Kalpa Publications in Computing
Volume 17, 2023, Pages 1-14

ialpat

and Embedded Systems Hybrid Virtual Conference Computing

Proceedings of 2023 Concurrent Processes Architectures

Accelerating Scientific and Engineering Applications
through Cloud-based GPU Computing

Dipesh Rawat!, Kopal Chakravarty?, Neelaksh Singh?3, Vijaya Laxmi Pachva?,
and Rakshith Anand Bhootham®

1 Guru Gobind Singh Indraprastha University, Delhi, India
dipeshrawat66@gmail.com

2 LNM Institute of Information Technology, Jaipur, India
kchakravarty29@gmail.com

3 Birla Institute of Technology, Mesra, Jharkhand, India

neelaksh48@gmail.com
4 Kakatiya University, Warangal, India
vaishnavivijayalaxmi.p@gmail.com
5 Jawaharlal Nehru Technological University, Hyderabad, India

rakshitanand23@gmail.com

Abstract

As the extensibility of GPU computing rapidly increases, we often find them useful for
different applications in the field of science and engineering. Libraries written for engineer-
ing tasks such as CULA (Cuda Linear Algebra), cuFFT-Cuda Fast Fourier Transforms,
and cuBLAS library- Cuda Basic Linear Algebra Subprograms) have made it easier for
programmers to achieve a significant performance increase when solving problems in the
fields of engineering and math. In signal processing we can use the GPU to perform discrete
Fourier transforms on time-domain signal strength to represent the data in the frequency
domain. With the data in this format, we can calculate signal strength of various frequen-
cies very efficiently, and further determine if a transmission on a particular frequency has
taken place. Speedups in excess of 70 were achievable using a GPU-based implementation
utilizing the cuFFT library over a CPU implementation utilizing the most performance
optimized CPU-based FFT library, FFTW.

1 Introduction

The ubiquity and necessity of parallel computing has begun to show itself in recent years,
and companies have found the need to adapt their hardware to facilitate parallelism. This is
becoming a necessary change to allow for speedups that historically would be delivered by an
increase in CPU clock frequency. NVIDIA, harnessing the inherent SIMD (single instruction
multiple data) properties of their GPUs, created the CUDA API, which allows programmers
to write C/C++ code that takes advantage of the hundreds or thousands of cores present on
modern NVIDIA GPUs, without having to learn a new language, or have intimate knowledge
of the hardware.

L. Quarrie (ed.), COPA 2023 (Kalpa Publications in Computing, vol. 17), pp. 1-14

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

Consequently, many applications that were formerly bound by the lack of floating point
throughput of most CPU’s can take advantage of the massive parallelism that a GPU can
provide. Applications ranging from scientific and engineering number crunching to sorting al-
gorithms (which run many times faster than their CPU counterparts [4]). Although GPUs may
significantly improve the performance of algorithms that display data parallelism, it’s vital to
understand that not all algorithms are suitable for GPU acceleration. Due to memory con-
straints and data transmission costs, complex, irregular, or data-intensive algorithms may not
benefit from the projected speedup and may instead perform worse on GPUs. Considering the
peculiarities of the algorithm and the capabilities of the GPU being used, a careful assessment
is required to decide whether GPU acceleration is advantageous for a certain application. Most
scientific and engineering-related fields have large and computationally difficult problems that
need to be solved as fast as possible. In this paper, we will look at a potential application of the
GPU to solve problems in the field of Electrical Engineering; more specifically signal analysis
and processing.

If we are working with a radio signal, we can take the digitized signal and use the GPU
to detect anomalies in a particular frequency range. If we can detect that a transmission has
occurred on a known frequency, then we can intercept that transmission (provided it is not
encrypted), or attempt to triangulate the position of the signal using multiple antennas that
are synchronized to a certain degree. This paper presents a GPU algorithm to perform this
task significantly faster than a CPU using well-optimized libraries.

It is important to note that while GPUs offer substantial advantages in parallelism and
throughput, there are known issues that make them unsuitable for certain types of High-
Performance Computing (HPC) algorithms. GPUs are primarily designed for single-precision
arithmetic, which means they excel at performing calculations with 32-bit floating-point num-
bers. However, many HPC applications, especially those in scientific computing, require higher
precision, typically 64-bit double-precision arithmetic. GPUs do support double-precision op-
erations, but they are significantly slower than single-precision operations. This can lead to
performance bottlenecks when dealing with algorithms that heavily rely on double-precision
calculations. The IEEE defines standards for floating-point arithmetic, including the IEEE
754 standard for floating-point representation. GPUs may not always adhere strictly to these
standards, which can lead to numerical instability and inaccuracies in certain calculations. This
lack of compliance can be a concern for HPC applications where precision and consistency are
critical. GPUs are optimized for data-parallel workloads, where the same operation is applied to
a large dataset concurrently. While they excel in terms of throughput for such workloads, they
may face challenges in handling irregular or memory-bound computations. In HPC applications
that involve complex memory access patterns or require frequent data transfers between CPU
and GPU memory, latency can become a significant bottleneck, offsetting some of the advan-
tages of parallelism. It should be carefully assessed whether GPUs are suitable for a particular
algorithm based on factors such as precision requirements, data access patterns, and compliance
with numerical standards.

Many implementations for signal detection already exist. Wireless communication such
as the varying cell network technologies rely on signal detection and correction to function.
Popular methods include the QRM-MLD allow for efficient frequency domain signal detection
as proposed by T Yamamoto[5], and frequency domain signal processing methods by Howard
et. all [3].

For the remaining section of this study is organized in the following way: first, a part of the
setting info surrounding topic will be covered; second, the sequential implementation will be
discussed; third, the parallel implementation, including pipelined and non-pipelined versions,

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

will be explained; finally, we will end the paper with some concluding remarks and the future
direction of the project.

2 Background

In engineering, the Fourier Transform is applicable to many topics such as differential equations,
spectroscopy, and quantum mechanics. In electrical engineering and signal processing, the
Fourier transform can be used to switch between the time and frequency domains. Information
in the time domain by itself it of little use when trying to infer information about a signal, as
it is a representation of many different bands of frequencies superimposed on top of each other.
If we perform a Fourier Transform on a signal represented in the time domain, the result is
a frequency spectrum that provides the resulting values in the complex plane. The frequency
spectrum can be used to see which frequencies have the greatest power in a particular signal.
If the signal we are analyzing is a radio wave generated by an antenna, we can determine which
frequencies are being transmitted on, and quite possibly intercept the transmission as well.

There are several implementations of the Fourier Transform. The one most commonly used
by engineers in real applications is the FFT, or Fast Fourier Transform. As one may suspect,
the FFT gets its name from the efficiency in which it computes the transform compared to
other methods, however despite its speed, it does not compromise accuracy. There are a few
implementations of the FFT, the most common of which being the Cooley- Turkey algorithm,
and another being the Bluestein’s algorithm, which is used in some cases when the FFT size is
near a prime number (where Cooley- Turkey performs poorly).

The FFTW library is one of the most popular FFT libraries in use in open-source software.
It is also unsurprisingly by far and away the fastest open-source FFT library. Its only compe-
tition is Intel Math Kernel Library (MKL), a proprietary software developed by Intel for the
Intel Compiler. These two FFT libraries are comparable in performance, with MKL usually
outperforming FFTW for larger FFT’s. In this project, we will be using FFTW as our FFT
library, due to its popularity, openness, and speed.

With the introduction of CUDA in 2008, NVIDIA has stepped into the high-performance
computing arena. Due to their inherently parallel nature and fast floating point operations,
GPUs handily lend themselves to many engineering problems. NVIDIA has created their own
implementation of the FFT, called cuFFT (CUDA FFT) for the convenience of programmers
writing engineering software. cuFFT is modeled after its CPU-based counterpart FFTW, and
implements its algorithms in a similar fashion. To speed up the transition for programmers used
to FFTW, NVIDIA made the API for cuFFT almost identical to that of FFTW, making it easy
to port existing code to the GPU for a significant speedup. For the parallel implementation
of this project, cuFF'T was used due to its similarity to FFTW for comparison purposes, and
more importantly, to avoid implementing an FFT manually on a GPU.

3 Sequential Implementation

The sequential version of the program is relatively straightforward. Initially, the input to the
program is a binary flat file consisting of 8-bit integers representing the signal received by an
antenna in the time domain. Each 8-bit integer is converted to a single-precision floating point
number, and added to a vector for later processing. After the data is read from the file, arrays
are allocated for the FFT computation and the main algorithm begins. An FFT of size 4096
(2'2) was chosen as it exhibits the best performance when using FFTW and cuFFT. Discrete

3

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

double-precision complex, 1d transforms

powers of two

— intel-ipps

= intel-mkl-dfti in-place
o—e fiwd outefplae
oo w3 in-place
B—a intel-mkl-dfii out-of-place
— fite
»—® coura-sgf

w2

spiral-cgner-Fft

drftpack
o—= gsl-mixed-radix
G --2 mpfund0
@0 bloodworth
®o% harm
sciport
- — kissffl
monnier
[numutils
---m cuftt
*--% mixfit

speed (MEIops)

mEfic

20l
80T
960t
618
+8E91
89LTC
9ELS9

TEPPSsEe

Figure 1: Benchmarks comparing the performance of FFTW, MKL and other FFT libraries.
FFTW and MKL are the fastest, shown in blue and black respectively. [1]

110

100

decibels

30

0 500 1000 1500 2000 2500

Figure 2: Following the FFT calculation and signal analysis, a transmission is clearly visible in
the frequency domain.

blocks of data with a size of 4096 data points were analyzed individually and do not overlap.
Typically for audio signal processing, dt might be in the range of microseconds. Modern desktop
CPUs can do FFTs at speeds between tens of megaflops and several gigaflops, while consumer-
grade GPUs can perform FFTs at speeds between hundreds of gigaflops and over a teraflop.
Each block is treated as a separate, distinct segment of the time-domain signal. A real-to-
complex FFT is performed incrementally on the input signal information and is stored in a
result vector that contains both the real and complex portions of the transform as a complex

4

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

conjugate. After the FFT is calculated, the modulus of the complex result are calculated for
each frequency bin to give us the magnitude of the frequency, as seen in Equation 1.

2 = Va2 + 2 (1)

Once we have the magnitude of each of the frequency bins calculated by the FFT, we can
put them into the logarithmic decibel (dB) scale by using the formula described by equation 2.

Z =20 x log,,(|2]) (2)

PROCEDURE Main():
INITIALIZE input_data = ReadBinaryData()
INITIALIZE float_data = EmptyFloatArray
INITIALIZE fft_result = EmptyComplexArray
INITIALIZE magnitude = EmptyFloatArray

CONST FFT_SIZE =

FOR EACH byte in input_data:
Append Float(static_cast<float>(byte)) to float_data

plan = CreateFFTWPlan(FFT_SIZE, float_data)

FOR start_index from © to length(float_data) step FFT_SIZE:
input_complex = CreateEmptyComplexArray(FFT_SIZE)
output_complex = CreateEmptyComplexArray(FFT_SIZE)

FOR index from @ to FFT_SIZE:
input_complex[index][@] = float_data[start_index + index]
input_complex[index][1]

ExecuteFFTWPlan(plan, input_complex, output_complex)

FOR index from © to FFT_SIZE:
Append output_complex[index] to fft_result

EACH complex_value in fft_result:

real = complex_value[@]

imag = complex_value[1]

mag = SquareRoot(real * real + imag * imag)
Append * Loglo(mag) to magnitude

END PROCEDURE

Figure 3: Pseudo code for Initial computation.

Pseudo code for this computation is given in Figure 3. After this calculation there are two
different approaches we can take:

3.1 Signal Strength Threshold

The first, which is much simpler, compares the computed signal strength to a constant value
set before runtime. If the signal strength for a particular frequency bin exceeds this value,
we assume that a transmission has begun on that particular frequency. We can filter out
some noise by applying another constant value that is the amount of time that the signal

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

strength for a particular bin must exceed the signal strength constant in order to classify it as
a transmission instead of random noise. Signal-to-Noise Ratio (SNR) of the received signal is
one of the main factors to set a constant value. The threshold ought to be set higher than the
noise level but lower than the anticipated signal level. By doing this, it is made sure that the
threshold is sensitive enough to pick up real signals and ignore noise. Recognize the features
of the signal’s noise as well. Both random and predictable patterns can be seen in noise. The
threshold should be calibrated to discriminate noise and signal with high precision. Given the
unsophisticated nature of this method, it is unsurprising that it is not the most most reliable
method to determine a legitimate transmission. The pseudo code is illustrated in figure 5.

Time

FFT FFT FFT FFT

Tran smissioﬁ\ Transmission
Start End \
Threshold

Signal
Strength

Figure 4: A graphic showing the operation of the sequential algorithm.

PROCEDURE DetectTransmissions():
SET SIGNAL_STRENGTH_THRESHOLD to a predefined value (e.g., dB)
SET TIME_THRESHOLD to a predefined time duration (e.g., seconds)
INITIALIZE empty list to store detected transmissions

FOR EACH frequency bin in FFT_RESULT:
Calculate signal_strength for the current frequency bin

IF signal_strength > SIGNAL_STRENGTH_THRESHOLD:
INITIALIZE a timer

WHILE signal_strength > SIGNAL_STRENGTH_THRESHOLD AND timer <
TIME_THRESHOLD:
CONTINUE monitoring signal_strength

IF timer > TIME_THRESHOLD:
Record the detection of a transmission (frequency bin,

time)

Store the detection in the list of detected transmissions

Analyze the detected transmissions:
Frequency, Max Strength, Start Time, End Time
Perform further processing based on the detected transmissions
END
END PROCEDURE

Figure 5: Pseudo code for Signal Strength Threshold.

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

3.2 Dynamic Threshold Adjustment

A second approach is to dynamically modify these values as the signal strengths are computed
during runtime. This allows for the level of noise to change during the transmission, and can
be used as a more reliable method to distinguish between noise and actual transmissions. This
increased accuracy comes at the cost of additional computational overhead during the execution
of the algorithm.

Once a transmission is detected, a new entry for it is created in a transmission log vector
containing its frequency, maximum strength, and start time. Also during each iteration, the
algorithm will then check to see if a current transmission’s strength level has fallen below the
threshold value. If this is the case, its end time will be added to the transmission log. Any
subsequent rise of that frequency over the threshold value will trigger the creation of a new
transmission log.

Once the algorithm has been completed, the transmission log is written to a file of the users
choosing for further analysis. The pseudo code is illustrated in figure 6.

PROCEDURE DetectTransmissions():
INITIALIZE thresholds
INITIALIZE detected transmissions list
FOR EACH frequency bin in FFT_RESULT:
Calculate signal strength

IF signal strength exceeds current thresholds:
Start timer to measure duration
WHILE signal strength exceeds threshold:
Continue monitoring

IF duration exceeds thresholds:
Record transmission details
Store in detected transmissions list

During each iteration:
IF transmission strength < threshold:
UPDATE end time

A subsequent rise triggers a new entry

Analyze the detected transmissions:
Frequency, Max Strength, Start Time, End Time
Perform further actions based on detected transmissions

END
END PROCEDURE

Figure 6: Pseudo code for Dynamic Threshold Adjustment.

4 Parallel Implementation

With the parallel implementation, we use an algorithmically-similar approach to our sequential
implementation. Like the sequential version, we will be calculating the FFT of our input signal
information to transform it to the frequency domain and calculating the complex modulus of
the result. Each CUDA core works on a portion of the FFT calculation and processes different
parts of the input data in parallel. Factors such as the size of the FFT, the GPU type, and
the amount of CUDA cores affect how parallelism is used in an FFT computation on a GPU.
For the purpose of this study the NVIDIA GTX460 with 336 CUDA cores was used. Unlike
the CPU implementation, however, the signal information is not directly available to the card,

7

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

and must be copied across the PCI Express (PCIE) bus. The PCIE bus is orders of magnitude
slower than any kind of operation performed on a GPU or CPU, including memory accesses.
PCIE bandwidth spans between 1 GB/s to 64 GB/s depending on PCIE generation and lane
layout, while internal CPU and GPU data transfer rates can exceed 100 GB/s. As such, the
PCIE bus often becomes a performance bottleneck for GPU programs, especially when the
amount of data to be transferred is quite large.

cuFFT Single Precision

CUFFT -m-MKL
400 TR

e
)
R

GFLOPS

2["] ey e e S, (AR SRS e S S e A, -
.
T At

1 3 5 7 9 11 13 15 17 19 21 23 25
Log2(size)

* Measured on sizes that are exactly powers-of-2
* cuFFT 4.1 on Tesla M2090, ECC on
* MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 5ix-Core @ 3.33 GHz

Figure 7: A single-precision performance comparison between cuFFT and the Intel MKL Li-
brary. [2]

To solve this, we can use a technique called pipelining, which allows us to minimize this
bottleneck. Pipelining, which is similar to the instruction pipeline used in the CPU, breaks
memory transfer and computation of data into different parts that can be performed indepen-
dently of each other. Blocks of data are transferred one at a time across the PCIE bus and are
computed on once they arrive on the GPU. This way, we can start computing the FFTs and
signal analysis right away without having to wait for the entire chunk of data to be transferred
across the PCIE bus. For this paper, a non-pipelined approach will be implemented first for
comparison purposes, and a pipelined version will follow.

4.1 Non-Pipelined Approach

To demonstrate the simplicity of achieving a speedup over a sequential implementation, a some-
what trivial approach was implemented first. In this implementation, the algorithm resembles
the CPU version more closely than its pipelined counterpart. The signal data is transferred in
one large chunk from the host to the GPU, after which the FFT is performed using the cuFFT
API and the transmissions are detected using custom CUDA kernels run in parallel. In this
GPU-accelerated implementation, data is efficiently transferred to the GPU, where cuFFT is
employed for FFT calculations, followed by parallel execution of custom CUDA kernels. Com-

8

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

prehensive testing and documentation ensure both legality and robust handling of potential
race conditions. Considering this methods simplicity, it has a few notable limitations. Firstly,
we are limited to only computing on as much data that can be held in GPU memory. Secondly,
and perhaps more importantly, this method cannot be used in realtime applications, as we are
limited to performing the operations required on a finite set of data. Despite these limitations,
this method is still able to achieve significant speedup over the sequential implementation. The
pseudo code is illustrated in figure 8.

BEGIN

INITIALIZE GPU resources and load cuFFT
TRANSFER signal data from CPU to GPU:
- Allocate GPU memory for signal data.
- Copy signal data to GPU memory.

PERFORM FFT on GPU:
- Configure GPU FFT
- Execute GPU FFT
- Store frequency domain data in GPU memory

INITIALIZE signal strength and duration thresholds
INITIALIZE transmission log vector

Parallel transmissions detection on GPU:
FOR each frequency bin in frequency domain representation:
IF signal strength > current_signal_strength_threshold:
Start timer for duration monitoring.
WHILE signal strength > threshold:
CONTINUE monitoring.
IF duration > current_time_threshold:
Record transmission
- Frequency
- Max signal strength
- Start time
- End time
STORE in detected transmissions

Continuously update thresholds based on signal behavior
After processing all frequency bins:
- Analyze transmission log for detected transmissions

Repeat transmissions detection continuously in real-time
Release GPU resources and memory

END

Figure 8: Pseudo code for Non pipelined approach.

4.2 Pipelined Approach

To hide the latency created by memory transfers across the PCIE bus, we can implement a
pipelining scheme. In this implementation, smaller pieces of data are transferred incrementally
to the device. This allows the GPU to begin work on some parts of the data as others are still
being transferred over. If each of N pipeline stages are near equal in terms of time required to
complete them, we can achieve a theoretical speedup of N over a non-pipelined solution.

To do this, we split our algorithm up into four parts, or stages, to be pipelined. The first
stage transfers signal data from the host memory to the GPU. The second stage uses cuFFT
to perform an FFT of size 4096 on the input data. The third stage performs signal processing.
More specifically, it calculates the complex modulus across multiple FFT results to maximize

9

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

GPU efficiency, as performing an operation on only 4096 elements will result in GPU memory
latency, as many cores will be waiting for memory access. The fourth and final stage detects
transmissions by finding frequency bins that exceed the signal threshold. If a frequency has
exceeded the threshold it will be noted in a bit array of size 4096. If the signal strength of a
frequency that is active in the bit array has fallen below the threshold, the information about
that transmission will be noted in several device buffers for later transfer to the host. In the
current implementation, it was decided that due to the relatively small amount of transmission
data (in the range of 1KB) to be transfered back to the host, that this action should not be
pipelined. If re-implemented for realtime analysis of radio signals, this process would have to be
pipelined to allow transmissions to be discovered while the program is running and processing
signal data. The pseudo code is illustrated in figure 9 and the pipelined process is illustrated
in figure 10.

BEGIN

INITIALIZE GPU resources and load cuFFT
DEFINE pipeline variables:

- signal_data_chunk_size

- pipeline_depth

INITIALIZE transmission log
INITIALIZE device buffers.

Create N pipeline stages:
Stage 1 (Data Transfer):
- Transfer signal data from CPU to GPU.

Stage 2 (FFT Calculation):
- Perform FFT on input data chunks.

Stage 3 (Signal Processing):
- Calculate complex modulus.
- Maximize GPU efficiency.
Stage (Transmissions Detection):
- Detect transmissions.
- Update active frequencies.
- Record transmission information.
Monitor and synchronize pipeline stages.

Update thresholds based on signal behavior.

Periodically transfer data to the host for processing.

Repeat the pipeline for new data chunks.

Release GPU resources and memory.

END

Figure 9: Pseudo code for Pipelined approach.

5 Results

The unpipelined implementation of the GPU program achieved a significant speedup over its
CPU counterpart, which peaked at around 53. As the number of elements increased however,
its speedup began to fall and stabilize at around 13 or 14. This is due to two reasons. The

10

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

Hz2D Processing Detection
H2D [FET Processing Detection
HzD [FFT Processing Detection
H2D Processing _ Detection

Figure 10: A graphic briefly showing the pipelined approach to the problem. Each stage is
shown in a different color and can be performed independently of one another.

first of which is a sub-optimized transmission recording kernel. The kernel requires atomics to
increment the number of transmissions detected, as well as adding a new transmission to the
transmission information buffers, which requires atomics to ensure that other threads do not
overwrite each others transmissions. This kernel operation could be much further optimized
to reduce this performance bottleneck. Secondly, the lack of a dynamic signal threshold cre-
ates many more transmissions in a high-noise section of the signal than a low-noise section.
Consequently, in these high noise sections that were encountered later in the input file, many
more transmissions were created and made the problem even more pronounced. Implementing
a dynamic signal threshold would likely solve this issue. In this context, the term ”atomics”
refers to specialized procedures utilized for thread synchronization of parallel processing. They
are crucial to preserving the program’s data integrity. The use of atomics could be optimized
further to reduce a performance bottleneck. For example, In a parallel transmission counting
scenario, atomics are used to maintain accurate counts and buffer updates but can introduce
serialization, limiting parallelism. Use of thread-local counters for independent increments may
be a solution to this problem. The global transmission counter can be updated by threads
separately maintaining their local counts and occasionally accumulating these numbers using
atomics. Consider employing buffer pools or thread-specific caches for buffer updates. These
sources allow threads to access their own buffers to store transmission data, only using locking
methods like mutexes for the final update. These techniques try to ensure data accuracy in
situations when atomics are necessary while minimizing the impact of atomics on parallelism.
However, thorough testing and profiling are necessary to validate their effectiveness for the
specific use case. The speedup over the CPU version are illustrated in Figures 11 and 12.

When scaling the cuFFT algorithm across many GPU cores or processors, an approximate
optimal speedup value would likely fall between 0.7 to 0.9, or even higher. In other words,
doubling the number of processing units should ideally result in a speedup for the parallelized
cuFFT implementation that is at least 70% to 90% of the ideal linear speedup. The efficiency
of the algorithm is quite low. This is largely due to the memory copy to the device from the
host, during which time the device is idle. The pipelined approach should solve that problem,
and increase efficiency to a more acceptable range. Throughput was significantly higher for the
GPU version, both with and without I/O included. Again, pipelining the solution would likely
increase the throughput of the GPU version significantly.

6 Conclusion

In this paper, a method for performing signal processing and transmission detection on a GPU
was presented. Even with algorithmic deficiencies and less-than-optimized kernels the program
was able to achieve a 53 times speedup. Used in a relatively low-noise environment with
sparse communication, the method should perform similar to the maximum speedup. With
additional work and testing, a pipelined version could also be implemented. This version
should improve performance when processing very large sets of signal data by about a factor

11

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

Samples CPU CUDAW/IO | CUDA w/o IO
1000000 1.0 38.4 66.1
2000000 1.0 51.2 71.6
4000000 1.0 53.3 73.4
8000000 1.0 53.7 73.4
16000000 1.0 49.3 64.9
32000000 1.0 38.6 474
64000000 1.0 26.0 29.8
128000000 1.0 144 15.4
256000000 1.0 14.0 15.0
512000000 1.0 13.7 14.6

Figure 11: Table displaying GPU speedup over CPU implementation with and without I/0.

80.0
70.0
60.0
50.0

40.0 == CPL
—f— CLUDAW 10
CUDAwW/D 10

30.0

Speedup

20.0
10.0

ol —a—a—a—n—8—5—n—8—a

2000000 8000000 32000000 128000000 512000000
1000000 4000000 16000000 64000000 256000000

Data Points

Figure 12: Graph displaying GPU speedup over CPU implementation with and without I/0O.

of four. If implemented efficiently, this approach could be used to monitor radio traffic across
a number of frequencies in realtime, or perhaps be used to triangulate the position of multiple
radio transmissions simultaneously.

7 Future Work

Unfortunately, the pipelined implementation was unable to finish. There were a few different
problems that were encountered that presented a significant challenge for this implementation.
First and foremost was a problem surrounding the implementation of cuFFT. In the Cuda API,
kernel calls are asynchronous as well as asynchronous memory copies. Adding an asynchronous
memory copy and a kernel call to a Cuda stream is an effective and relatively straightforward
way of implementing a GPU pipeline. For this to work, each of the calls in the stream must
be asynchronous, as the program running on the CPU must continue to make calls to the
Cuda API to manage the other streams. If a blocking call is placed in the pipeline, the other
streams will need to wait for that particular operation to finish, which outlives the usefulness of
creating a pipeline to begin with, since different steps cannot be executed at the same time. The
cuFFT API call to execute a FFT is blocking for an unknown reason. The API call should not

12

Accelerating Scientific and Engineering Applications Rawat, Chakravarty, Singh, Pachva, Bhootham

Samples CUDAW/IO | CUDAw/o IO
1000000 11.40% 19.70%
2000000 15.20% 21.30%
4000000 15.90% 21.80%
8000000 16.00% 21.80%
16000000 14.70% 19.30%
32000000 11.50% 14.10%
64000000 7.80% 8.90%
128000000 4.30% 4.60%
256000000 4.20% 4.50%
512000000 4.10% 4.30%

Figure 13: Table with GPU efficiency with and without I/O. (Based on 336 Cuda cores in the
Nvidia GTX460)

25.0%
20.0%

15.0%

== CUDA W/ 10
== CUDA w/o IO

10.0%

Efficiency

5.0%

0.0%
2000000 8000000 32000000 128000000 512000000
1000000 4000000 16000000 64000000 256000000

Data Points

Figure 14: Graph showing GPU efficiency with and without I/O. (Based on 336 Cuda cores in
the Nvidia GTX460)

inherently be blocking. With the FFT being critical to the following steps of the algorithm, we
cannot avoid this outright. A possible solution would be to execute the streams each in their
separate thread, which would allow the blocking calls to occur without disrupting the other
streams. However when calling the FFTs in separate threads, the result was runtime errors.
In our future work, we plan to address runtime issues by implementing thread-safe cuFFT
utilization techniques. Investigating the root causes through profiling tools that can pinpoint
where the blocking is occurring , optimizing GPU resource allocation, and exploring advanced
techniques such as dynamic parallelism can also help to achieve non-blocking cuFFT execution.
The pipelined version also needs a more complicated transmission detection kernel. Since there
are several FFT’s and processing being performed at different times, we must traverse all of
these to determine when and how long a transmission has taken place.

13

Accelerating Scientific and Engineering Applications

Rawat, Chakravarty, Singh, Pachva, Bhootham

Samples CPU CUDA W/ IO | CUDA w/o IO
1000000 4166666.7 159993037.1 | 275228549.8
2000000 4081632.7 208833838.4 | 292259563.9
4000000 4040404.0 215242250.8 | 296620425.5
8000000 4060913.7 217904237.9 | 298090658.5
16000000 4081632.7 201293117.0 | 264719605.4
32000000 4097311.1 158037981.4 | 194144303.3
64000000 4118404.1 107243609.4 | 122697540.2
128000000 4062202.5 58350955.1 62625349.9
256000000 7776427.7 108899921.5 | 116736664.6
512000000 15472952.6 211436717.8 | 226145507.9

Figure 15: Table of throughput (in samples/second) of versions of the program, both sequential
and parallel.

1.00E+09

1 00E+08 /k_’_‘_—‘\\\/

=il CPL
—— CUDA W/ |O
1.00E+07 ." CUDAw/0 IO

1.00E+06

Throughput (samples's)

2000000
1000000

8000000 32000000 128000000 512000000
4000000 16000000 64000000 256000000

Data Points

Figure 16: Graph showing throughput (in samples/second) of versions of the program, both
sequential and parallel.

References

[1] 3.0 GHz intel core duo, intel compilers, 64-bit mode. http://www.fftw.org/speed/CoreDuo-3.
OGHz-icc64/.

[2] CUFFT | NVIDIA developer zone. https://developer.nvidia.com/cufft.

[3] S.J. Howard and K. Pahlavan. Measurement and analysis of the indoor radio channel in the fre-
quency domain. Instrumentation and Measurement, IEEE Transactions on, 39(5):751-755, 1990.

[4] Erik Sintorn and Ulf Assarsson. Fast parallel gpu-sorting using a hybrid algorithm. Journal of
Parallel and Distributed Computing, 68(10):1381-1388, 2008.

[5] T. Yamamoto, K. Takeda, and F. Adachi. Frequency-domain block signal detection with qrm-mld
for frequency-domain filtered single-carrier transmission. In Vehicular Technology Conference Fall
(VTC 2010-Fall), 2010 IEEE 72nd, pages 1-5, 2010.

14

http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/
http://www.fftw.org/speed/CoreDuo-3.0GHz-icc64/
https://developer.nvidia.com/cufft

	1 Introduction
	2 Background
	3 Sequential Implementation
	3.1 Signal Strength Threshold
	3.2 Dynamic Threshold Adjustment

	4 Parallel Implementation
	4.1 Non-Pipelined Approach
	4.2 Pipelined Approach

	5 Results
	6 Conclusion
	7 Future Work
	References

