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Abstract

Logistics service supply chains (LSSCs) are generally composed of logistic service integrators and

providers that ensure reliable transport of a product or service from a producer to consumer. Given

the usage of LSSC in many safety-critical applications, such as hospitals, it is very important to

ensure their reliable operation. For this purpose, many LSSC structures are modeled using Reliability

Block Diagrams (RBDs) and their reliability is assessed using paper-and-pencil proofs or computer

simulations. Due to their inherent incompleteness, these analysis techniques cannot ensure accurate

reliability analysis results. In order to overcome this limitation, we propose to use higher-order-logic

(HOL) theorem proving to conduct the RBD-based reliability analysis of LSSCs in this paper. In

particular, we present higher-order-logic formalizations of LSSC scenarios depicting logistic service

providers offering various types of capacities to the logistic service integrators. As an illustrative

example, we also present the formal reliability analysis of a simple three-node corporation.

1 Introduction

Logistics service supply chain (LSSC) decisions are usually impossible to reverse, and their im-
pact may span several decades. These decisions are very difficult to make given the involvement
of several elements of uncertainty, such as changing demand patterns and weather conditions
or failing components, associated with these decisions. On the other hand, the reliability of
LSSCs, i.e., the ability to perform well when parts of the system fail, is very important as
LSSCs are used in many safety-critical applications, such as medicine [18] and space logistics
[22]. Moreover, ensuring that the inventory is delivered on time can be of great significance
to many companies. Generally, the reliability of a LSSC can be increased by adding more
redundancy in it but this choice eventually results in increasing the overall cost, which is also
undesirable in many cases. Therefore, it is very important to judge the reliability of the LSSC
and its associated cost before development [23]. This kind of reliability analysis is frequently
based on Reliability Block Diagrams (RBDs) [27], which are graphical structures consisting of
blocks and connectors (lines). The main idea is to represent the structure of the given LSSC in

B.Konev, S.Schulz and L.Simon (eds.), IWIL-2015 (EPiC Series in Computing, vol. 40), pp. 1–14



Towards Formal Reliability Analysis of Logistics Service Supply Chains Waqar, Osman, Sofiene

terms of an appropriate RBD [19]. Now, based on this RBD, the reliability characteristics of
the overall system can be judged based on the failure rates of individual components, whereas
the overall system failure happens if all the paths for successful execution fail.

Traditionally, the RBD-based analysis of LSSC has been done using paper-and-pencil proof
methods and computer simulations. Due to the involvement of manual manipulation and sim-
plification, paper-and-pencil proof methods are error-prone and the problem gets more severe
while analyzing large LSSCs. Moreover, it is possible, in fact a common occurrence, that many
key assumptions required for the analytical proofs are in the mind of the mathematician and are
not documented. These missing assumptions are thus not communicated to the supply chain
designers and are ignored in the LSSC implementations, which may also lead to erroneous de-
signs. RBD-based computer simulators, such as ReliaSoft [24] and ASENT [6], generate samples
from the exponential and Weibull random variables can be used to model the reliabilities of
the sub-modules of the given LSSC. This data is then manipulated using computer arithmetic
and numerical techniques to compute the reliability of the complete LSSC. These software are
more scalable than the paper-and-pencil proof methods. However, they cannot ensure absolute
correctness as well due to the involvement of pseudo-random numbers and numerical methods.

Formal methods [14], which are computer based mathematical reasoning techniques, has
been used to overcome the inaccuracy limitations of the paper-and-pencil proof methods and
simulation. The main idea behind the formal analysis of a system is to first construct a math-
ematical model of the given system using a state-machine or an appropriate logic and then
use logical reasoning and deduction methods to formally verify that this system exhibits the
desired characteristics, which are also specified mathematically using an appropriate logic. For
instance, Petri Nets have been used for the RBD based analysis of a LSSC [19]. The technique
has been used to automatically evaluate the reliability of a few node corporations, but the
analysis is not scalable for large systems due to the state-space explosion problem [14]. More-
over, generic mathematical RBD relationships cannot be verified using such state-based petri
nets techniques, which limits the scope of this approach. Similarly, a Colored Petri Nets (CPN)
based tool has been used to model dynamic RBDs (DRBDs) [25], which are used to describe the
dynamic reliability behavior of systems. The CPN verification tools, based on model checking
principles, are then used to verify behavioral properties of the DRBDs models to identify design
flaws [25]. However, due to the state-based model, only state related property verification, like
deadlock checks, is supported by this approach and generic reliability relationships cannot be
verified.

Higher-order logic [7] is a system of deduction with a precise semantics and can be used to
formally model any system that can be described mathematically including recursive definitions,
random variables, RBDs, and continuous components. Similarly, interactive theorem provers
are computer based formal reasoning tools that allow us to verify higher-order-logic properties
under user guidance. The foremost requirement for reasoning about reliability related properties
of a LSSC in a theorem prover is the availability of the higher-order-logic formalization of
probability theory. Hurd’s formalization of measure and probability theories [17] is a pioneering
work in this regard. Building upon this formalization, most of the commonly-used continuous
random variables [13] and some reliability theory fundamentals [15][1] have been formalized
using the HOL theorem prover [26]. However, the foundational formalization of probability
theory [17] only supports the whole universe as the probability space. This feature limits its
scope in many aspects [20] and one of the main limitations, related to RBD-based analysis,
is the inability to reason about multiple continuous random variables [13][15]. Some recent
probability theory formalizations [20][16] allow using any arbitrary probability space that is a
subset of the universe and thus are more flexible than Hurd’s formalization of probability theory.
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Particularly, Mhamdi’s probability theory formalization [20], which is based on extended-real
numbers (real numbers including ±∞), has been recently used to reason about the RBD-based
reliability analysis of a series pipelines structure [4], wireless sensor network protocols [5], and
failure analysis of satellite solar arrays [3], which involves multiple exponential random variables.

In this paper, given the involvement of several elements of continuous and random nature
in LSSCs, we propose to conduct the formal RBD-based reliability analysis of a LSSC within
the sound core of a higher-order-logic theorem prover [26]. For this purpose, we plan to build
upon the recently proposed higher-order-logic formalization of series RBD, which has been
used to conduct reliability analysis of simple oil and gas pipeline [4]. However, this foundational
formalization of a series RBD [4] has limited scope and cannot be used to analyze the RBD model
of a given LSSC due to the redundancies in these models. The main contribution of this paper is
the extension of the series RBD formalization to series-parallel RBD configurations in order to
model LSSC scenarios, including the cases when the capacities are different and of same types.
For illustration purposes, the paper also presents the formal analysis of a simple LSSC that has
been analysed using Petri Nets before [19]. Thanks to the sound reasoning process, the results
obtained from the formal reliability analysis of the LSSC scenarios can help design engineers
validating the reliability results that are generally obtained through traditional techniques.
These accurately determined reliability results can bring many other benefits including trade-
off studies for different LSSC designs in order to optimize reliability and cost.

The paper is organized as follows: Sections 2 provides a brief detail about the theorem
proving and HOL theorem prover. Section 3 presents the formalization of probability theory
and Reliability in HOL. Section 4 provides the formalization of RBDs and LSSC scenarios with
different and same type of capacities in HOL. Section 5 presents the formal reliability analysis
of a three node corporation LSSC by utilizing series and series-parallel RBD configurations.
Finally, Section 6 concludes the paper.

2 Preliminaries

In this section, we give a brief introduction to theorem proving and the HOL4 theorem prover
to facilitate the understanding of the rest of the paper.

2.1 Theorem Proving

Theorem proving [11] is a widely used formal verification technique. The system that needs to
be analysed is mathematically modeled in an appropriate logic and the properties of interest
are verified using computer based formal tools. The use of formal logics as a modeling medium
makes theorem proving a very flexible verification technique as it is possible to formally verify
any system that can be described mathematically. The core of theorem provers usually consists
of some well-known axioms and primitive inference rules. Soundness is assured as every new
theorem must be created from these basic or already proved axioms and primitive inference
rules.

The verification effort of a theorem in a theorem prover varies from trivial to complex de-
pending on the underlying logic [12]. For instance, first-order-logic [9] utilizes the propositional
calculus and terms (constants, function names and free variables) and is semi-decidable. A
number of sound and complete first-order logic automated reasoners are available that enable
completely automated proofs. More expressive logics, such as higher-order logic [7], can be
used to model a wider range of problems than first-order logic, but theorem proving for these
logics cannot be fully automated and thus involves user interaction to guide the proof tools.
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For the formalization of RBDs, we need to formalize random variables as functions and their
distribution properties are verified by quantifying over random variable functions. Henceforth,
first-order logic does not support such formalization and we need to use higher-order logic to
formalize the foundations of RBDs that are then in turn used to formally analyze the reliability
of various real-world systems.

2.2 HOL Theorem Prover

HOL is an interactive theorem prover developed at the University of Cambridge, UK, for con-
ducting proofs in higher-order logic. It utilizes the simple type theory of Church [8] along with
Hindley-Milner polymorphism [21] to implement higher-order logic. HOL has been successfully
used as a verification framework for both software and hardware as well as a platform for the
formalization of pure mathematics.

The HOL core consists of only 5 basic axioms and 8 primitive inference rules, which are
implemented as ML functions. Soundness is assured as every new theorem must be verified
by applying these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules. Table 1 provides the mathematical interpretations of some frequently
used HOL symbols and functions, which are inherited from existing HOL theories, in this paper.

Table 1: HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list

++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
MEM a L member True if a is a member of list L
λx.t λx.t Function that maps x to t(x)
SUC n n+ 1 Successor of a num

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

3 Probability and Reliability in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, µ), where Ω is a set, called the
sample space, Σ represents a σ-algebra of subsets of Ω, where the subsets are usually referred
to as measurable sets, and µ is a measure with domain Σ. A probability space is a measure
space (Ω,Σ, P r), such that the measure, referred to as the probability and denoted by Pr, of
the sample space is 1. In the HOL formalization of probability theory [20], given a probability
space p, the functions space, subsets and prob return the corresponding Ω, Σ and Pr, respec-
tively. This formalization also includes the formal verification of some of the most widely used
probability axioms, which play a pivotal role in formal reasoning about reliability properties.
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A random variable is a measurable function between a probability space and a measurable
space. The measurable functions belong to a special class of functions, which preserves the
property that the inverse image of each measurable set is also measurable. A measurable space
refers to a pair (S,A), where S denotes a set and A represents a nonempty collection of sub-sets
of S. Now, if S is a set with finite elements, then the corresponding random variable is termed
as a discrete random variable otherwise it is called a continuous one.

The probability that a random variable X is less than or equal to some value t, Pr(X ≤ t) is
called the cumulative distribution function (CDF) and it characterizes the distribution of both
discrete and continuous random variables. The CDF has been formalized in HOL as follows [4]:

` ∀ p X t. CDF p X t = distribution p X {y | y ≤ Normal t}

where the variables p, X and t represent a probability space, a random variable and a real
number respectively. The function Normal takes a real number as its inputs and converts it
to its corresponding value in the extended-real data-type, i.e, it is the real data-type with the
inclusion of positive and negative infinity. The function distribution takes three parameters:
a probability space p, a random variable X and a set of extended-real numbers and outputs the
probability of a random variable X that acquires all the values of the given set in probability
space p.

Now, reliability R(t) is stated as the probability of a system or component performing its
desired task over certain interval of time t.

R(t) = Pr(X > t) = 1− Pr(X ≤ t) = 1− FX(t) (1)

where FX(t) is the CDF. The random variable X, in the above definition, models the time to
failure of the system and is usually modeled by the exponential random variable with parameter
λ, which corresponds to the failure rate of the system. Based on the HOL formalization of
probability theory [20], Equation (1) has been formalized as follows [4]:

` ∀ p X t. Reliability p X t = 1 - CDF p X t

The series RBD, presented in [4], is based on the notion of mutual independence of random
variables, which is one of the most essential prerequisites for reasoning about the mathematical
expressions for all RBDs. If N reliability events are mutually independent then

Pr(

N⋂
i=1

Ai) =

N∏
i=1

Pr(Ai) (2)

This concept has been formalized as follows [4]:

` ∀ p L. mutual indep p L = ∀ L1 n. PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter list p (TAKE n L1)) =

list prod (list prob p (TAKE n L1))

The function mutual indep accepts a list of events L and probability space p and returns
True if the events in the given list are mutually independent in the probability space p. The
predicate PERM ensures that its two lists as its arguments form a permutation of one another.
The function LENGTH returns the length of the given list. The function TAKE returns the first
n elements of its argument list as a list. The function inter list performs the intersection
of all the sets in its argument list of sets and returns the probability space if the given list of
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Figure 1: RBDs for the (a) Scenario with Different Types of Capacity (b) Scenario with the
Same Type of Capacity

sets is empty. The function list prob takes a list of events and returns a list of probabilities
associated with the events in the given list of events in the given probability space. Finally,
the function list prod recursively multiplies all the elements in the given list of real numbers.
Using these functions, the function mutual indep models the mutual independence condition
such that for any 1 or more events n taken from any permutation of the given list L, the
property Pr(

⋂N
i=1Ai) =

∏N
i=1 Pr(Ai) holds.

4 Formalization of LSSC in HOL

A LSSC is essentially a service supply chain based on the ability logistics cooperation, which
is generally required when the logistics service integrators face shortage in their capacity to
deliver services to customers. At this stage, service integrators need to buy the logistics service
capacity from the logistics service providers. There could be a possible scenario where the
type of capacity provided by the functional logistics service providers is of multiple (different)
nature, such as transport and storage capacity. This scenario is modeled by using a series RBD
configuration, as shown in Figure 1(a) [19]. In case if the capacity type is the same then this
scenario is modeled by using the series-parallel RBD configuration, as depicted in Figure 1(b)
[19].

In order to formalized the LSSC scenarios in HOL, we first present the formalization of
series, parallel and series-parallel RBD configurations as follows:

4.1 Series Reliability Block Diagram

The reliability of a system with components connected in series is considered to be reliable at
time t only if all of its components are functioning reliably at time t, as depicted in Figure
2(a). If Ai(t) is a mutually independent event that represents the reliable functioning of the
ith component of a serially connected system with N components at time t, then the overall
reliability of the complete system can be expressed as [10]:

Rseries(t) = Pr(

N⋂
i=1

Ai(t)) =

N∏
i=1

Ri(t) (3)

The HOL formalization of the above equation is as follows [4]:

Definition 1: ` (∀ p. series struct p [] = p space p) ∧
(∀ p h t. series struct p (h::t) = h ∩ series struct p t)
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(a) (b)

(c)

Figure 2: Reliability Block Diagrams (a) Series (b) Parallel (c) Series-Parallel

The above function takes a list of events L corresponding to the failure of individual components
of the given system and the probability space p and returns the intersection of all of the elements
in a given list L and the whole probability space, if the given list is empty. Based on this function
definition, the result of Equation (3) is formally verified as:

Theorem 1: ` ∀ p L. prob space p ∧ ¬NULL L ∧
mutual indep p L ∧ in events p L =⇒
(prob p (series struct p L) = list prod (list prob p L))

The first assumption ensures that p is a valid probability space based on the probability theory
in HOL4 [20]. The next two assumptions guarantee that the list of events, representing the
reliability of individual components, must have at least one event and the reliability events are
mutually independent. The predicate in events ensures that each member of the given event
list L must in be in event space p. The conclusion of the theorem represents Equation (3). It
is important to note that, our series struct definition accepts a list of reliability events and
it is thus different from the corresponding formalization, presented in [4], which accepts a list
of random variables and is not general enough to cater for nested RBDs.

4.2 Parallel Reliability Block Diagram

The reliability of a system with parallel connected sub-modules, depicted in Figure 2(b), mainly
depends on the component with the maximum reliability. In other words, the system will
continue functioning as long as at least one of its components remains functional. If the event
Ai(t) represents the reliable functioning of the ith component of a system with N parallel
components at time t, then the overall reliability of the system can be mathematically expressed
as [10]:

Rparallel(t) = Pr(

N⋃
i=1

Ai(t)) = 1−
N∏
i=1

(1−Ri(t)) (4)

In order to formally verify Equation (4), we first define the parallel RBD configuration in
HOL as follows :

7



Towards Formal Reliability Analysis of Logistics Service Supply Chains Waqar, Osman, Sofiene

Definition 2: ` (parallel struct [] = {}) ∧
(∀ h t. parallel struct (h::t) = h ∪ parallel struct t)

The function parallel struct accepts a list of reliability events and returns the parallel
structure reliability event by recursively performing the union operation on the given list of
reliability events or an empty set if the given list is empty.

Now, using above definition, we can formally verify Equation (4) as follows:

Theorem 2: ` ∀ p L. prob space p ∧ ¬NULL L ∧
mutual indep p L ∧ in events p L =⇒
(prob p (parallel struct L) =

1 - list prod (one minus list (list prob p L)))

The above theorem is verified under the same assumptions as Theorem 1. The conclusion of
the theorem represents Equation (4) where, the function one minus list accepts a list of real
numbers [x1, x2, x3, · · · , xn] and returns a list of real numbers such that each element of this list
is 1 minus the corresponding element of the given list, i.e., [1−x1, 1−x2, 1−x3, · · · , 1−xn]. The
proof of Theorem 2 is primarily based on Theorem 1 along with the fact that given the list of n
mutually independent events, the complement of these n events are also mutually independent.

4.3 Series-Parallel Reliability Block Diagram

If in each serial stage the components are connected in parallel, as shown in Figure 3(c), then
the configuration is termed as a series-parallel structure. If Aij(t) is the event corresponding
to the proper functioning of the jth component connected in an ith subsystem at time index t,
then the reliability of the complete system can be expressed mathematically as follows [10]:

Rseries−parallel(t) = Pr(

N⋂
i=1

M⋃
j=1

Aij(t)) =

N∏
i=1

(1−
M∏
j=1

(1−Rij(t))) (5)

By extending the RBD formalization approach, presented in Theorems 1 and 2, we formally
verify the generic reliability expression for series-parallel RBD configuration, given in Equation
(5), in HOL as follows:

Theorem 3: ` ∀ p L. prob space p ∧ (∀z. MEM z L ⇒ ¬NULL z) ∧
in events p (FLAT L) ∧ mutual indep p (FLAT L) =⇒
(prob p ((series struct p of parallel struct) L) =

(list prod of

(λa. 1 - list prod (one minus list (list prob p a)))) L)

The first assumption in Theorem 3 is similar to the one used in Theorem 2. The next three
assumptions ensure that the sub-lists corresponding to the serial sub-stages are not empty and
the reliability events corresponding to the sub-components of the parallel-series configuration
are valid events of the given probability space p and are also mutually independent. The HOL
function FLAT is used to flatten the two-dimensional list, i.e., to transform a list of lists into
a single list. The conclusion models the right-hand-side of Equation (5). The infixr function,
of, connects series and parallel RBD configurations by using the HOL function MAP and thus
facilitates the natural readability of complex RBD configurations. It is formalized in HOL as
follows:

8



Towards Formal Reliability Analysis of Logistics Service Supply Chains Waqar, Osman, Sofiene

` ∀ g f. f of g = (f o (λa. MAP g a))

The proof of Theorem 3 uses the results of Theorems 1 and 2 and also requires a lemma that
given the list of mutually independent reliability events, an event corresponding to the series or
parallel RBD structure is independent, in probability, with the corresponding event associated
with the series-parallel RBD configurations.

4.4 LSSC: First Scenario

Equation (3) can be utilized, by specifying N = 3, to evaluate the reliability of the LSSC for
the first scenario by modeling it with a series RBD configuration consisting of three reliability
blocks, as shown in Figure 1(a). Mathematically, it can be expressed as follows:

RLSSC fst scen =Rlogis provdr1 ∗Rlogis provdr2 ∗ Rlogis integr (6)

We formalized the corresponding LSSC first scenario series RBD configuration in HOL as:

Definition 3: ` ∀ p logis provdr1 logis provdr2 logis integr.

LSSC series RBD p [logis provdr1;logis provdr2;logis integr] =

series struct p [logis provdr1;logis provdr2;logis integr]

The function LSSC series struct takes a list of events corresponding to the failure of LSSC
system components, i.e., logis provdr1, logis provdr2 and logis integr, and the probability
space p and returns the series structure event of the complete LSSC system.

We formally verified the reliability expression for the first scenario, given in Equation 6,
representing different capacity types, shown in Figure 1(a), in HOL as follows:

Theorem 4: ` ∀ p logis provdr1 logis provdr2 logis integr. prob space p ∧
(∀ x’. MEM x’ [logis provdr1;logis provdr2;logis integr] ⇒ x’ ∈ events p) ∧
mutual indep p [logis provdr1;logis provdr2;logis integr] ⇒
prob p (LSSC series struct p [logis provdr1;logis provdr2;logis integr] =

list prod (list prob p [logis provdr1;logis provdr2;logis integr])

The first assumption ensures that p is a valid probability space based on the probability theory
in HOL [20]. The next two assumptions guarantee that the list of events, representing the
reliability of LSSC components, must be in the events space p and the reliability events are
mutually independent. The conclusion of Theorem 1 models the series RBD configuration of
LSSC first scenario with different capacity.

4.5 LSSC: Second Scenario

Similarly, Equation (5) can be used to obtain the reliability of LSSC for the second scenario,
which is modeled by a series-parallel RBD configuration, as shown in Figure 1(b). Mathemati-
cally, the reliability of this second scenario is as follows:

RLSSC snd scen =(1− (1−Rlogis provdr1) ∗ (1−Rlogis provdr2)) ∗ (1− (1−Rlogis integr)) (7)

The HOL formalization of Equation 7 is as follows:

9
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Definition 4: ` ∀ p logis provdr1 logis provdr2 logis integr.

LSSC series parallel struct p [[logis provdr1;logis provdr2];logis integr]=

(series struct p of parallel struct) [[logis provdr1;logis provdr2];logis integr]

The function LSSC series parallel struct accepts a two dimensional list, i.e., a list of lists,
along with a probability space p and returns the corresponding reliability event of the system
constituted from the series connection of the parallel stages.

Now, the reliability expression for the series-parallel RBD configuration of the LSSC, which
corresponds to the second scenario with same capacity type, given in Equation 7, can be verified
as the following HOL theorem:

Theorem 5: ` ∀ p logis provdr1 logis provdr2 logis integr. prob space p ∧
mutual indep p FLAT([[logis provdr1;logis provdr2];logis integr]) ∧
(∀x’. MEM x’ ([logis provdr1;logis provdr2;logis integr]) ⇒ x’ ∈ events p) ⇒
prob p

(LSSC series parallel struct p [[logis provdr1;logis provdr2];logis integr]) =

(list prod of (λa. 1 - list prod (one minus list (list prob p a))))

[[logis provdr1;logis provdr2];logis integr]

where logis provdr1, logis provdr2 and logis integr are the reliability events associated with
the logistic service providers and integrator, respectively. Theorems 4 and 5 are then used to
determine the reliability of LSSC in the next section.

5 Case Study: A Three Node Corporation LSSC

In order to formally verify the reliability expression of a LSSC used in a typical three node
corporation, we first need to formally model the reliability events that are associated with its
logistic service providers and integrator. A reliability event list constructed from the list of
random variables can be formalized in HOL is as follows:

Definition 5: ` ∀ p x. rel event list p [] x = [] ∧
∀ p x h t.rel event list p (h::t) x =

PREIMAGE h {y | Normal x < y} ∩ p space p :: rel event list p t x

The function rel event list accepts a probability space p, a list of random variables, repre-
senting the failure time of individual components, and a real number x, which represents the
time index at which the reliability is desired. It returns a list of events, representing the proper
functioning of all individual components at time x.

Definition 6: ` ∀ p L x. List rel event list p L x =

MAP (λa. rel event list p a x) L

The function List rel event list accepts a probability space p, a list of random variables,
representing the failure time of individual components, and a real number x, which represents
the time index at which the reliability is desired. It returns a two dimensional list of events
by mapping the function rel event list on every element of the given two dimensional list of
random variables, which in turn models the proper functioning of all individual components at
time x.

We consider that the reliability of each LSSC component connected in RBD configurations,
as shown in Figure 1, is exponential distributed. The HOL formalization of the exponential
distribution predicate, which models the failure behavior of LSSC components, is as follows:

10
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Definition 7: ` ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The function exp dist guarantees that the CDF of the random variable X is that of an ex-
ponential random variable with a failure rate l in a probability space p. We classify a list of
exponentially distributed random variables based on this definition as follows:

Definition 8: ` ∀ p L. list exp p [] L = T ∧
∀ p h t L. list exp p (h::t) L = exp dist p (HD L) h ∧ list exp p t (TL L)

The function list exp accepts a list of failure rates, a list of random variables L and a prob-
ability space p. It guarantees that all elements of the list L are exponentially distributed with
the corresponding failure rates, given in the other list, within the probability space p. For this
purpose, it utilizes the list functions HD and TL, which return the head and tail of a list, re-
spectively. Next we model a two dimensional list of exponential distribution functions to model
nodes connected in a series-parallel RBD as follows:

Definition 9: ` (∀ p L. list list exp p [] L = T) ∧
∀ h t p L. list list exp p (h::t) L =

list exp p h (HD L) ∧ list list exp p t (TL L)

The function list list exp accepts two lists, i.e., a two dimensional list of failure rates and
random variables L, corresponding to the components at each stage of a series-parallel RBD. It
calls the function list exp recursively to ensure that all elements of the list L are exponentially
distributed with the corresponding failure rates, given in the other list, within the probability
space p.

The reliability of the first scenario of LSSC, modeled by a series RBD configuration and
each component reliability is represented by exponential distribution, can be expressed as:

RLSSC fst scen(t) = e(λlogis provdr1+λlogis provdr2+λlogis integr)t (8)

where the λ terms in the above equation represent the failure rates of logistic service providers
and integrators.

Now, based on Equation (8), we carried out the formal reliability analysis of the first scenario
of LSSC, given in Figure 1(a), in HOL and the resulting theorem is as follows:

Theorem 6: ` ∀ X logis provdr1 X logis provdr2 X logis integr C logis provdr1

C logis provdr2 C logis integr p t.

0 ≤ t ∧ prob space p ∧
(∀x’. MEM x’ (rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) ⇒
x’ ∈ events p) ∧
mutual indep p

(rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) ∧
list exp p [C logis provdr1;C logis provdr2;C logis integr]

[X logis provdr1;X logis provdr2;X logis integr] ⇒
prob p (series struct p

(rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) =

exp (-list sum [C logis provdr1;C logis provdr2;C logis integr]*t)

where the function list sum returns the sum of all the elements of the given failure rate list.
The first assumption ensures that the variable t models time as it can acquire positive integer
values only. The next assumption ensures that p is a valid probability space based on the
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probability theory in HOL [20]. The next two assumptions ensure that the events correspond-
ing to the failures modeled, by the random variables X logis provdr1, X logis provdr2 and
X logis integr are valid events from the probability space p and they are mutually independent.
Finally, the last assumption assigns the random variables X logis provdr1, X logis provdr2
and X logis integr, as exponential random variables with failure rates C logis provdr1,
C logis provdr2 and C logis integr, respectively. The conclusion of Theorem 6 represents the
desired reliability expression.

Similarly, the reliability of the second scenario of LSSC with exponential failure distribution,
shown in Figure 1(b), can be expressed as:

RLSSC snd scen(t) =(1− (1− e(λlogis provdr1t) ∗ (1− e(λlogis provdr1t))) ∗ (1− (1− eλlogis integrt))

(9)

We formally verified the above equation in HOL as follows:

Theorem 7: ` ∀ X logis provdr1 X logis provdr2 X logis integr C logis provdr1

C logis provdr2 C logis integr p t.

(0 ≤ t) ∧ (prob space p) ∧
(∀x’. MEM x’ (rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) ⇒
x’ ∈ events p) ∧
mutual indep p (FLAT

(List rel event list p [[X logis provdr1;X logis provdr2];X logis integr] t)) ∧
list list exp p([[C logis provdr1;C logis provdr2];C logis integr])

([[X logis provdr1;X logis provdr2];X logis integr]) ⇒
prob p (LSSC series parallel struct p

(list rel event list p [[X logis provdr1;X logis provdr2];X logis integr] t)) =

list prod (one minus list

(list exp func list ([[C logis provdr1;C logis provdr2];C logis integr]) t)

where the functions list prod and list exp func list accept a two-dimensional list of failure
rates and return a list with products of one minus exponentials of every sub-list. For example,
list exp func list [[c1; c2; c3]; [c4; c5]; [c6; c7; c8] x =

[1 - exp -(c1+c2+c3) x; 1 - exp -(c4+c5) x; 1 - exp -(c6+c7+c8) x]. The assump-
tions of Theorem 4 are quite similar to the ones used in Theorem 3. The proofs of Theorems 3
and 4 involves Theorems 1 and 2 and some basic probability theory axioms and some properties
of the exponential function exp. The reasoning process took about 2000 lines of HOL script
[2] with dedicated probability-theoretic guidance. The first LSSC scenerio reliability analysis
is mainly carried out by using the series RBD formalization, which is presented in [4]. How-
ever, the major part of the effort was put into the formalization of generic series-parallel RBD
configurations. This formalization facilitated the formalization of second scenario of LSSC,
considerably as the analysis only took about 650 of HOL code.

The distinguishing features of the formally verified Theorems 6 and 7, compared to the
reliability analysis of the LSSC scenarios of Figure 1 using Petri Nets [19], includes its generic
nature, i.e., all the variables are universally quantified and thus can be specialized to obtain the
reliability of any number of logistic providers and integrators for any given failures rates. The
guaranteed correctness of the theorems is due to the involvement of a sound theorem prover in
their verification, which ensures that all the required assumptions for the validity of the result
are accompanying the theorems. To the best of our knowledge, the above-mentioned benefits
are not shared by any other computer based reliability analysis approach.
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6 Conclusions

The accuracy of reliability analysis of LSSC is a dire need these days due to their extensive usage
in safety-critical applications, where an incorrect reliability estimate may lead to disastrous
situations including the loss of innocent lives. In this paper, we presented a higher-order-logic
formalization of commonly used RBD configurations, i.e., series and series-parallel, to facilitate
the formal reliability analysis of LSSC within a theorem prover. The commonly used LSSC
RBDs are also formalized and we illustrated the usefulness of the proposed idea by considering
a small application. In future, we plan to formally analyze the reliability of larger LSSC models.
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