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Abstract

Horizontal collision correlation analysis (HCCA) imposes a serious threat to simple
power analysis resistant elliptic curve cryptosystems involving unified algorithms, for e.g.
Edward curve unified formula. This attack can be mounted even in presence of differential
power analysis resistant randomization schemes. In this paper we have designed an effec-
tive countermeasure for HCCA protection, where the dependency of side-channel leakage
from a school-book multiplication with the underling multiplier operands is investigated.
We have shown how changing the sequence in which the operands are passed to the multi-
plication algorithm introduces dissimilarity in the information leakage. This disparity has
been utilized in constructing a zero-cost countermeasure against HCCA. This countermea-
sure has been shown to help in HCCA resistivity. Additionally we provide experimental
validation for our proposed countermeasure technique on a SASEBO platform. To the
best of our knowledge, this is the first time that asymmetry in information leakage has
been utilized in designing a side channel countermeasure and successfully applied in an
ECC-based crypto-module.

1 Introduction

Elliptic curve cryptosystems are emerging as a primary choice for securing light-weight embed-
ded devices as it incorporate more security per key bit compared to RSA [18], thus qualifying as
a less resource hungry alternative. Also with the recent explosion of internet of things (IoT), ap-
plications using light-weight hardware devices are increasing exponentially which in turn make
the security of the underlying devices imperative. However, the hardware implementations
of cryptographic applications suffer an inevitable insecurity in terms of side-channel leakage,
even though the system is theoretically protected. Side channel leakage of information through
power consumption [26], electromagnetic (EM) dissipation, acoustic channel [16], etc makes the
system weakly protected and may lead to complete secret key recovery. A náıve implementation
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of an elliptic curve (EC) scalar multiplication algorithm, consisting of sequential doubling and
addition operations, can be broken through simple power analysis (SPA) [11] with only a single
trace of execution. This motivates researchers to construct cryptosystems which are inherently
secure against SPA. Atomic scheme algorithms have been introduced in [9], [27] which transform
the doubling and addition operation into a uniform structure, such that it becomes infeasible
to distinguish an addition operation from a doubling from a single power trace. However, these
atomic scheme algorithms still involve different formulae for addition and doubling, which has
motivated researchers for further unification. In [8] a unified addition formula is designed for
a Weierstrass form of elliptic curve, for both addition and doubling. While in [13] a new form
of curve, named Edwards curve has been built involving a complete addition formula which
gives a valid elliptic curve point as output for any two curve points taken as input, thus taking
care of both addition and doubling. Recent extensive research involving use of Edwards curve
in cryptosystems reveals its implementation friendliness [4], [5], [25], [20]. Also it is being con-
sidered as a safe curve with respect to a number of important factors (ladder security, twist
security). [7] contain details on the defined safe curve criteria. Indeed because of the presence
of single formula for both point addition and point doubling, an Edwards curve implementa-
tion, similarly Brier-Joye unified formula [8] is SPA resistant. We note here that there exists
advanced attacks such as differential power analysis (DPA) attack [11] which can exploit a
SPA-resistant implementation, thus considered as a serious threat to elliptic curve cryptogra-
phy (ECC) designs. However, it requires access to a significantly large number of power or EM
traces of EC scalar multiplication executions, with a fixed secret key, hence this scenario is not
directly applicable to ECDSA, where a secret scalar is used only once. However, the Big Mac
attack by [30] introduces an advanced form of single trace attacks later termed as horizontal
attacks which exposes even an SPA protected implementation. Several horizontal attack ap-
proaches followed the Big Mac analysis in [15, 19, 2] which were mainly focused on RSA based
exponentiation algorithms. Authors in [3] have put forward the idea of horizontal attack in case
of elliptic curve cryptography. The attack combines methodologies from the well established
horizontal attack [30] and the idea of collision attack (introduced in [28]), hence termed as hor-
izontal collision correlation analysis (HCCA) which breaks an atomic scheme ECC algorithm
or a unified ECC algorithm equipped with SPA-resistance. Even when the design is protected
against advanced attacks such as DPA, refined power analysis [17], address-bit differential at-
tack [21] with effective randomization schemes suggested in [22], [14], HCCA can be launched,
thus introducing genuine vulnerability in the implementation. It exploits the relation of the
secret key value with a property pertaining to the underlying field multiplications involved in
a point doubling and point addition operation. It is a unique property based on the sharing of
operands between two field multiplications which holds irrespective of any randomization used
at each iteration of the scalar multiplication.
Our contribution Our main contribution in this paper is to show how we can design a zero-
cost yet effective countermeasure that helps in resisting HCCA. Our contribution in this paper
can be summarized as follows

• We coin a term order of operands to define the sequence in which two operands are passed
as parameters to a long integer multiplication routine. We show how the information leak-
age from a multiplication varies when the order of operands in a multiplication is changed.
We also derive that the relation between side-channel leakage of two multiplications shar-
ing one (two) common operand (s) is dependent on the order of operands passed to the
individual multiplications. We used two distinguishers - Pearson Correlation metric, and
Euclidean Distance metric for our analysis. However due to the limited space constraint
of this paper, we only show results on Pearson Correlation metric only.
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• Based on this observation, we propose a countermeasure, that can be applied to the exist-
ing unified algorithms of ECC to defeat HCCA. The countermeasure converts the unified
algorithm into a safer form, such that the relation between side-channel leakage of multi-
plications based on property of operand sharing cannot be exploited. The countermeasure
requires determination of the safe sequence through our proposed algorithm. As a result,
there is no additional timing and area overhead on the implementation. We show how the
implementation integrated with our proposed countermeasure enhances HCCA resistivity.

• Finally we provide extensive results of mounting HCCA on the proposed countermeasure.
The results have been validated on SASEBO-GII with Electromagnetic (EM) traces.

2 Related Work

Big Mac analysis [30] introduced the idea of applying differential power analysis along the
length of a single exponentiation trace of RSA. It shows how the data dependency during
the pre-computation phase can be exploited to identify exponent digits involved in a long
integer multiplication during an m-ary RSA exponentiation. The vulnerability is shown to
increase if the length of the key increases exposing more multiplication traces to compare
with. Authors in [1] applies a novel technique of distinguishing multiplication from squaring
operations based on the difference in their expected Hamming weight distribution. However, it
is a vertical attack gathering information from several traces along the same region of a long
integer multiplication. In [10] the idea of horizontal attack on an RSA exponentiation has been
strengthened by exploiting a significant number of potential collision pairs obtained within a
long integer multiplication, if the underlying operation is a squaring operation. Multiplication
operations are expected to result in less collisions compared to squaring due to the presence
of different input operands. In [15] a practical vulnerability of using scalar blinding as a DPA
countermeasure has been demonstrated. Due to the sparse form of NIST prime, a portion of
the secret key remains unblinded and gets exposed to vertical collision analysis, the rest part of
the key is recovered using horizontal attack techniques. In [2] a generic approach is introduced
to break an ECC implementation with the help of one template trace per scalar bit. In [19]
the vulnerability of regularized algorithms such as Montgomary Ladder [24], Joye’s Add-Only
scalar multiplication [23] is highlighted, based on collisions of intermediate results obtained from
consecutive iterations. In later section we demonstrate the resistance of our countermeasure
from the above mentioned horizontal attacks.

3 Preliminaries

We discuss the idea of Horizontal Collision Correlation Analysis (HCCA) attack in this section.

3.1 Horizontal Collision Correlation Analysis

First we proceed to explain the HCCA attack methodology with the help of an illustration,
followed by a summarization of the attack. Before moving to the example describing HCCA, a
closer look is given to the field operations underlying ECC doubling and addition operations. It
is evident that, ECC point addition and point doubling operations are associated with a number
of field multiplication and field addition operations. The underlying field multiplications play an
important role in HCCA. The attack is based on the assumption: The adversary can detect when
two field multiplications have at least one operand in common [3]. Without loss of generality we
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  DBL DBL ADD DBL ADD DBL DBL

Correlation is low Correlation is high

10110.........

X1Y2 X2Y1 X1Y1 X1Y1

Figure 1: Horizontal Collision Correlation Analysis (HCCA)

consider distinct field elements as A, B, C, D to be used as operands to field multiplications.
Then the possible field multiplication pairs will take one of the following forms: 1) A×B, C×D
sharing no common operand, 2) A×B, C ×B sharing one common operand, 3) A×B, A×B
where both the operands are same. Note that here no particular assumptions is made on the
order in which the operands are passed. However, operands which are common are generally
passed in the same order in the two concerned multiplications. Based on the above class of
multiplication pairs, we define the following properties of field multiplication pairs:

• property 1: when a pair of multiplications (mi, mj) share one (two) common operand
(s) among themselves.

– property 1a: when a pair of multiplications (mi, mj) share exactly one common
operand among themselves. For example, the pair (A×B, C ×B) satisfies property
1a.

– property 1b: when a pair of multiplications (mi, mj) share exactly two operands,
i.e. they denote the same multiplications. For example, the pair (A × B, A × B)
satisfies property 1b.

• property 2: when a pair of multiplications (mi, mj) share no common operand among
themselves. For example, the pair (A×B, C ×D) having independent operands satisfies
property 2.

Such relation between field multiplication operations is exploited to identify the doubling and
addition operations computed during an ECC scalar multiplication, which in turn is directly
dependent on the secret key. Hence identification of doubling and addition operations leads to
the recovery of the underlying unknown key. Now we proceed to illustrate the attack scenario of
HCCA. Without loss of generality, a key sequence has been considered as 10110 . . . which can be
expanded as DBL, DBL, ADD, DBL, ADD, DBL, DBL,. . ., where DBL represents a point
doubling operation, while ADD denotes a point addition operation as shown in Figure 1. Each
of the ADD/ DBL operations consist of underlying field additions and field multiplications. For
an instance, it can be observed in Figure 1, that there exists a multiplication pair (X1Y2, X2Y1)
within the addition operation, satisfying property 2 of sharing operands. While a pair (X1Y1,
X1Y1) can be found in case of doubling satisfying the property 1b of sharing operands. Now,
according to [3], if the correlation between the power traces of two concerned multiplication
pairs be considered, the multiplication pair (X1Y2, X2Y1) should give low correlation value,
with respect to the correlation value obtained from the multiplication pair (X1Y1, X1Y1). If
significant difference between the correlation values is obtained, then the doubling and addition
operations can be successfully identified, leading to the complete secret key recovery. This
is how an attacker can launch HCCA. The detailed intermediate steps of the Edwards curve
formula, vulnerable to HCCA can be found in Figure 2.
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4 Our Proposed Countermeasure

We propose here a zero-cost countermeasure technique which ensures the resistance of a unified
ECC algorithm against horizontal collision correlation attack (HCCA). Our proposed coun-
termeasure centers around the concept of reordering of field operands underlying a field mul-
tiplication. It involves transforming the ECC point doubling and point addition operations
into a secure form, such that even if condition 1 holds, it is not revealed to the adversary. In
other words, the information of one of the operations satisfying property 3 is hidden through
our implementation. An ECC implementation integrated with our proposed countermeasure
becomes more resistant against HCCA. Our countermeasure requires zero overhead of resources
in case of the Edwards curve unified formula as well as Brier-Joye unified formula. It is based
on an observation that the leakage from the power consumption is dependent on the ordering
of operands in a field multiplication. This discrepancy in leakage occurs as the ordering of the
operands brings in asymmetry in the leakage, which we exploit to develop our countermeasure.
We note that although the concept of asymmetric leakage has been addressed in [29] in case
of multipliers and swapping of operands has been suggested as a potential countermeasure,
however authors of [29] do not exploit its applicability to any ECC cryptosystem. To the best
of our knowledge, this is the first countermeasure design for any elliptic curve cryptosystem
which utilizes asymmetry in information leakage of multiplier operands.

4.1 Asymmetric Leakage of Field Multiplication

In this section we explain our theoretical rationale behind the asymmetric leakage of field
multiplications, which contribute in constructing our countermeasure scheme. We begin our
discussion with an introduction to Long Integer Multiplication (LIM) shown in Algorithm 1.
The long integer multiplication routine is called to compute underlying field multiplications
involved in the ECC point addition, doubling operations. The LIM takes two field operands
X, Y as input and outputs their product XY . Each of the field operands passed as parameter
in the LIM routine consists of underlying t words, each of size w. The result can be of size 2t,
and is stored in a register of length 2t words. The algorithm is run O(t2) times.

To establish the reasoning behind asymmetry in leakage of field multiplications, we introduce
here an information leakage model which will guide us towards the theoretical basis of our
countermeasure. Generally, in case of an iterative algorithm, a calculation Ci is identified, which
is operated at each iteration of the algorithm execution. The output Oi of the calculation Ci is
updated at every iteration to a specific register location. The value of the output Oi computed
and stored at each iteration leaks an information. This information leakage is denoted as l(Oi),
which can be approximated using a function of Oi i.e f(Oi). The information leakage at each
iteration gets augmented iteratively to result in a vector < f(Oi) >. In case of Algorithm 1,
we consider an instance of the long integer multiplication run with input field operands A =
(at, at−1, . . . , a2, a1), B = (bt, bt−1, . . . , b2, b1) which results in the output A × B. At (i, j)th

iteration we can associate the calculation Ci,j with the partial product computation ai×bj . The
output of the partial product Oi,j = aibj is stored in every iteration, which leaks an information
l(Oi,j). We assume that the information leakage l(Oi,j) follows Hamming weight power model.
As a result, the function f(Oi,j) is approximated with the help of the Hamming weight of
the output value Oi,j . So we consider f(Oi,j) = H(Oi,j), where H(x) implies the Hamming
weight of the value x. Based on the leakage model considered, the information leakage of long
integer multiplication can be represented by an augmented vector, denoted as < H(Oi) >, or
< H(aibj) >. It is evident from Algorithm 1 that the sequence of partial products changes when
the order of the operands passed as parameter to the LIM routine is swapped. We consider the
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ALGORITHM 1: Long Integer Multiplication algorithm(LIM)

Data: : {X = (X[t], X[t− 1], ...., X[1])2w} , {Y = (Y [t], Y [t− 1], ...., Y [1])2w}
Result: : {X.Y }
begin

for i← 1 to 2t do
R[i] = 0

end
for i← 1 to t do

C = 0 ;
for j ← 1 to t do

(U, V )2w = X[i]× Y [j] ;
(U, V )2w = (U, V )2w + C ;
(U, V )2w = (U, V )2w + R[i + j − 1] ;
R[i + j − 1] = V ;
C = U ;

end
R[i + t] = C ;

end
return R ;

end

information leakage l(ai, bj) at each iteration, corresponding to partial product ai×bj computed
during an instance of LIM(A,B) execution. It is observed that the vector is formed as < l(a0,b0),
l(a0,b1),. . ., l(a0,bt−1),. . ., l(at−1,bt−1) >. While the one obtained during computation of LIM(B,
A) can be presented as < l(b0,a0), l(b0,a1),. . ., l(b0,at−1),. . ., l(bt−1,at−1) >. This asymmetry in the
sequence of the two vectors contribute as a distinguisher between two multiplications.

To calculate the relationship between information leakage of two long integer multiplications,
we have considered the following metrics

4.1.1 Pearson Correlation Metric:

Considering underlying field operands as: A, B, A′, B′, the correlation between two long integer
multiplications LIM(A, B) and LIM(A′, B′) can be approximated with the Pearson correlation
coefficient computed between two vectors < H(aibj) >, < H(a′ib

′
j) > (following similar notation

as above). Let us denote the two vectors as H(AB) and H(A′B′) respectively. The correlation
is obtained as follows

ρ =
Covariance(H(AB), H(A′B′))√

V ariance(H(AB))
√
V ariance(H(A′B′))

(1)

We now onwards denote the covariance between two vectors as cov(H(AB), H(A′B′)), vari-
ance as var(H(AB)). The standard deviation from the information leakage of a long integer
multiplication LIM(A, B) is denoted as std(AB). It is obtained as below

std(AB)=std(<H(AB)>)=

√√√√√√
t−1∑

i=0,j=0
H(aibj)

2

t2
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)2

(2)

We define four correlations based on following long integer multiplications LIM(A, B),
LIM(B, C), LIM(C, B), LIM(C, D). The following correlation is obtained from LIM(A, B)
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and LIM(C, B)

ρ1=

(
t−1∑

i=0,j=0
H(aibj)H(cibj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(cibj)

t2

)
std(AB)std(CB)

(3)

where we denote
t−1∑

i=0,j=0

H(aibj)H(cibj) as α, where α can be expanded as

α =(H(a0b0)H(c0b0) +H(a0b1)H(c0b1) + . . .+H(a0bt−1)(c0bt−1)

+H(a1b0)H(c1b0) + . . .+H(at−1bt−1)H(ct−1bt−1))
(4)

The following correlation is obtained from LIM(A, B) and LIM(B, C)

ρ2=

(
t−1∑

i=0,j=0
H(aibj)H(bicj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(bicj)

t2

)
std(AB)std(BC)

(5)

where
t−1∑

i=0,j=0

H(aibj)H(bicj) can be expressed as β, which takes the form

β =(H(a0b0)H(b0c0) +H(a0b1)H(b0c1) + . . .+H(a0bt−1)h(b0ct−1)

+H(a1b0)h(b1c0) + . . .+H(at−1bt−1)H(bt−1ct−1))
(6)

Here we consider the correlation coefficient between a multiplication pair with property 2,
computed from LIM(A, B) and LIM(C, D).

ρ3=

(
t−1∑

i=0,j=0
H(aibj)H(cidj)

t2

)
−

(
t−1∑

i=0,j=0
H(aibj)

t2

)(
t−1∑

i=0,j=0
H(cidj)

t2

)
std(AB)std(CD)

(7)

where
t−1∑

i=0,j=0

H(aibj)H(cidj) is coined as γ, represented as

γ =(H(a0b0)H(c0d0) +H(a0b1)H(c0d1) + . . .+H(a0bt−1)H(c0dt−1)

+H(a1b0)H(c1d0) + . . .+H(at−1bt−1)H(ct−1dt−1))
(8)

We develop here few Lemmas which will be required consequently to support the theoretical
foundation of our countermeasure. As defined above, A and B denote two field multiplication
operands which will be used as parameters in the LIM routine. Now we proceed to the Lemmas.

Lemma 4.1. The standard deviation of a Hamming weight vector obtained from LIM(A, B)
is same as that obtained as LIM(B, A), i.e std(AB) = std(BA).

Proof The vector composed from leakage information of LIM(A, B) can be expanded as
< H(a0, b0), H(a0, b1),. . ., H(a0, bt−1),. . ., H(at−1, bt−1) >. While the vector obtained from
leakage information of LIM(B, A) is represented as < H(b0, a0), H(b0, a1),. . ., H(b0, at−1),. . .,
H(bt−1, at−1) >. It can be observed that the two vectors are two different arrangements of
same underlying elements. As a result, std(AB) = std(BA). Hence proved.

If we denote mean(X) as the mean value of a vector X, on the basis of a similar argument
we can also show that mean(AB) = mean(BA).

Lemma 4.2. cov(H(AB), H(CB)) 6= cov(H(AB), H(BC)). When C = A, cov(H(AB), H(AB))
6= cov(H(AB), H(BA)).
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Proof The two covariances cov(H(AB), H(CB)) and cov(H(AB), H(BC)), can be represented
as

cov(H(AB), H(CB)) = α−mean(AB)mean(CB) (9)

cov(H(AB), H(BC)) =β −mean(AB)mean(BC)

=β −mean(AB)mean(CB)
(10)

Since, from Lemma 2. mean(BC) = mean(CB), the second term in both the covariances are
mean(AB)mean(CB). Also, from equations 4 and 6, α 6= β, as a result we can conclude

cov(H(AB), H(CB)) 6= cov(H(AB), H(BC)).

When C = A: from equation 4 and 6, we show that still α 6= β. The value of α can be expressed
as

α =(H(a0b0)H(a0b0) +H(a0b1)(a0b1) + . . .+H(a0bt−1)H(a0bt−1)

+H(a1b0)H(a1b0) + . . .+H(at−1bt−1)H(at−1bt−1))

=(H(a0b0)
2 +H(a0b1)

2 + . . .+H(a0bt−1)
2

+H(a1b0)
2 + . . .+H(at−1bt−1)

2)

(11)

while β can be reduced as

β =(H(a0b0)H(b0a0) +H(a0b1)H(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)H(b1a0) + . . .+H(at−1bt−1)H(bt−1at−1))

=(H(a0b0)
2 +H(a0b1)(b0a1) + . . .+H(a0bt−1)H(b0at−1)

+H(a1b0)h(b1a0) + . . .+H(at−1bt−1)
2).

(12)

From equations 11 and 12, we can observe that α 6= β. As a result, when C = A, we can
conclude similarly that

cov(H(AB), H(AB)) 6= cov(H(AB), H(BA)).

Lemma 4.3. ρ1 > ρ2 for the case: A = C.

Proof When A = C, precisely the two multiplications pairs considered are: (LIM(A, B),
LIM(A, B)) and (LIM(A, B), LIM(B, A)). The correlation ρ1 between (LIM(A, B), LIM(A,
B)) can be computed as

ρ1 =
cov(H(AB), H(AB))√

var(H(AB))
√
var(H(AB))

=
var(H(AB))

var(H(AB))
, since cov(X,X) = var(X)

=1

While, the correlation ρ2 between (LIM(A, B), LIM(B, A)) can be computed as

ρ2 =
cov(H(AB), H(BA))√

var(H(AB))
√
var(H(BA))

=
cov(H(AB), H(BA))

var(H(AB))

<1

Since from Lemma 3,
cov(H(AB), H(AB)) 6= cov(H(AB), H(BA)).
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Hence it is proved that ρ1 > ρ2, when C = A.

With the help of the lemmas discussed above, we make the following observations:
Observation 1: ρ1 6= ρ2 From equations 3, 5, we can recollect the mathematical forms of
ρ1 and ρ2. From Lemma 4.1, we can conclude that std(AB) = std(BA). As a result, the
denominators in case of both the correlations are equal. From Lemma 4.2 we have the result
that

Cov(H(AB), H(CB)) 6= Cov(H(AB), H(BC)).

Consequently numerators of the two correlations are unequal. Also, since From Lemma 4.1,
mean(AB) = mean(BA), the difference in value arises from the unequal values of α and β. We
give a closer look at the forms of α and β to observe that: 1) each term in α takes the form
H(aibj)H(cibj) where the word multiplications share operand bj . 2) each term in β is of the
form H(aibj)H(bicj), where the word multiplications have no common operand. each term of
α and β take different form yielding different values. As a result, ρ1 is clearly not same as ρ2.

Observation 2: ρ2 and ρ3 are indistinguishable To make a comparison between the values
of ρ2 and ρ3, we look at the form of each of the terms present in the two equations take: 1)
each term in β is of the form H(aibj)H(bicj), where the word multiplications have no common
operand. 2) each term in γ is of the form H(aibj)H(cidj), where the word multiplications are
devoid of any common term. The two forms H(aibj)H(bicj) and H(aibj)H(cidj) are indistin-
guishable, hence rendering β and γ being indistinguishable. We conclude from our observation
that, the two correlation coefficients take similar form.

Observation 3: ρ1 > ρ2 for a multiplication pair with property 1b A multiplication
pair satisfying property 1b, implies same multiplications are being computed. From Lemma 4.3,
we obtain that in such a case ρ1 will always be greater than ρ2 irrespective of the underlying
field element values involved. Hence ρ1 > ρ2 occurs with high probability in such a case.

From the above observations, the importance of ordering of operands in underlying field
multiplications can be inferred. Based on our inference, we suggest that the information leakage
due to sharing of operands can be hidden by operand reordering. This fact has been exploited
in designing our countermeasure which will be explained in the following subsection.

4.2 Preventing HCCA by choosing safe sequence

The countermeasure is designed on the basis of the idea of reordering of operands discussed in
the previous subsection. It attempts to transform the series of field multiplications underlying
ECC point doubling and point addition operation into a HCCA - resistant form. In other words,
it makes the implementation secure against HCCA. As can be noted in section 3.1, an ECC
implementation becomes vulnerable to HCCA if only one of the addition or doubling operation
satisfies property 3. The idea is to alter the operation containing property 3, into a form where
information regarding operand sharing between field multiplications is hidden. Consequently it
is not revealed to the adversary whether any doubling or addition operation contains property
3 or not. Hence the basis of distinction between doubling and addition operation is concealed.

We swap the operands, to blur the correlation between a pair of multiplications sharing
operand (s). Let the multiplications be (A × B, A × B) computed as A × B and B × A.
LIM(A, B) gives the expansion (< l(a0,b0), l(a0,b1),. . ., l(a0,bt−1),. . ., a(bt−1,bt−1) >), LIM(B, A)
leads to (< l(b0,a0), l(b0,a1),. . ., l(b0,at−1),. . ., l(bt−1,at−1) >). Here after swapping of operands,
still the first and last partial products namely a0b0 and a(t−1)b(t−1) are same for both A × B
and B × A and hence an attacker may just focus on these two squares for getting similarity
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Figure 2: Safe sequence transformation of Edwards curve formula

between A × B and B × A. However, here we would like to comment that firstly, it would be
extremely challenging for an attacker to extract accurately the power (EM) trace corresponding
to the partial products within a long integer multiplication, where the long integer multiplication
needs to be correctly located within the entire trace. If the partial product is computed as point
multiplication within a clock cycle time, the trace corresponding to the partial products will be
also small and give insufficient information. Secondly, if the partial products are computed for
fairly large base width of 64 bits or above, then it is suggested that they be calculated as long
integer multiplications also (64 bits = 4w, where w = 16 bits). Since the partial products are
themselves always expanded in the swapping manner ((a0b0) in A × B, (b0a0) in B × A ), so
computing them as long integer multiplications again diffuses the similarity between the partial
products.

It should be noted that the transformation technique mainly involves rearrangement of
multiplication operands. This process does not incorporate any randomization or any extra
operation. Therefore the cost of this countermeasure step is zero in terms of area as well as
timing overhead. Moreover, the order of operands are decided beforehand and can be pre-
computed before implementing the design, requiring only one time effort from the designer’s
point of view. We design an algorithm, named safe sequence converter routine presented in
Algorithm 2 which takes care of the transformation process of our countermeasure. We proceed
to portray our transformation mechanism through an illustration, which will be followed by a
description of our designed Algorithm 2.

We have considered the Edwards curve unified formula shown in [6] for explaining our
conversion scheme. It can be noted that the Edwards curve unified formula involves a single
formula which is used for both addition and doubling. It underlies a series of field multiplication
operations which have been listed in Figure 2. We note that the multiplications are written
with respect to the point addition operation, i.e when two distinct points (X1, Y1, Z1), and
(X2, Y2, Z2) are taken as input. To construct a safe sequence we need to find out which are the
multiplications which share operands among themselves. To do so, we construct an undirected
graph with the individual multiplications as the graph vertices, whereas an edge is constructed
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between two graph vertices if the two underlying multiplications satisfy property 1 of sharing
operands (edge property). We observe in the Figure 2 how edges are formed between (X1X2,
X1Y2), (X1X2, X2Y1), (Y1Y2, X1Y2) and so on. Furthermore, we witness that the graph is
not completely connected, instead it is composed of a number of islands. One may argue that,
multiplications such as T5T6 involve operand T6 which is of the form T1T2 (here T1 = Z1Z2,
T2 = S1+S4), so it is sharing a common operand T1 (with T1T1, T1T2 or T1T3). This is actually
not true because, the multiplication output of (T1T2) mod Fp, where Fp is the underlying field
prime, is stored in the location T6, and hence it is statistically independent from T1. Now we
make a crucial observation that, the operand sharing obtained from the graph considered reveals
all the operand sharing multiplications which will be present in the addition operation. But if
we consider the graph corresponding to the doubling operation where points ( X1, Y1, Z1), and
(X2, Y2, Z2) are the same, it can be observed that the previous operand sharing will still be
present along with some possible extra operand sharing vertices. So the operand sharing edges
obtained from the addition operation graph illustrated above are the edges common to both
addition and doubling operations. As a result, they do not qualify in distinguishing between
addition and doubling operations.

Evidently, the operand sharing edges which are found only in case of doubling operation may
contribute in the distinction. To get a closer look we consider the complements of the islands of
our previously constructed graph. Note that we are not interested in the edges between islands
in the complement graph because they do not share operands among themselves. We also
replace the vertex values with the respective forms of doubling operation. For example, X1Y2
will be replaced with X1Y1. The complement of the islands are considered here to concentrate on
those edges which will be formed only in case of doubling operation. However, the complement
of the islands will include both essential edges (for e.g edge between two vertices each containing
value X1Y1) as well as redundant edges (for e.g. edge between two vertices with values X1X1

and Y1Y1 respectively which do not satisfy the edge property). We remove the redundant edges,
and look only at the essential edges because they are the ones which will help in distinguishing
an addition operation from a doubling operation. In this case, doubling operation involves
X1Y1, X1Y1 operated twice, which are satisfying property 1b. On the other hand, addition
operation consists of two underlying multiplications X2Y1, X1Y2 satisfying property 2 of sharing
operands. Thus they successfully depict scenario 1 of HCCA. Based on our observation 2
and observation 3, we rearrange the multiplications as X1Y1 and Y1X1, so that their operand
sharing property remains hidden. Thus, the information leakage for the pair LIM(X1, Y1),
LIM(Y1, X1) will be similar to that of the pair LIM(X2, Y1), LIM(Y1, X2). (here we refer to
the long integer multiplication routine LIM). So we suggest to swap the order of operands of
the second multiplication.

From lemma 4.4 stated next we get that the problem of swapping operands of field multi-
plications can be solved by the problem of two-colorability of a graph. So if the final reduced
graph with the islands containing essential edges be two-colorable, then we proceed to color the
graph with two colors, and eventually swap the operands of those vertices which belong to the
class of one particular color.

In a similar fashion, we transform the Brier-Joye unified formula shown in [8] into a secure
structure. The transformation steps corresponding to the Brier-Joye formula is portrayed in
Figure 3.

Before proceeding to state the following lemma 4.4, we give here a rationale behind the
operand swapping problem formulation. In our operand swapping problem, we need to identify
a set of vertices which need to go through operand swapping, keeping other vertices intact as
before so that the overall set reaches a secure form. So it is depictable that the vertex set needs
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Figure 3: Safe sequence transformation of Brier-Joye unified formula

to be partitioned into two sets. The set of vertices which requires operand swapping is called
the swap set, while the other set is named as uninterrupted set. Also it can be perceived that
in any edge, since the edge has been created due to operand sharing of two vertices, one of the
vertex of the edge should be swapped, thus should belong to swap set. While the other vertex
should belong to the uninterrupted set. Furthermore, there does not exist an edge such that
both of their end vertices belong to the swap set, or the uninterrupted set. Suppose there exists
one such edge, then if both vertices belong to the swap set then it implies in case of both the
vertices, the vertex operands have been swapped. But this is equivalent to the state before
swapping. For example, it means a vertex pair (X1Y1, X1Y1) has been swapped to (Y1X1,
Y1X1), which does not solve our aim of information masking through operand swapping. This
is because the correlation between both the mentioned pairs will be higher with respect to the
pair (X1Y1, Y1X1), as has been proved in lemma 4.3. From this it directly follows why must
the vertex ends of any edge belonging to the set E should not belong to the same set (swap
set or uninterrupted set). Naturally, it is also understood why the vertices belonging to either
swap set or uninterrupted set do not contain any edge between themselves. Now we define the
operand swapping problem more formally followed by stating the Two-colorability problem of
graph.
Operand swapping problem or problem a: Given an undirected graph G denoted by the set {V ,
E} , whether there exists a partition of V as (V1, V2) with following conditions: 1) V1 or swap
set, consists of elements as {v | operands of v should be swapped}. 2) V2 or uninterrupted set,
can be presented as {v | operands of v should not be disturbed}. 3) the edge set E is of the
form {e | e = (vi, vj), where (vi ∈ V1, vj ∈ V2) or (vi ∈ V2, vj ∈ V1)}.
Two-colorability problem of graph or problem b: Given a graph G as set {V , E}, whether the
vertices of the graph can be colored with two colors, such that no two vertices sharing the same
edge contain the same color i,e in other words to check whether the graph is a bipartite graph.
Now we are ready to state the lemma 4.4.

Lemma 4.4. The problem of swapping of vertex operands (multiplication operands) in an
undirected graph is polynomial time reducible to the problem of two-colorability of a graph.

Proof An instance of graph G is fed to the problem b, which returns the decision in polynomial
time whether the input graph is two-colorable or not. If the answer is yes, then the graph is
passed to a graph coloring algorithm that returns the resultant graph colored with two colors.
Without loss of generality the two colors can be named as color1 and color2. We define the
set of vertices colored with color1 as swap set, while the set of vertices colored with color2 as
uninterrupted set. Thus we have determined a solution for the instance of problem a. Hence
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proved.
Now we give a closer look at the correctness of the polynomial reduction of problem a into

problem b. As was mentioned in the above proof, the solution for the instance of the graph
considered corresponding to problem b gives back the graph instance colored with two colors,
based on the graph coloring algorithm. The vertices having color1 form set1, while the vertices
colored with color2 form a set2. The vertices within set1 do not contain any edge between them,
similarly in set2, no two vertices are connected by an edge. For every edge in E, two vertices are
colored with two distinct colors, which implies the two vertices belong to two different vertex
sets. We can consider set1 as the swap set, on the other hand the set2 can be considered as
the uninterrupted set required for the solution of problem a. The sets obtained from solution
to problem b also satisfies the condition for the edge set that every edge should contain vertices
belonging to the two different sets, so that for every edge the vertex belonging to the swap set
should undergo operand swapping, while the other vertex from uninterrupted set should remain
unaltered. That is why solution obtained from problem b qualify as a solution for problem a.

5 Experimental Results

In earlier sections, we have established the basis of horizontal collision correlation attack along
with the strategies to thwart this attack methodology. It is evident from [3] and our previous
discussions that ECC scalar multiplication in both Edwards curve and NIST curve is vulner-
able to HCCA. Specifically, the Edwards curve implementation incorporating unified formula
is extremely vulnerable to HCCA as there exists a pair of multiplication which shares both
the operand during execution of point doubling. Hence an adversary is expected to observe
sufficiently high similarities when he/she compares the power trace of aforementioned multipli-
cations, sharing both the operands.

We have considered Pearson Correlation metric for our experimental validation which has
been extensively recommended in the literature. We show our theory of HCCA protection is
practically valid using this metric.We have used SASEBO-GII as the hardware platform for
evaluating HCCA and countermeasure. All the algorithms are implemented on cryptographic
FPGA of SASEBO-GII (XC5VLX50).

We show results on EM traces of actual ECC scalar multiplication for an underlying Ed-
wards curve. We have implemented Curve1174 on SASEBO-GII evaluation board and have
collected around 600 EM traces of scalar multiplication. As we have already mentioned in the
previous sections that in Edwards curve unified formula, point doubling involves a pair of field
multiplication having both of their operands shared whereas point addition does not have any
pair of field multiplications which share both of the operand. Success of HCCA depends upon
whether an adversary can distinguish between a pair of field multiplications having both of their
operand shared and a pair of field multiplications having no common operand. If the adversary
can achieve this, he can distinguish between point doubling and point addition operations which
will directly give him the knowledge about secret scalar value. By using the countermeasure,
we aim to remove the threat of HCCA. The objective is to make the job of distinguishability
between pair of multiplications having no operand shared and pair of multiplications having
both of their operand shared difficult. In figure 4 (a), red plot denotes the pair of multipli-
cation with sharing of operands (within doubling) while the blue plot denotes multiplication
pair with no sharing (within addition). It demonstrates HCCA attack, when the red plot has
a higher correlation value than the blue plot with a success rate of 93.33% for 600 single scalar
multiplication runs. While Figure 4(b) contains a green plot for the pair of multiplications
with operand sharing (within the doubling operation), where the operands have been swapped
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Figure 4: Evaluation of HCCA and our countermeasure on Edwards Curve Scalar Multiplier
with Correlation: reduces HCCA vulnerability from 93.33% to 47.5%

as a measure of the countermeasure. Besides, it contains a blue plot which denotes a pair of
multiplications with no sharing of operand (within the addition). In this figure, the number
of occasions when the green plot (sharing of operands) has a higher correlation than the blue
plot (no sharing of operands) is 285 out of 600 cases, which gives HCCA success rate of 47.5%.
Thus swapping of operands reduces success rate of HCCA from 93.33% to 47.5% as noted using
Pearson correlation metric.

6 Conclusion

We have shown how the property of asymmetric leakage of field multipliers can be utilized to
construct a low-cost countermeasure which is able to defeat the powerful HCCA. We demon-
strated how a unified addition (doubling) formula can be converted into a safe sequence where,
the information leakage from sharing of operands among field multipliers have been hidden.
The process of conversion to the desired safe sequence is achieved through our proposed algo-
rithm (Algorithm 2), once the sequence have been determined through our algorithm there is
no runtime overhead requirement for the countermeasure. We have validated HCCA and our
proposed countermeasure scheme on a SASEBO platform. This HCCA countermeasure, since
zero-cost can be easily integrated with other horizontal attack countermeasures and vertical
attack countermeasures involving randomization techniques [11], thus helping in designing a
secure ECC-based crypto-module. For an instance, our HCCA countermeasure integrated with
a randomization-based countermeasure has been demonstrated in [12], which thwarts a larger
class of horizontal attacks.
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ALGORITHM 2: Safe sequence converter() : Algorithm to determine safe operand
ordering of multiplication pairs

Data: : Set S = { mi | i ∈ {1, n}, where n is the number of multiplications}
Result: : Set S’ = { m′i | i ∈ {1, n}, where n is the number of multiplications}
begin

Create Graph() ;
Find GraphComponents() ;

Find Safeseq Ĝ() ;
end

Create Graph(): ;
begin

Initialize Graph G ;
for i← 1 to n do

AddV ertex(G,S[i]) ;
// create vertices of graph G

end
for i← S[0] to S[n− 1] do

for j ← S[0] to S[n− 1] do
if i 6= j and share operand(S[i], S[j]) == TRUE then

AddEdge(G,S[i], S[j]) ;
// create edges of graph G

end
end

end
end

Find GraphComponents(): // find Islands of the Graph
begin

for v ← 0 to G→ V − 1 do
V isited[v] = FALSE

end
seg count = 1 ;
for v ← 0 to G→ V − 1 do

if V isited[v] == FALSE then
Island[seg count] = Clone Graph(G, v) ;
// 1)clone the graph island containing vertex v
// 2)set the visited vertices
Seg array[seg count].ele = v ; // keep track of starting node of the island
seg count = seg count + 1 ; // keep track of the number of islands formed

end
end

end

Find Safeseq Ĝ(): // find safe sequences
begin

for i← 0 to seg count− 1 do
G1 = Construct ComplementGraph(Island[i]) ;
Remove redundant edges(G1) ;
// remove the edges not satisfying the edge property
if Colorable 2(G1) == TRUE then

Color Graph(G1, RED,BLACK) ;
end
Swap Order(G1, RED) ;
for v ← 0 to (G1 → V − 1) do

S′.add(G1− > array[v].data) ;
end

end
end
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