Kalpa Publications in Computing

Volume 5, 2018, Pages 109-116 k&t[A

Computing

Automated Formal Methods

A Brief Introduction to the PVS2C Code Generator *

Natarajan Shankar

SRI International Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025 USA
shankar@csl.sri.com

Abstract

We present a brief tutorial on the PVS2C code generator for producing C code from an
applicative fragment of the PVS specification language. This fragment roughly corresponds
to a self-contained functional language. The tutorial covers the generation of C code for
numeric data types and associated operations, arrays, recursive data types, and higher-
order operations.

1 Introduction

Specification languages are meant to capture the “what” of computation while programming
language express the “how”. For this reason, a specification language need not be executable.
However, many specification languages do contain executable sublanguages. Execution is useful
for validating specifications, generating verified software and systems, and for performing large
calculations within proofs. Code generation makes it possible to construct executable systems
without having to formalize programming notations and their semantics within the specifi-
cation language, or building special-purpose verification tools that target these programming
languages.

The Prototype Verification System (PVS) is an interactive proof assistant with an expres-
sive specification language based on higher-order logic. The type system admits predicate sub-
types, dependent tuple, record, and function types, and recursive datatypes. The language also
supports parametric theories. The expression language includes function application, lambda
abstraction, quantification, conditional expressions, LET-binding, and record/tuple/function
updates. The quantifier-free fragment of the language can be viewed as an applicative lan-
guage.

There are two basic problems in mapping an applicative language to an imperative one.
The first is that applicative semantics require copying on updates. This kind of copying can be

*This work was supported by NSF Grant CSR-EHCS(CPS)-0834810, NASA Cooperative Agreement
NNA10DET73C, and by DARPA under agreement number FA8750-12-C-0284 and FA8750-16-C-0043. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of NSF, NASA, DARPA or the U.S.
Government.

N. Shankar and B. Dutertre (eds.), AFM17 (Kalpa Publications in Computing, vol. 5), pp. 109-116

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

very expensive: sorting a 1000-element array can involve thousands of copies. It is therefore
important to identify and exploit opportunities for in-place updates. The second problem is of
course the execution of an applicative program can generate memory that is no longer referenced
and needs to be garbage-collected. In PVS2C [1], reference counting is used to address both
issues. In simple terms, an array can be updated in place when its reference count is one, and it
can be garbage collected when its reference count drops to zero. Since reference cycles cannot
be created when executing PVS, reference counting does ensure that no live references are
collected and all dead references are garbage-collected. More strongly, references are released
as soon as possible so as to maximize the opportunities for in-place updates. The execution
of well-typed PVS expressions is safe: the only possible runtime errors are when the execution
exhausts heap or stack space. Typechecking, particularly through the discharging of type
correctness condition (TCC) proof obligations, ensures that there can be no buffer overflows,
null dereferences, uncaught exceptions, division by zero, etc.

Though PVS2C targets the C programming language, the translation from PVS to C is
factored through an intermediate representation (IR) that can be used to target other pro-
gramming languages. The IR is based on A-normal form [2]. The pvs2ir operation translates
PVS expressions into the IR. This translation basically involves flattening expressions to create
variable bindings for subexpressions. The IR includes some type information to help track
array sizes. The ir2c operation maps IR expressions into C by essentially converting the LET-
bindings into assignments. The PVS2C generator can be invoked as M-x pvs-c-theory with
the cursor on a theory in a .pvs file. The code generator generates a header and code file for
the given theory as well as for any theories that are in the import chain. The code genera-
tor currently handles Boolean, numeric, record, tuple, recursive datatypes, and function types.
Fixed width, uni-dimensional arrays are handled using C arrays, and the others are treated as
function types. We are working on extending the translation to dependently sized array types
and polymorphic types. We present a short tutorial on the use of the prototype implementation
of PVS2C.

2 A Small Example

We first present a small example to illustrate the flow with the theory smallswap shown below.
The type nat32 is a subtype that captures the C type uint_32. The pvs2ir translator uses
the Common Lisp ground evaluator [3] to evaluate such expressions. This also holds for the
numrows parameter. The type smallarray represents an array of size 5. The swap operation
is defined to exchange A(i) with A(j).

110

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

swap : THEORY
BEGIN

nat32: TYPE = below(exp2(32))
numrows: nat32 =5
rows: TYPE = below(numrows)
smallArray: TYPE = [rows -> nat32]
A: VAR smallArray
swap(A, (i, j : rows)): smallArray =

A WITH [(i) := A(j),

(3) = AD)]

test: smallArray =

(LET A = (LAMBDA (i: rows): i)
IN swap(A, 2, 3))

END swap

This generates the IR shown below. The two lookups of A(j) and A(i) are bound to the
variables ivar_7 and ivar_10, respectively. The swap operation is made up of two updates. The
variables are printed with their type information. Note that several of the variable occurrences
are as arguments to the last operator. This operator marks the last occurrence of a variable
in an evaluation path. It is used in the C translator for helping account for references. The
whole definition is represented as a lambda expression where the body is given a return type
following the arrow ‘=>’.

(lambda ((ivar_1 swap_smallArray) (ivar_2 (subrange 0 4))
(ivar_3 (subrange 0 4)))
’—>
swap_smallArray
(let ivar_4
(subrange 0 4294967295)
(let ivar_7
(subrange 0 4294967295)
(lookup (ivar_1 swap_smallArray) (ivar_3 (subrange 0 4)))
(last (ivar_7 (subrange 0 4294967295))))
(let ivar_5
(subrange 0 4294967295)
(let ivar_10
(subrange 0 4294967295)
(lookup (ivar_1 swap_smallArray) (ivar_2 (subrange 0 4)))
(last (ivar_10 (subrange 0 4294967295))))
(let ivar_17
swap_smallArray
(update (last (ivar_1 swap_smallArray))
(last (ivar_2 (subrange 0 4)))
(last (ivar_4 (subrange O 4294967295))))
(let ivar_22
swap_smallArray
(update (last (ivar_17 swap_smallArray))
(last (ivar_3 (subrange 0 4)))
(last (ivar_5 (subrange 0 4294967295))))
(last (ivar_22 swap_smallArray)))))))

The operation ir2c generates the C counterpart of the IR translation. Two files: swap_c.h
and swap_c.c are generated. The header file swap_c.h contains the following include declara-
tions.

111

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include <gmp.h>

#include "pvslib.h"

#include "exp2_c.h"

It also contains the type definition corresponding to the smallArray type. The array is defined
by a struct that has a reference count field count, and the C array elems. We also define five
operations for each such aggregate type: new, which constructs a fresh array; release, which
decreases the reference count by one while freeing the struct if the reference count drops to
zero; copy, which does a shallow copy; equal, which is a recursive equality test; and update,
which performs an update.

struct swap_smallArray_s { uint32_t count;

uint32_t elems[5]; };

typedef struct swap_smallArray_s * swap_smallArray_t;

extern swap_smallArray_t new_swap_smallArray(void);

extern void release_swap_smallArray(swap_smallArray_t x);

extern swap_smallArray_t copy_swap_smallArray(swap_smallArray_t x);

extern bool_t equal_swap_smallArray(swap_smallArray_t x, swap_smallArray_t y);

extern swap_smallArray_t
update_swap_smallArray(swap_smallArray_t x, uint32_t i, uint32_t v);

The file swap_c.c contains the definitions of the above operations, as well as the definition of
swap. Each sub-expression in the IR definition of swap is translated with a return variable,
where each LET-binding turns into an assignment with a possible casting. It might seem
surprising that there is no explicit reference counting in the definition. The update operation
manages the reference count for the array being updated. Since the two update operations are
applied to variables marked as last, they will be executed in place if the reference count of the
array passed into the operation as ivar_1 has a reference count of one.

extern swap_smallArray_t f_swap_swap(swap_smallArray_t ivar_1,
uint8_t ivar_2,
uint8_t ivar_3){
swap_smallArray_t result;
uint32_t ivar_4;
uint32_t ivar_7;
ivar_7 = (uint32_t)ivar_1->elems[ivar_3];
ivar_4 = (uint32_t)ivar_7;
uint32_t ivar_5;
uint32_t ivar_10;
ivar_10 = (uint32_t)ivar_1->elems[ivar_2];
ivar_5 = (uint32_t)ivar_10;
swap_smallArray_t ivar_17;
ivar_17 = (swap_smallArray_t)
update_swap_smallArray(ivar_1, ivar_2, ivar_4);
swap_smallArray_t ivar_22;
ivar_22 = (swap_smallArray_t)
update_swap_smallArray(ivar_17, ivar_3, ivar_5);
result = (swap_smallArray_t)ivar_22;

return result;

112

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

The generated programs can be tested by means of a hand-written main such as the one
shown below.

#include "swap_c.h"

int main(){
swap_smallArray_t result;
result = f_swap_test();
printf("\n result->count = %u", result->count);
printf("\n");
for (uint32_t i = 0; i < f_swap_numrows(); i++){
printf("al%ul = %u; ", i, result->elems[i]);

printf("\n");

Compiling and executing this program generates.

result->count = 1
al0] = 0; al1]l = 1; a[2] = 3; al3] = 2; al[4] = 4;

3 Arithmetic Operations

We next examine the translation of arithmetic operations. The theory arithops shows some
of the types and a few variations on addition.

arithops: THEORY
BEGIN
uint8: TYPE = below(exp2(8))
uint16: TYPE = upto(exp2(16) - 1)
uint32: TYPE = upto(exp2(32) - 1)
uint64: TYPE = upto(exp2(64) - 1)
uint128: TYPE = upto(exp2(128) - 1)

int8: TYPE = subrange(-exp2(7), exp2(7) - 1)
int16: TYPE = subrange(-exp2(15), exp2(15) - 1)
int32: TYPE = subrange(-exp2(31), exp2(31) - 1)
int64: TYPE = subrange(-exp2(63), exp2(63) - 1)
int128: TYPE = subrange(-exp2(127), exp2(127) - 1)
addu8u8_u8: uint8 = 127 + 128
addu8u8_ul6: uintl6 = 255 + 255
addu8ul6_ul6: uintl6é = 255 + 65000
addul6u8_ul6: uint16 = 65000 + 255
addul6ul6_ul6: uintlé = 32768 + 32767
addul6ul6_u8: uint8 = (LET x : uintl6 = 127,

y : uintl6 = 128

IN x + y)
addul6ul6_u32: uint32 = 65535 + 65535
addul6u32_u32: uint32 = 65535 + 4294900000
addu32u32_u32: uint32 = 2094900000 + 2094900000
addu32u32_ul6: uinti6 = (LET x : uint32 = 32000,

y : uint32 = 32000
INX+y)

END arithops

We show the generated code for the last operation addu32u32_u16. This code fragment
illustrates the casting between the different numeric types. PVS2C handles casting between
signed and unsigned 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit numbers, as well as multi-precision
representations.

113

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

extern uintl6_t f_arithops_addu32u32_u16(void){
uint16_t result;
uint32_t ivar_1;
ivar_1 = (uint32_t)32000;
uint32_t ivar_2;
ivar_2 = (uint32_t)32000;
result = (uint16_t) (ivar_1 + ivar_2);
return result;

The multi-precision computations use the Gnu Multi-Precision (GMP) library. The oper-
ations employ a different calling convention where the first argument to the operation is the
variable used for recording the result.

extern void f_arithops_addu32u32_nat(mpz_t result){
uint32_t ivar_1;
ivar_1 = (uint32_t)4294967295;
uint32_t ivar_2;
ivar_2 = (uint32_t)4294967295;
mpz_set_ui(result, (uint64_t)ivar_1);
mpz_add_ui(result, result, (uint64_t)ivar_2);

PVS record datatypes are represented as C structs with the corresponding fields. The PVS
declaration for the record type smallPair is shown below as consisting of three fields: left,
right, and mid.

smallPair: TYPE = [# left, right : smallArray, mid: nat32 #]

The corresponding C type is shown below.

struct smallswap_smallPair_s {
uint32_t count;
smallswap_smallArray_t left;
uint32_t mid;
smallswap_smallArray_t right;};
typedef struct smallswap_smallPair_s * smallswap_smallPair_t;

As with arrays, the record types also have five generated operations for creating a new
object, copying an object, checking for equality, updating an object, and releasing the object.

extern smallswap_smallPair_t new_smallswap_smallPair(void);
extern void release_smallswap_smallPair(smallswap_smallPair_t x);
extern smallswap_smallPair_t copy_smallswap_smallPair(smallswap_smallPair_t x);

extern bool_t
equal_smallswap_smallPair(smallswap_smallPair_t x, smallswap_smallPair_t y);

extern smallswap_smallPair_t
update_smallswap_smallPair_left(smallswap_smallPair_t X,
smallswap_smallArray_t v);

extern smallswap_smallPair_t
update_smallswap_smallPair_mid(smallswap_smallPair_t x, uint32_t v);

extern smallswap_smallPair_t
update_smallswap_smallPair_right(smallswap_smallPair_t X,
smallswap_smallArray_t v);

PVS n-tuples are treated as record types with fields project_1 to project.n.
Recursive datatypes in PVS are introduced with constructors along with their recognizers
and accessors. The declaration for numlist introduces a datatype with two constructors: nnull

114

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

and ncons, where nnull has no accessors and the recognizer nnull?, and ncons has two
accessors: ncar and ncdr, and the recognizer ncons?.

numlist: DATATYPE
BEGIN
nnull: nnull?
ncons(ncar: nat32, ncdr: numlist): ncons?
END numlist

The translation to C first generates a parent datatype with just the count field for the
reference count and an index field for marking the index of the constructor.

struct drev_numlist_adt_s {
uint32_t count;
uint8_t drev_numlist_adt_index;};
typedef struct drev_numlist_adt_s * drev_numlist_adt_t;

For each nontrivial constructor, there is a struct extending the parent struct with the relevant
fields. For example, the constructor ncons yields the struct definition below extending the struct
drev_numlist_adt_s.

struct drev_ncons_s {
uint32_t count;
uint8_t drev_numlist_adt_index;
uint32_t ncar;
drev_numlist_adt_t ncdr;};
typedef struct drev_ncons_s * drev_ncons_t;

Datatype updates are handled in the same way as structs so that it is possible to define de-
structive counterparts for appending and reversing lists. PVS2C does not yet handle parametric
datatypes nor parametric theories.

PVS2C handles closures by first generating a parent C struct for the function type with
fields for

e The reference count

The unary function pointer fptr

The multiary function pointer mptr

The release function pointer rptr

The copy function pointer cptr, and

A hashtable for storing function updates.

The corresponding C representation is defined below. The actual value representing a closure
also contains a field for the bindings for the free variables.

struct closr_closure_O_s { uint32_t count;
uint32_t (* fptr) (struct closr_closure_O_s *, uint32_t);
uint32_t (* mptr) (struct closr_closure_O_s *, uint32_t);
void (* rptr)(struct closr_closure_O_s *);
struct closr_closure_O_s * (* cptr) (struct closr_closure_O_s *);
closr_closure_0_htbl_t htbl;};

115

A Brief Introduction to the PVS2C Code Generator Natarajan Shankar

4 Conclusions

The PVS2C code generator translates an applicative fragment of PVS into C code. The gen-
erated C code is self-contained and does not rely on a run time. The generated code preserves
the type safety of the typechecked PVS. It can only crash by exhausting resource bounds. The
generated C code is comparable in efficiency to the corresponding hand-crafted C, and a lot
faster than the Common Lisp code generated from PVS.

We are working on extending the translation to cover parametric theories, dependently-sized
arrays, and strings. We also plan to integrate it with the random testing capability in order
to test the generated code on large sets of test vectors. The intermediate language is indepen-
dently useful and we plan to support it with various forms of static analysis that can improve
the quality of the generated code. Eventually, we would also like to handle specifications of
concurrent systems so that we can generate monitors and entire systems starting from abstract
specifications.

Acknowledgments. This material is based on work supported by NASA NRA NNA13AC5H5C,
NSF Grant CNS-0917375, and by DARPA and the United States Air Force under agreement
contract number FA8750-16-C-004315-C-0010. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of NASA, NSF, USAF, DARPA, or the U.S.
Government. We thank the anonymous referees for their constructive feedback.

References

[1] Gaspard Férey and Natarajan Shankar. Code generation using a formal model of reference counting.
In Sanjai Rayadurgam and Oksana Tkachuk, editors, NASA Formal Methods: 8th International
Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings, pages 150-165,
Cham, 2016. Springer International Publishing.

[2] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations (with retrospective). In Kathryn S. McKinley, editor, Best of PLDI, pages
502-514. ACM, 1993.

[3] Natarajan Shankar. Static analysis for safe destructive updates in a functional language. In A. Pet-
torossi, editor, 11th International Workshop on Logic-based Program Synthesis and Transformation
(LOPSTR 01), Lecture Notes in Computer Science, pages 1-24. Springer-Verlag, 2002. Available
at ftp://ftp.csl.sri.com/pub/users/shankar/lopstr0l.pdf.

116

ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf

	Introduction
	A Small Example
	Arithmetic Operations
	Conclusions

