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Abstract

We investigate automated reasoning techniques as a means of supporting authorization enforce-
ment functions of security-aware workflow management systems. The aim of such support is that one
may statically or dynamically guarantee the realizability of a workflow instance given the security
constraints of the underlying workflow specification.

We develop two such automated reasoning methods and experimentally evaluate their suitabil-
ity for giving such support. One method uses a propositional encoding of realizability implemented
through binary decision diagrams, another method uses a linear-time temporal logic encoding imple-
mented via bounded model checking.

We chose these particular methods and implementations since they render representations that,
at least in principle, capture many potential solutions so that dynamic guarantees of realizability can
be made through efficient queries on these representations. Preliminary experimental results identify
issues of scalability and of balancing flexibility in task allocation with complexity of computing such
allocations.

1 Introduction

It is increasingly common for organizations to computerize their business and management processes.
The co-ordination of the tasks or steps that comprise a computerized business process is managed by
workflow management systems or business process management systems.

A workflow typically specifies the tasks that comprise a business process and the order in which
those tasks should be performed. Moreover, it is often the case that some form of access control should
be applied to the execution of tasks. Hence, most workflow management systems may implement
security controls that enforce authorization rules and business rules, in order to comply with statutory
requirements or best practice. It is such “security-aware” workflows that will be the focus of this paper.
Among the most useful security controls are:

• user/task authorization constraints, which specify which users may, in principle, execute what
tasks;

• binding of duty (BoD) constraints, which require that certain tasks be executed by the same user
in any given workflow instance;

• separation of duty (SoD) constraints, which require that certain tasks be executed by different
users in any given instance of the workflow.
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An illustrative example of a constrained workflow for purchase order processing is shown in Fig. 1.
The purchase order is created and approved (and then dispatched to the supplier). The supplier will
present an invoice, which is processed by the create payment task. When the supplier delivers the
ordered goods, a goods received note must be signed and countersigned; only then may the payment be
approved. A workflow specification need not be linear: the processing of the goods received note and
of the invoice can occur in parallel, for example.
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(b) Constraints

t1 create purchase order
t2 approve purchase order
t3 sign goods received note
t4 create payment
t5 countersign goods received note
t6 approve payment
6= users performing the tasks must be different
= users performing the tasks must be the same
≺ user performing the second task must be senior to the user performing the first

(c) Figure legend

Figure 1: A simple constrained workflow for purchase order processing

In addition to constraining the order in which tasks are to be performed, some business rules are
specified to prevent fraudulent use of this workflow. These rules take the form of constraints on users
that can perform pairs of tasks in the workflow: for example, that the same user must not sign and
countersign the goods received note.

The aggregate effect of such constraints may make it impossible to find an allocation of tasks to
users and satisfy all the constraints. In other words, it may be that a workflow is rendered unrealizable
by the inclusion of security controls. Hence, it is important to be able to determine whether a workflow
specification can be realized.

There are different ways in which a workflow management system might choose to allocate tasks
to users. These “execution models” give rise to different realizability problems but share the need to
guarantee the continued realizability of a workflow instance. Hence, efficient decision procedures for
workflow realizability are needed.

In this paper, we consider methods by which an authorization enforcement engine for workflow man-
agement systems might be designed. By construction, these methods should maintain the realizability
of a workflow instance during its execution. We describe two such methods – a decision procedure and
a search procedure – that can be called by such an engine. In particular, we explain how we can use
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binary decision diagrams (BDDs) to build a decision procedure and bounded model checking to build
a search procedure. We then describe our experimental work that compares the relative merits of these
two methods.

Outline of paper. In Section 2, we present technical background of security-aware workflow systems.
Two methods for supporting authorization enforcement functions for workflow instances, and their en-
codings through automated reasoning methods, feature in Section 3. Preliminary experimental data for
implementations of these encodings are reported in Section 4. A brief discussion and our conclusions
make up Section 5.

2 Preliminaries
We recall the definition of a constrained workflow authorization schema [2], which has formed the basis
for a number of papers on workflow realizability, for example [1, 6].

Definition 1. A constrained workflow authorization schema AS, is a tuple (T,≤, U,A,C) where

• T is a set of tasks and (T,≤) is a partial order,

• U is a set of users and A ⊆ T × U an authorization relation,

• C is a finite set of entailment constraints, tuples of form (D, t → t′, ρ) where D ⊆ U , t, t′ ∈ T
and ρ ⊆ U × U .

The order t ≤ t′ models that either t equals t′ or task t has to be completed before task t′ begins.
Thus ≤ models temporal constraints on task execution. The authorization (t, u) in A models that user
u is, at least in principle, authorized to execute task t. As we will see, the authorization enforcement
engine may not allow an authorized user to execute a task because doing so would render the workflow
instance unrealizable. An entailment constraint (D, t→ t′, ρ) models that if user u executes task t and
u is from target set D, then the user u′ who executes task t′ (and who need not be from set D) must
be related to u in the manner specified by ρ, i.e. (u, u′) must be in ρ. For example, when D equals U
the entailment constraint models BoD when ρ equals =, and it models SoD when ρ equals 6=. Note that
entailment constraints (D, t → t′, ρ), in and of themselves, do not impose any temporal order on the
relative occurrence of t and t′.

2.1 Workflow Realizability
It is apparent that the existence of an authorization policy and entailment constraints may mean that
there is no possible allocation of users to tasks. Hence, an important, practical question is whether a
workflow authorization schema AS is realizable (also known as satisfiable in the literature). For our
kind of schema, realizability means that one can allocate all tasks t in T to users in U such that all
schema constraints (temporal order, authorization, and entailment) are satisfied. We now define this
notion formally.

Definition 2. LetAS denote a constrained authorized workflow schema as above. ThenAS is realizable
if there exists a total function α : T → U such that

• (t, α(t)) is in A for all t in T ,

• for all (D, t→ t′, ρ) in C, if α(t) is in D, then (α(t), α(t′)) is in ρ.
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In other words, a workflow schema is realizable if there exists an allocation of users to tasks such
that each user is authorized and all entailment constraints are satisfied. The reason that α suffices as a
solution for realizability ofAS is that our schema allows for the decoupling of temporal orderings from
other constraints, and partial orders are always realizable (“linearizable”). We write Sol(AS) to denote
the set of all functions α that realize the workflow AS; this is the solution space of AS, which may be
empty.

2.2 Executing Workflows
A workflow management system (WfMS) is responsible for instantiating workflow schemas. The WfMS
is also responsible for managing the execution of the tasks in a workflow instance. In particular, the
WfMS will maintain a pool of ready tasks: the set of ready tasks in a workflow instance is the set of
minimal tasks (with respect to the ordering on T ) that have not yet been completed. Using the example
in Fig. 1, the ready tasks once t2 has been performed, for example, are t3 and t4; if t4 is then performed,
the set of ready tasks will be {t3, t6}.

In a workflow instance, the user/task allocation may be done in different ways [4].

• The WfMS creates a task list to which authorized users are allocated when a workflow is instan-
tiated.

• The WfMS allocates authorized users to only those tasks that are presently ready.

• The WfMS maintains a pool of ready tasks from which users select tasks to execute.

We refer to these execution models as static task allocation, dynamic task allocation and task selection,
respectively.

3 Two automated reasoning methods for authorization enforce-
ment

The WfMS must incorporate a module, which we call the authorization enforcement function (AEF),
that can ensure that

• a workflow instance is completed by users who are authorized for the respective tasks they per-
form,

• all constraints are satisfied, and

• the workflow instance completes.

The first of these responsibilities is a standard one for access-control functions and we will assume that
it can be performed efficiently. The interesting question is how to implement the remaining functionality
of the AEF.

The nature of the AEF will be determined by the execution model. In particular, there is an important
distinction between static task allocation and the other two execution models. With static task allocation,
the AEF computes a single mapping α of users to tasks, meaning that a single check for realizability is
performed. Precomputing such a mapping maintains realizability by construction but does not allow for
the modification of user-task bindings (which may perhaps be required for load-balancing, for example).

In contrast, no “up-front” computation of α is performed for dynamic task allocation and task se-
lection. Instead, the AEF must perform a series of realizability checks on modified versions of the
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workflow schemaAS. Once a task t has been performed by user u, then we transform the authorization
relation of AS so that the only authorized user for t is u. We then determine the realizability of the
modified schema. Henceforth, we only consider the task selection execution model, since the design of
our AEF can be readily modified to accommodate the dynamic task allocation model.

The AEF traps all user requests to execute tasks, makes a decision on requests, and enforces that
decision. We may model the AEF mathematically as a function of type

AEF : accessRequest× state→ decision× state (1)

where accessRequest is the set of request events the AEF has to process (here, access requests of form
(t, u) in T × U ), state is an internal state that AEF maintains, and decision is the set of access-control
decisions that AEF can make (here either grant or deny). In other words, the AEF may inspect its
internal state when making a decision on the current access request, and it may possibly alter its state as
a result of that decision.

In the remainder of this paper we explore how such an AEF can be designed so that it may make
access-control decisions that maintain the realizability of a constrained authorized workflow schema
AS. Concretely, we will discuss how automated reasoning tools may be used to give an AEF the
ability to maintain realizability if at all possible. In particular, the state of an AEF will need to contain
information that supports the maintenance of realizability of the workflow.

A key challenge in using automated reasoning tools is here that they should not incur a computational
cost that would lead to unacceptable delays of access control decisions. It is this design constraint that
will suggest to us methods that may precompute a representation of a large portion of the solution set,
so that dynamic requests can be decided by an efficient inspection (and perhaps adjustment) of that
representation. A formula of propositional logic, for example, may not be a suitable representation:
although it can capture the entire solution space, querying it may involve a full SAT check that may
simply take too long to complete in this application context.

3.1 Constructing an AEF with a Decision Procedure
We now describe how to construct an AEF from any decision procedure for workflow realizability so
that this AEF maintains realizability whenever it grants access requests. Let AS denote a constrained
authorized workflow schema as above. We assume the state σ maintained by the AEF to be a list of
pairs of form ((u, t), d), where (u, t) is a request and d the decision the AEF made on request (u, t). In
particular, there is at most one pair in σ with first component (u, t) – we assume that repeated tasks are
distinct in AS – and we can extract from σ all requests to execute tasks that have been granted.

Let σcomplete be the set of tasks in T such that there exists an entry in σ of the form ((u, t), grant).
For t ∈ σcomplete, we write σ(t) to denote the user that was granted permission to execute t. 1 We write
σincomplete for T \ σcomplete. We define

AS[σ]
def
= (T,≤, U,A[σ], C), where

A[σ]
def
= (A ∩ (σincomplete × U)) ∪ {(t, σ(t)) : t ∈ σcomplete} .

In other words, for all t in σcomplete, we replace all instances of (t, u) occurring in A with the sole entry
(t, σ(t)), and leave all instances of t in σincomplete untouched in A.

Having established these concepts and notation, we can now sketch one possible approach to main-
taining the realizability of AS through an AEF that is consistent with the type declared in (1). The

1Although σ(t) might be a set of users, we assume that tasks are unique and so repeated tasks are differentiated through their
instances.

33



Authorization Enforcement in Workflows: Maintaining Realizability J. Crampton, M. Huth, J. H.-P. Kuo

(decision,state) AEF-DP(schema AS,state σ,accReq (t, u))
{

if ((t, u) ∈ A && isRealizable(AS[σ | ((u, t), grant)]))
{ return (grant , σ | ((u, t), grant)); }

else
{ return (deny , σ | ((u, t), deny)); }

}

Figure 2: An AEF incorporating a decision procedure for workflow realizability

pseudocode for AEF-DP is depicted in Fig. 2. The decision procedure isRealizable takes a work-
flow schema AS as input and returns true if and only if Sol(AS) is non-empty (i.e. returns true if
and only if AS is realizable).

We now describe the behavior of AEF-DP, where we write σ | x for the state that appends to list
σ the item x of appropriate type. A request (t, u) is denied if either (t, u) is not in the authorization
relation A of AS,2 or if isRealizable, when supplied with input AS[σ | ((u, t, ), grant)], returns
false – meaning that there is no function α in Sol(AS) that maps u to t and σ(t′) to t′ for all t′ that have
been executed – as granting it would make the remaining workflow unrealizable. Otherwise, the request
is granted. In any event, σ is updated to reflect the decision made.

The crucial invariant that this AEF guarantees is that

“Invariant: All grants of access requests mean that the workflow AS is realizable in the
updated state.”

One possible drawback of this approach is that the decision procedure isRealizable needs to
be called each time an access-control request is made. As already discussed, one limiting factor will
certainly be the space and time requirements for such a decision procedure. Therefore, we will now
explore whether automated reasoning tools can be devised that fare better in this regard.

3.2 Constructing an AEF with Solution Sets
The method AEF-DP maintains the realizability of a workflow, but makes no use of “witness” informa-
tion for such realizability. One price we pay for this is that we need to recompute realizability decisions
each time a request is processed by AEF-DP.

Hence, we now discuss an alternative approach that uses a search procedure to compute a (repre-
sentation of a) subset of Sol(AS). The procedure relies on an abstraction of Sol(AS). More precisely,
it computes two partitions

T =

n⋃
i=0

Ti and U ⊇ Ũ =

n⋃
i=0

Ui (2)

where all functions α : T → U such that (ti, α(ti)) belongs to Ti × Ui for all 0 ≤ i ≤ n belong to
Sol(AS). The intuition here is that we may assign to any task in Ti any user in Ui, and that we can
be sure that this will not interfere with any constraints within (Ti, Ui) nor across any of the set-valued
task/user pairs (Tj , Uj). Note that (2) partitions task set T but only partitions a subset Ũ of users of
U that will be allocated to tasks in that workflow instance. In effect, this is an under-approximation of

2In the interests of brevity, our pseudocode does not include sanity checks such as ensuring that the requested task has not
already been performed. As already mentioned, we also assume that multiple occurrences of the same task are distinguishable in
the schema.
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(decision,state) AEF-SS(schema AS,state (Σ, σ),accReq (t, u))
{

if (there exists (T ,U) ∈ Σ such that t ∈ T and u ∈ U)
{ return (grant , (Σ, σ | ((u, t), grant))) }

else
{ return (deny , (Σ, σ | ((u, t), deny))) }

}

Figure 3: Constructing an AEF using a static prepartitioning of solutions

Sol(AS) as it represents a subset of that space of solutions and does not represent functions that aren’t
solutions.

Given a method getAbs for computing such partitions, we can write a second AEF, AEF-SS,
pseudocode for which is shown in Fig. 3. This approach assumes the state is an ordered pair (Σ, σ),
where Σ is some representation of two partitions as in (2) computed using getAbs, and (as before) σ
is a list that records which requests have been processed with what decisions. In particular, σ records
which tasks have already been allocated to which users by AEF-SS.

Given a request (u, t), AEF-SS inspects whether u and t belong to the same task/user pair computed
by getAbs, i.e. whether there is some i so that u is in Ui and t in Ti. If so, access is granted; otherwise
it is denied. In particular, the Σ part of the state never changes and AEF-SS never has to recompute
realizability information. However, it is possible that AEF-SS may deny a request that would not
prevent the completion of a workflow instance.

4 Implementation and Evaluation
In this section, we describe how the procedures isRealizable and getAbs can be constructed.
For the isRealizable procedure, we encode the realizability problem as an instance of SAT for
propositional logic (PL); we do this since we want to test whether BDDs might serve as an effective
representation of the solution space. For the procedure getAbs we capture this also as a SAT instance
but in linear-time temporal logic (LTL), as done in [3]. We use LTL and a bounded model checker here
as we can instrument the LTL encoding so that it precomputes partitions as in (2) that can be used as a
basis for AEF-SS. We also report on experimental work that tests the performance of our methods and
these encodings when applied to synthetic (randomly generated) workflow schemas.

4.1 Procedure isRealizable
Formula ηAS encodes the realizability problem for AS as an instance of SAT for PL, where models of
ηAS correspond to elements of Sol(AS) and vice versa. This encoding is shown in Fig. 4. Its set of
propositional variables is

{x(t,u) | (t, u) ∈ A}

where we define the sets of users Ut and u.ρ as

Ut = {u ∈ U | (t, u) ∈ A} (3)
u.ρ = {u′ ∈ U | (u, u′) ∈ ρ} (4)

This encoding is sound and complete since we can show that ηAS is satisfiable if and only if Sol(AS)
is non-empty, i.e. AS is realizable. The intuition behind the encoding is that t may be allocated to u if
x(t,u) is true, and that t must not be allocated to u if x(t,u) is false.
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ηbind =
∧
t∈T

∨
u∈Ut

x(t,u) (5)

ηC =
∧

(D,t→t′,ρ)∈C

η(D,t→t′,ρ)

η(D,t→t′,ρ) =
∧

u∈D∩Ut

x(t,u) → ∧
u′∈Ut′\u.ρ

¬x(t′,u′)



Figure 4: Encoding ηAS
def
= ηbind ∧ ηC : workflow realizability as instance of SAT for PL

Specifically, formula ηbind specifies that all tasks may be allocated to some user – a necessary
requirement for realizability. Formula ηC simply stipulates that all formulas η(D,t→t′,ρ) that encode
entailment constraints must be true. And such a formula η(D,t→t′,ρ) states that if a user u from set
D may be allocated to task t, then all users u′ that are authorized to execute task t′ but are not in a
relationship to u via ρ are such that they must not be allocated to t′. Note that “It is not the case that u′

may allocate task t′ ” is equivalent to “It is the case that u′ must not be allocated to task t′ ”. The need
for this indirection is that the variables do not represent the modality “must be allocated”.

A Boolean function (and so ηAS as well) can be represented as a binary decision diagram (BDD),
a DAG-type data structure that eliminates redundancies in binary decision trees; and this representation
is unique for a fixed order of variables in the BDD. The main reason why we are interested in BDDs
here is that one can efficiently compute specializations of BDDs (in which the truth values of some
variables are fixed) in order to decide the realizability of a workflow in an updated state. Thus we could
implement non-initial calls to isRealizable efficiently relative to the complexity of computing the
“initial” BDD from ηAS . Our experiments therefore focus on the latter computation.

Given ηAS , we first synthesize from it a BDDBAS (using a standard BDD library JavaBDD, which
relies on the CUDD implementation in C, and its default variable ordering) and then check (in constant
time) whether that BDD is equal to the canonical BDD that contains only leaf 0 (and so represents
“unsatisfiable”). If and when this BDD has been built, we can implement the call to isRealizable
in Figure 2 by simply computing the specialization of this BDD that eliminates one variable.

4.2 Procedure getAbs

Our implementation of getAbs is through a reduction of realizability of AS to SAT for the NP-
complete fragment [5] LTL(F) of LTL. We quickly review the syntax and semantics of LTL(F): Given
a finite set AP of atomic propositions (this is T ∪ U here), the propositional temporal logic LTL(F) is
generated by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Fφ

where p is from AP and F is the temporal connective “Future” such that F p states that p will be true at
some point in the future.

A model of a formula φ is an infinite sequence of states π = s0s1 . . . , where each si is a subset of
AP. We write π |= φ if π is a model for φ. We say that a formula φ is satisfiable if and only if it has
a model. We write πi to denote the infinite suffix sisi+1 . . . of π. The formal semantics of formulas is
then given in Figure 5.
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π |= p iff p ∈ s0 π |= ¬φ iff not π |= φ
π |= φ1 ∧ φ2 iff (π |= φ1 and π |= φ2) π |= Fφ iff there is i ≥ 0: πi |= φ

Figure 5: Formal semantics of temporal logic LTL(F) over models π = s0s1 . . .

δFT
def
=

∧
t∈T

F t

δGU
def
= G(

∨
u∈U

u)

δA
def
=

∧
t∈T

G
(
t→ ¬(

∨
(t,u)6∈A

u)
)

δC
def
=

∧
(D,t→t′,ρ)∈C

δ(D,t→t′,ρ)

δ(D,t→t′,ρ)
def
=

∧
u∈D

(
F (t ∧ u)

)
→ G

(
t′ → ¬(

∨
(u,u′)6∈ρ

u′)
)

δFU
def
=

∧
u∈U

Fu

Figure 6: Encoding δAS
def
= δFT ∧ δGU ∧ δA ∧ δC ∧ δFU of [3]: workflow realizability in LTL(F)

We use the usual abbreviations for disjunction (∨), implication (→), logical equivalence (↔) and the
“Global” temporal connective Gφ, which stands for ¬F¬φ (the informal interpretation being “always
φ”).

The realizability of AS we encode as a SAT instance for LTL(F) formula δAS shown in Fig. 6. Its
satisfiability is decided using the model checker NuSMV on a fully connected model, formula ¬δAS ,
and in an incremental bounded model-checking mode. The set of variables for this encoding is the
disjoint union T ∪ U . The interpretation of a variable t (respectively, u) being true in state si is that it
is in set Ti (respectively, Ui) of the constructed partition. Thus the δAS encoding allows the possibility
that several tasks and users may hold in a state.3

If the model checker returns a “counterexample”, a finite trace of states s0s1 . . . sn that represents a
“lasso” path π that makes δAS true, then we can derive a partition

Ti = si ∩ T Ui = si ∩ U (6)

and show (see [3]) that all α that allocate tasks consistent with all (Ti, Ui) pairings are in Sol(AS).
We now discuss this encoding in greater detail. Formula δFT demands that all tasks have to be true at

some state, whereas δGU ensures that all states make some user(s) true. Formula δA indirectly captures
the authorization relation A: for all tasks t, if t is true at some state then no users that are un-authorized
to execute t can be true at that state. The reason for this indirect encoding is that we need to rule out
that user and task groupings at a state violate any constraints, and that we cannot control or predict these
groupings.

3An encoding of workflow realizability in LTL(F) in which we insist that a single user and task are executed in all states has
poor model checking results [3].

37



Authorization Enforcement in Workflows: Maintaining Realizability J. Crampton, M. Huth, J. H.-P. Kuo

Formula δC states that all entailment contraints have to be met. And formula δ(D,t→t′,ρ) captures
such an entailment constraint. If a user u from set U is grouped with task t at some state, then at all
states that make t′ true there are no users u′ true there which are not in relationship ρ with u. Again,
this indirection is needed in order for the model checker to discover such groupings of users and tasks
at states.

Intuitively, it is desirable to have states si in which there are as many tasks and users as possible,
as this gives us more flexibility when dealing with access requests. Similarly, we want this search
procedure to have the tendency of accommodating, and so possibly allocating, as many users and tasks
in the sets Ti and Ui. This tendency is actively encouraged through the conjunct δFU in encoding δAS .
The intuition behind the inclusion of this conjunct is that we use a bounded model checker that will find
the shortest possible “lasso” trace that represents a model of the formula. So the model checker will
indeed try to pack as many users into states as possible to capture a solution, and will put all those users
that were not needed for the solution into a “junk” state, and only into one such junk state. We found
this to be beneficial when compared to an encoding that does not include this conjunct [3].

4.3 Experimental data

We now discuss our experimental results, which compare the performance of the BDD approach (ηAS
for isRealizable in AEF-DP) to a bounded model-checking approach (δAS for getAbs in
AEF-SS) on randomly generated workflows AS (be they realizable or not). These experiments were
conducted on the same Ubuntu Linux machine with Intel R© CoreTM 2 Duo Processor at 2.8 Gigahertz
and 4 Gigabytes of RAM.

We now describe the set of configurations for the workflow schemas AS used in our experiments.
Each AS was generated according to three parameters: the number of users, the authorization density,
and the constraint density. In each configuration the number of tasks was equal to the number of users,
taking values 10, 20, . . . , 140, 150. Authorization density is defined to be the ratio of |A| to the product
of |U | and |T |, where the latter represents the maximum possible cardinality of A. The authorization
densities we considered in our experiments are 0.1, 0.5, and 1.0, therefore ranging from a rather sparse
authorization policy through to one in which all users are authorized to perform all tasks. The constraint
density is defined to be the ratio of |C| to |U |. We let this value range over 0.05, 0.10, and 0.20. The
reason for choosing these lower values, but still having a good spread within that low range, is that
higher values of the constraint density tend to produce only unrealizable ramdomly generated AS and
we are interested in realizable AS as we mean to support such realizability as an invariant in an AES.

We present our results in graphical form in Figures 7 to 9. Each figure shows results for a different
authorization density. In each figure, the y-axis represents the time (on a logarithmic scale) taken to
determine realizability, where that time is the average time over 10 schemas AS for the respective
configuration type. The x-axis represents the configuration type for our experiments. A configuration
type has form uu-cd where uu is the number of users (and so the number of tasks as well) and cd is
the constraint density. The absence of a bar for a given configuration type indicates that the experiment
timed out after 20 minutes or ran out of memory.

Figure 9 suggests that the LTL approach outperforms the BDD approach for high values of ad such
as 1.0: the latter cannot even generate BDDs for workflows with more than 20 users whereas the LTL
approach can do this for at least 150 users. Looking at the data on Figures 8 and 7, we can see that the
BDD approach seems to catch up to the LTL approach as the value of ad becomes lower. The effect of
ad seems to be reversed in both approaches.

We now analyze how both approaches vary with the value of cd. Inspecting the three figures,
we note that in each figure its three “zones” of constraint densities have a very similar shape for both
approaches. Therefore, we can hypothesize that, in general, this value has less of an effect and the same
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Figure 7: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 0.1

type of effect on both the BDD and LTL approaches.
Finally, both approaches find it difficult to scale the decidability of realizability in that the running

time appears to grow exponentially in the number of users (and tasks), as the effort resembles a lin-
ear function on a logarithmic scale. For the LTL approach, we tried to determine its limits when ad
equals 0.5 and cd equals 0.1. These experiments (not reported here) suggest that this approach fails
consistently on our machine for models with more than 230 users.

5 Conclusions
We presented constrained authorized workflow schemas and motivated the need for workflow man-
agement systems to maintain the realizability of such “security-aware” workflows. We suggested two
authorization enforcement functions that use automated reasoning methods in order to maintain realiz-
ability as an invariant of task execution.

One of these methods relies on a decision procedure for realizability encoded in propositional logic.
As a workflow instance executes, this costly procedure needs to be called at each access request instance.
Unfortunately, our attempt to circumvent this need through the synthesis of BDDs and their dynamic
specialization leads to discouraging experimental results for the build of the initial BDD.

The second method is already reported in [3] and, in effect, computes a subset of the set of all re-
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Figure 8: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 0.5

alizability solutions for a workflow instance, where this subset is defined by a sequence of task-user
subsets. Such a sequence can be computed using an appropriately configured bounded model-checker
for linear-time temporal logic with a suitable encoding derived from the workflow schema. The exper-
imental results for this approach are more encouraging but at least two issues need to be resolved in
order to make this approach viable in practice. Firstly, we need to develop refinements of this approach
in order to make the model checking more scalable, for example through the use of further abstraction
techniques.

Secondly, we need to investigate whether the compact “Boolean” subset of solutions computed by
the model checker can, implicitly represent even more solutions and so make the authorization enforce-
ment function more flexible. Delegation models of workflow schemas [4], where users may delegate
task execution rights to other users, are just one motivation for such increased flexibility. This second
issue has also a more general form: we want to understand the trade-offs between the complexity of com-
puting realizability information that supports an authorization enforcement function and the frequency
of denying access requests that, if granted, could in principle lead to realizable workflow instances.

Of course, there are many other approaches to automated reasoning that we may test for their
suitability of supporting workflow realizability. Perhaps an incremental SAT solver may allow for a
relatively quick decision of the realizability of access requests; we mean to investigate this in future
experimental work.
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Figure 9: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 1.0

The authorized workflow schemas studied in this paper share with existing approaches in the litera-
ture that the population of users is already part of the schema. It seems undesirable, somehow, to do the
automated reasoning over such a concrete population. In future work, we therefore mean to investigate
whether such automated reasoning can be done over a dynamically expanding, symbolic set of users.
The aim would be to compute a user/task assignment for symbolic users, which then leaves us with
the orthogonal problem of mapping symbolic users into concrete user populations, be it statically or at
runtime. Our preliminary study of this new approach suggests that one may fruitfully use constraint
satisfaction solvers or efficient instances of colorability problems for the computation of such symbolic
solutions.
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