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Abstract 

Hyperelastic materials are special types of material that tends to behavior elastically 

when they are subjected to very large strains. These materials show not only the nonlinear 

material behavior but also the large deformation and stress–strain relationship is derived 

from a strain energy density function. Hyperelastic materials are widely used in many 

applications such as biological tissues, polymeric foams and moreover. Neo - Hookean 

is a material model for hyperelastic solid which contains only two material parameters: 

bulk modulus and shear modulus. In the field of numerical analysis, radial point 

interpolation method (RPIM) is a wellknown meshfree method based on Garlekin weak 

form. With the property of “free of mesh”, the RPIM approach shows its advantage for 

large deformation problems. In this study, a meshless radial point interpolation method 

is applied to demonstrate elastic response of rubber-like materials based on the Mooney-

Rivlin model. The obtained results are compared with the reference solutions given by 

other methods to verify the accuracy of the proposed method. 

1 Introduction 

Hyperelastic material is material which is used to represent large deformation behavior. Rubber, 

rubber – like materials and other polymer are hyperelastic materials. These materials are used widely 

in reality to approximate the material behavior of biological tissues, polymeric foams… Unlike metal, 

the stress – strain relation of this material is non – linear and really different between tension and 

compression. Because of this reason, the simulation of deformable behavior of hyperelastic material is 

much more complicate than the deformation of metal we know.   

Throughout history, there are many numerical methods which were introduced to solve lots of 

mechanical problems such as finite element method, boundary element method, …  and they have 

gained great achievement. One of the newest methods and prove its advantage among others is the 

meshfree method. In meshfree method, the approximate solution for partial differential is obtained using 

a set of scattered nodes in the absence of mesh. Therefore, we construct shape functions for particular 
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points using nodes in a small local domain, which is called the support domain. Mesh is no need in 

meshfree method, this means that no connectivity information between nodes is needed before the 

calculation, connectivity is defined during run as a part of computation. This is appropriate for large 

deformation problems which require remeshing in mesh based methods.   

Today, some commercial software can solve the problem of hyperelasticity based on finite element 

method. Beside that, in research aspect, various meshfree methods have been developed and extended 

to deal with these problems. For example, “The meshless method for rubber hyperelastic material based 

on Yeoh mode type constitutive laws” [1] or “The Meshless Local Petrov-Galerkin Method for Large 

Deformation Analysis of Hyperelastic Materials” [2]. But the shape functions which were used in these 

methods not qualify for Kronecker – delta, thus having difficulty in handling boundary conditions.  

In this paper, we select the radial point interpolation method [4], which has the Kronecker delta 

function and consistency property, to solve the problem of hyperelasticity. Until now, RPIM was 

applied to solve many mechanical problems such as “Radial point interpolation method for elastoplastic 

problems in Proceeding” [3], “A point interpolation meshless method based on radial basis functions” 

[4].  

2 RPIM Shape Function  

Consider u(x) be field variable function defined in the problem domain. The domain is represented 

by a set of arbitrarily distributed nodes in the problem domain and its boundary. Approximation for the 

function u(x) within a support domain at point x is given by:   

   𝑢ℎ(𝑥) = ∑𝑛𝑖=1𝑅𝑖(𝑟)𝑎𝑖 +∑𝑚𝑗=1𝑝𝑗(𝑥)𝑏𝑗   (1)  

Where 𝑅𝑖(𝑟) are the radial basis functions; n is the number of nodes in support domain; 𝑃𝑗(𝑥) are 

the monomials; m is the number of polynomial basis functions; 𝑏𝑗 are the corresponding coefficients 

for the polynomial basis functions 𝑃𝑗(𝑥).  Equation (1) can be written in the matrix form as:  

   𝑈𝑠 = 𝑅0𝑎+𝑃𝑚𝑏   (2)  

Where the vector  𝑈𝑠𝑇 = [𝑢1,𝑢2,…,𝑢𝑛]; the moment matrix of radial basis functions, 𝑅0 is  

expressed as    

 

 

 

 

 

 

(3) 

  

the moment matrix of polynomial terms 𝑃𝑚 is expressed as  

 (4) 

In order to have an unique solution, the following constraints are imposed for the polynomial terms:  

   𝑃𝑚𝑇𝑎 = 0, j = 1, 2,…, m  (5)  

Combining both equation (2) and (3), we obtain the following equation:   
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Or can be written as:  

(6)  

    
Substituting equation (5) into equation (1), we have:  

(7)  

 
where we can express the RPIM shape functions as:    

(8)  

 Ф̅𝑇 = [𝑅𝑇(𝑥) 𝑝𝑇(𝑥)]𝐺−1 = [Ф1(𝑥) Ф2(𝑥) … Ф𝑛(𝑥) Ф𝑛+1(𝑥) … Ф𝑛+𝑚(𝑥)] The RPIM shape 

functions corresponding to nodal variables are:  

(9)  

  Ф𝑇(𝑥) = [Ф1(𝑥) Ф2(𝑥) … Ф𝑛(𝑥)]  

Equation (1) can be written as:  

(10)  

  𝑢 𝑛𝑖 𝜙𝑖 𝑢𝑖   (11)  

3 Deformation Of Hyperelastic Material  

3.1 Deformation measures used in Hyperelastic material  

We suppose that a solid is subjected to a displacement field 𝑢𝑖 (𝑥𝑘)  

 •  The deformation gradient and its Jacobian  

 

  
  

 •  The left Cauchy – Green deformation tensor  

(12)  

  𝐵𝑖𝑗 = 𝐹𝑖𝑘.𝐹𝑗𝑘   

 •  Invariants of B  

(13)  

 

(16) 

 •  An alternative set of invariants of B  
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3.2 The stress-strain relations from the strain energy density  

The constitutive law for an isotropic hyperelastic material is defined by an equation relating the 

strain energy density of the material to the deformation gradient, or, for an isotropic solid, to the three 

invariants of the strain tensor  

     (20)  

Stress – Strain relation in terms of  

(21) 

For Generalized Neo – Hookean solid  

(22) 

where μ1 and K1 are material properties (for small deformations, μ1 and K1 are the shear modulus 

and bulk modulus of the solid, respectively). This is a rubber elasticity model, for rubbers with very 

limited compressibility, and should be used with K1>>μ1.  The stress - strain relation follows as  

(23) 

4 Numerical Example  

In order to test the developed approach, two numerical examples are given for analyzing the large 

deformation of bodies (Cook‘s membrane and Curved beam). To generate the numerical results, the 

shear modulus (𝜇) is assumed to be 80.194 𝑁/𝑚𝑚2. Besides, the bulk modulus (𝜅) is taken as 120.291 

𝑁/𝑚𝑚2 in the compressible regime and 400889.806 𝑁/𝑚𝑚2 in nearly incompressible regime.  

4.1 Cook’s membrane example  

This example is commonly selected to determine the effective of discretized formulations in bending 

problems. The membrane has a trapezoidal shape, the geometry and dimensions of are shown in Fig. 1. 

An edge traction load 𝑓 = 32 𝑁⁄𝑚𝑚2  is given along the right edge and it is clamped along the left edge.  
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  Figure 1: Schematic of the of Cook’s   Figure 2: RPIM mesh of Cook’s membrane example membrane  

  

Figure 3: Deformed configuration of nearly - incompressible Cook's membrane 

There are 2600 nodes used for the model (see Fig. 2). The plot in Fig. 3 shows the deformation of 

the nearly – incompressible membrane. It is observed that the maximum vertical displacement is 

obtained at point B. Table. 1 shows the comparison of the vertical displacements at point A and B 

between proposed RPIM and FEM results given by R. Hassani et al [5]. A good agreement between the 

present results and reference results is obtained. In addition, Fig. 4 is presented to show the convergence 

behavior of the method for the nearly-incompressible model.  

To investigate the effect of the size of support domain on RPIM results for this nonlinear problem, 

several values of this parameter are chosen for computing. Table. 2 shows the results of displacement 

are more exactly when the support domain 𝛼 is increased, however it takes more steps for calculating.  
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Table 1. Comparison of the vertical displacement between RPIM and FEM  

  FEM (ANSYS) 

(mm)  

RPIM (mm)  FEM [5] (mm)  ERROR (%)  

𝑢𝑦𝐴  21.4  20.87  21.38  2.38  

𝑢𝑦𝐵  24.94  24.01  -  3.84  

  

Figure 4: Vertical displacement of point 𝑨 and B in nearly-incompressible Cook’s membrane with the number of 

nodes for various values of distributed shearing force 𝑓 

 Table 2. Displacement with the size of support domain for various values   

  1.7  1.8  1.9  2.0  2.1  

𝑢𝑦𝐴  20.2003  20.3190  20.4656  20.4396  20.5492  

𝑢𝑦𝐵  22.5630  22.7742  22.7409  23.1452  23.3611  

4.2 Curved beam example  

  
Figure 5: Schematic of the curved beam example  
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In the second example, the behavior of a compressible curved beam subjected to a compression is 

investigated. According to Fig. 5, a quarter-circular curved beam is considered which is clamped along 

the lower edge. Plots in Fig. 6 display the total displacement distribution of the curved beam with 

various values of force f.   

To verify the nodal convergence, several nodal distributions are selected for computation. Charts in 

Fig. 7 show the convergence of the method for the compressible problem, it is reasonable to see that 

the higher values of force gives larger total displacement than others.  

 
Figure 6: Deformed configuration of compressible curved beam with several values of  distribution force f : 0.5, 

0.4, 0.3, 0.2 (N/mm2)  

  
Figure 7: Total displacement of point A in compressible curved beam with the number of nodes for various 

values of distributed shearing force 𝑓  

f= 0.5 N/mm 2   
f= 0.4 N/mm 2   

f= 0.3 N/mm 2   f= 0.2 N/mm 2   
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5 Conclusions  

In this paper, the meshless radial point interpolation method is applied to solve the large deformation 

problem with hyperelastic material. These computational programs are developed in the Matlab 

programming language. The neo-Hookean model is used for the hyperelastic behavior of the material, 

several numerical examples in the nearly incompressible and compressible regimes were solved in order 

to show the validity and efficiency of the meshless approach. The proposed RPIM method can solve 

the problem with an acceptable accuracy. It was shown that the present method is effective in solving 

various nonlinear elasticity problems such as nearlyin compressible and compressible.   
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