–23 (2010).

[10] C. Meadows. “Formal Verification of Cryptographic Protocols: A Survey” ASIACRYPT , pp.
135–150 (1994).

16

	Introduction
	Preliminaries and Notation
	Unification modulo E
	Unification modulo F
	Proof of Termination

	Conclusion

