
EPiC Series in Computing

Volume 46, 2017, Pages 249–268

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Analyzing Runtime Complexity via Innermost Runtime

Complexity∗

Florian Frohn and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany
{florian.frohn,giesl}@informatik.rwth-aachen.de

Abstract

There exist powerful techniques to infer upper bounds on the innermost runtime
complexity of term rewrite systems (TRSs), i.e., on the lengths of rewrite sequences that
follow an innermost evaluation strategy. However, the techniques to analyze the (full)
runtime complexity of TRSs are substantially weaker. In this paper, we present a sufficient
criterion to ensure that the runtime complexity of a TRS coincides with its innermost
runtime complexity. This criterion can easily be checked automatically and it allows us
to use all techniques and tools for innermost runtime complexity in order to analyze (full)
runtime complexity. By extensive experiments with an implementation of our results in
the tool AProVE, we show that this improves the state of the art of automated complexity
analysis significantly.

1 Introduction

Runtime complexity (rc) and innermost runtime complexity (irc) are well-established notions
for term rewrite systems (TRSs) which measure the worst-case lengths of rewrite sequences
that start with basic terms. While rc considers arbitrary rewrite sequences, irc requires an
innermost (eager) evaluation strategy. So the innermost runtime complexity of a TRS R is
always less than or equal to R’s runtime complexity. A basic term is of the form f(t1, . . . , tk),
where f is a defined function symbol (i.e., f corresponds to an algorithm that can be evaluated)
and t1, . . . , tk are constructor terms (i.e., they represent data). Hence, (innermost) runtime
complexity corresponds to the intuitive notion of complexity for programs. More precisely,
innermost runtime complexity corresponds to the complexity of call-by-value functional programs,
whereas rc considers evaluations under any strategy. Moreover, by a suitable transformation, rc
can also be used to over-approximate the complexity of conditional TRSs, cf. [19].

While complexity analysis of term rewriting is well studied (e.g., [3, 4, 5, 6, 7, 9, 11, 13, 15,
16, 17, 18, 19, 20, 21, 22, 26]), the results of the annual Termination Competition [24] show that
automatic techniques to infer upper bounds for rc are still substantially weaker than corre-
sponding techniques for irc. 899 examples were analyzed for both rc and irc at the Termination

∗Supported by the DFG grant GI 274/6-1.

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 249–268

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Competitions 2015 and 2016.1 For 235 of them, a super-polynomial lower bound on rc was
inferred. Hence, no upper bounds can be obtained for these examples since the participating tools
only compute polynomial upper bounds. For the remaining 664 examples, a polynomial upper
bound on irc was proven for 357 TRSs (53.8%) by at least one tool at one of the competitions.
In contrast, a polynomial upper bound on rc was inferred for just 218 examples (32.8%).2

These numbers indicate that current techniques for complexity analysis of TRSs are much
better in analyzing irc than rc, or that irc is significantly easier to handle than rc. In both
cases, it is worthwhile to identify (decidable) classes of TRSs where full and innermost runtime
complexity coincide. In this paper, we provide a criterion for rc = irc which is easy to automate.
It builds upon an important result from [25] that a relaxation of innermost rewriting called
non-dup generalized innermost rewriting (“ndg rewriting”) does not yield longer evaluation
sequences than innermost rewriting itself. Our main contribution is a criterion to automatically
identify classes of TRSs where all rewrite sequences starting with basic terms are ndg, which
then implies rc = irc. For these classes of TRSs, our results allow us to apply all existing (and
all future) techniques and results specific to irc (e.g., [3, 4, 5, 22]) to analyze rc directly.

After introducing the needed preliminaries and comparing with related work in Sect. 2, we
recall “ndg rewriting” in Sect. 3 and show that it is undecidable whether all rewrite sequences
of a TRS are ndg. Hence, we develop a sufficient criterion for this property in Sect. 4 which is
easy to check automatically. In Sect. 5 we extend our approach in order to handle TRSs with
overlapping (non-overlay) rules. We implemented our contributions in the tool AProVE [13],
resulting in a significant improvement of the state of the art in the automated analysis of rc (cf.
Sect. 6). We refer to [10] for those proofs that were omitted from the paper due to lack of space.

2 Preliminaries and Related Work

See, e.g., [8] for the basics of rewriting. T (Σ,V) is the set of all terms over the signature Σ
and the variables V. We write T instead of T (Σ,V) if Σ and V are irrelevant or clear from the
context. For t ∈ T , V(t) is the set of all variables in t. The outermost function symbol of a
term t ∈ T \ V is root(t). A TRS is a finite set of rules ` → r where ` /∈ V and V(r) ⊆ V(`).
Given a TRS R over Σ, Σd is the set of its defined symbols {root(`) | `→ r ∈ R}. In contrast,
Σc = Σ \Σd are the constructors of R. TB(Σ,V) resp. TB is the set of all basic terms over Σ and
V. A term f(t1, . . . , tk) is basic if f ∈ Σd and t1, . . . , tk ∈ T (Σc,V). R is called a constructor
system if ` is basic for each ` → r ∈ R. For x ∈ V and t ∈ T , #x(t) denotes the number of
occurrences of x in t. A rule `→ r is duplicating if #x(`) < #x(r) holds for some x ∈ V, and a
TRS is duplicating if it contains at least one duplicating rule. A term t is linear if #x(t) = 1 for
all x ∈ V(t). R is left-linear if ` is linear for each `→ r ∈ R.

Example 1. Consider the TRS Rtimes where s(0) represents 1, s(s(0)) represents 2, etc.

plus(0, y) → y (1) times(x, 0) → 0 (3)
plus(s(x), y) → s(plus(x, y)) (2) times(x, s(y)) → plus(times(x, y), x) (4)

We have Σd = {plus, times} and Σc = {0, s}. Rule (4) is duplicating as #x(times(x, s(y))) = 1

1We consider examples as equal if they have the same name. Note that the results of the Termination
Competitions 2015 and 2016 are orthogonal. On the one hand, the participating tools improved from 2015 to
2016, but on the other hand, the timeout per example was reduced from 300 s in 2015 to just 30 s in 2016. Hence,
in the numbers above, we consider the best results of both competitions to represent the state of the art.

2Here, we ignore upper bounds on rc proven by our tool AProVE [13] in 2016. The reason is that at the
Termination Competition 2016, AProVE used a preliminary version of the new techniques presented in the current
paper and we want to compare with the state of the art before the introduction of these techniques. Before 2016,
AProVE was not able to infer any upper bounds on rc.

250

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

and #x(plus(times(x, y), x)) = 2. As the left-hand sides of the rules are basic, Rtimes is a
constructor system. Since no variable occurs twice in any left-hand side, Rtimes is also left-linear.

Positions are finite sequences of natural numbers, i.e., pos = N∗. For π, τ ∈ pos, π is below
τ (π ≥ τ) if τ is a (not necessarily proper) prefix of π, i.e., π = τ.τ ′ for some τ ′ ∈ pos. We write
π‖τ (π and τ are parallel) if neither π ≥ τ nor τ ≥ π. The empty position is denoted by ε. The
set of all positions of t ∈ T is pos(t). We write t|π to refer to t’s subterm at position π where
t|ε = t and f(t1, . . . , tk)|i.π = ti|π, and t[s]π is the term that results from replacing t|π with s in
t. We say that s is a subterm of t if t|π = s for some position π. We write t�π s in this case,
where we omit π if the position is irrelevant. If π 6= ε, then s is a proper subterm of t.
R is an overlay system if whenever there is a position π such that ` and (a variable-renamed

version of) `′|π with `′|π /∈ V unify for two rules ` → r, `′ → r′ ∈ R, then π = ε. Obviously,
every constructor system is also an overlay system.

A context C is a term with a unique position π 6= ε where C|π = �. Here, � is a special
constant and we assume � /∈ Σ for all signatures Σ. We write C[t] as an abbreviation for C[t]π.
A context f(t1, . . . , tk) is basic if f ∈ Σd and t1, . . . , tk ∈ T (Σc ∪ {�},V).

A substitution σ : V → T is a function where σ(x) 6= x holds for just finitely many x ∈ V.
Hence, we can represent substitutions as finite sets σ = {x1/t1, . . . , xk/tk}, meaning that
σ(xi) = ti for 1 ≤ i ≤ k and σ(x) = x for x ∈ V \ {x1, . . . , xk}. We lift substitutions to terms as
usual and write tσ instead of σ(t). A variable renaming is an injective substitution σ : V → V.

We write s→`→r,π t if s can be reduced (or evaluated) to t by applying the rule `→ r at
position π (i.e., if s|π = `σ and t = s[rσ]π for some substitution σ), and s→R,π t if s→`→r,π t
holds for some `→ r ∈ R. We omit the subscripts `→ r, R, or π if they are irrelevant. For any
m ∈ N, s→m t means that there exist t0, . . . , tm with s = t0 → t1 → . . .→ tm = t. A term t is
a redex if there is an `→ r ∈ R such that ` matches t. A redex is called innermost if none of
its proper subterms is a redex. We write s i→π t for innermost rewrite steps, i.e., if s|π is an
innermost redex. A term is a normal form if none of its subterms is a redex.

For a binary relation→ on terms, we define the derivation height of a term t to be the length
of the longest →-sequence starting with t. Here, for any M ⊆ N∪ {ω}, supM is the least upper
bound of M, where sup∅ = 0.

Definition 2 (Derivation Height [17, 22]). We define the derivation height dh : T × 2T ×T →
N ∪ {ω} as dh(t,→) = sup{m | ∃t′ ∈ T . t→m t′}.

The innermost runtime complexity of a TRS maps any n ∈ N to the length of the longest
i→-sequence starting with a basic term t with |t| ≤ n. It corresponds to the usual notion of

“worst-case complexity” for programs with an eager evaluation strategy. In contrast, the runtime
complexity of a TRS does not impose any restrictions on the evaluation strategy. Here, the size
of a term is |x| = 1 for x ∈ V and |f(t1, . . . , tk)| = 1 + |t1|+ . . .+ |tk|.
Definition 3 ((Innermost) Runtime Complexity rcR, ircR [15, 22]). For a TRS R, the runtime
complexity rcR : N→ N∪{ω} and innermost runtime complexity ircR : N→ N∪{ω} are defined
as rcR(n) = sup{dh(t,→R) | t ∈ TB , |t| ≤ n} and ircR(n) = sup{dh(t, i→R) | t ∈ TB , |t| ≤ n}.

Clearly, rcR(n) ≥ ircR(n) holds for any n ∈ N. So an upper bound for rcR is also an upper
bound for ircR and a lower bound for ircR is also a lower bound for rcR. In this paper we
investigate for which classes of TRSs R we have rcR = ircR. This allows us to use techniques
that infer upper bounds for ircR in order to obtain upper bounds for rcR. Similarly, it allows
us to apply techniques for the generation of lower bounds for rcR in order to get lower bounds
for ircR. For the TRS of Ex. 1, our technique will indeed determine rcRtimes = ircRtimes . Thus, it
suffices to prove ircRtimes(n) ∈ O(n3) in order to infer rcRtimes(n) ∈ O(n3).

To our knowledge, the most closely related work to ours is [6, 14, 16, 23, 25]. In [14], sufficient

251

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

criteria are presented such that full and innermost termination coincide. The least restrictive
criterion in [14] requires the TRS to be a locally confluent overlay system. Our technique is also
particularly well suited for overlay systems, but we also discuss non-overlay systems in Sect. 5.
Moreover, instead of local confluence we require that one may only use instantiations which
keep certain subterms of the rules in normal form. So compared to [14], both the properties of
interest (termination vs. complexity) as well as the identified sufficient criteria are very different.
Ex. 4 shows that the conditions required by [14] are not sufficient to ensure rc = irc.

Example 4. Consider the following TRS R:

f(0, y) → y g(x) → f(x, a)
f(s(x), y) → f(x, node(y, y)) a → b

R is non-overlapping and thus a locally confluent overlay system. Hence, termination and
innermost termination of R coincide by [14]. Any basic term of size n only leads to innermost
rewrite sequences of length O(n). In contrast, arbitrary rewrite sequences can have exponential
length. For example, the basic term g(sn(0)) of size n+2 is first reduced to f(sn(0), a). Instead of
evaluating the subterm a, one could now apply the second f-rule repeatedly and obtain a complete
binary tree of height n whose (exponentially many) leaves are a’s. Finally, these leaves can all
be reduced to b in 2n rewrite steps. Thus, we have irc(n) ∈ Θ(n) and rc(n) ∈ Θ(2n).

In [23], the authors identify criteria which ensure that all normal forms of a term w.r.t.
full rewriting are also reachable via innermost rewriting. This turns out to be the case for
right-linear terminating overlay systems. As mentioned before, our technique is also particularly
well suited for overlay systems, but we neither require termination nor right-linearity. In fact,
non-right-linear rules are common in many TRSs like Rtimes from Ex. 1 which implement natural
algorithms. The following example illustrates that the property that every normal form is
reachable via innermost rewriting is not sufficient for rc = irc.

Example 5. Consider the TRS with the rules c→ f(a), f(a)→ f(a), and a→ b. Clearly, all
normal forms are reachable via innermost rewriting as the only possible non-innermost rewrite
steps have the form fn(a)→ fn(a). However, we have irc(n) ∈ Θ(1) but rc(n) ∈ Θ(ω) due to the
non-terminating rewrite sequence c→ f(a)→ f(a)→ . . . that starts with the basic term c.

However, rc = irc indeed holds for right-linear overlay systems, which is a special case of the
criterion introduced in this paper.

In [16], it is shown that for non-duplicating overlay systems, whenever a term t has a reduction
to a normal form then t also starts an innermost reduction of the same length. Thus, this
implies rc = irc for non-duplicating terminating overlay systems, which can be used to improve
automated complexity analysis [6]. In contrast, our approach does not require termination and
it allows us to infer rc = irc for many TRSs that are duplicating or no overlay systems.

In [25], non-dup-generalized innermost rewriting is introduced as an extension of innermost
rewriting. More precisely, ndg rewriting allows non-innermost rewrite steps as long as all proper
subterms of left-hand sides with defined root symbol and all variables that occur more than once
on right-hand sides of rules are instantiated to normal forms. Our work is based on [25] which
states that ndg rewriting is not more costly than innermost rewriting. The use case in [25] is to
implement rewriting more efficiently by allowing certain non-innermost steps while guaranteeing
that the applied evaluation strategy is not worse than innermost rewriting. In contrast, our goal
is automated complexity analysis. To this end, we introduce a novel technique to prove that
all rewrite sequences starting with basic terms are ndg for a given TRS. For such TRSs, the
runtime complexity for full and innermost rewriting coincides.

252

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

3 Non-Dup-Generalized Innermost Rewriting

In this section, we recall the definition of ndg rewriting from [25]. As mentioned, “ndg” requires
that variables occurring multiple times in right-hand sides of rules may only be instantiated by
normal forms (we call such rewrite steps spare). So the main difference to full rewriting is that
ndg rewriting does not allow rewrite steps that duplicate redexes. Moreover, proper subterms of
left-hand sides with defined root may only be instantiated to normal forms. In Sect. 4, we show
how to automatically prove that every rewrite sequence starting with a basic term is ndg.

Definition 6 (Spare and ndg Rewriting [25]). Let s →`→r,π t and let σ be the matcher with
`σ = s|π. The rewrite step s→`→r,π t is spare if xσ is a normal form for all variables x with
#x(r) > 1. It is non-dup-generalized innermost (ndg), denoted s ↪→`→r,π t, if it is spare and
`|τσ is a normal form for all τ ∈ pos(`) \ {ε} with root(`|τ) ∈ Σd. A TRS R is spare resp. ndg
if every →R-sequence starting with a basic term only consists of spare resp. ndg rewrite steps.

Example 7. For Rtimes, the rewrite step times(x, s(plus(0, z))) ↪→ plus(times(x, plus(0, z)), x) is
ndg, but it is not an innermost step due to the redex plus(0, z). In contrast, times(plus(0, z), s(y))
→ plus(times(plus(0, z), y), plus(0, x)) is not ndg or spare, as the redex plus(0, z) is duplicated.

Cor. 8 states two straightforward observations: innermost rewrite steps are ndg, since an inner-
most redex has no redexes as proper subterms. Moreover, spareness and ndg are the same for
overlay systems, where no proper non-variable subterm of a left-hand side unifies with a redex.

Corollary 8 (Innermost Rewriting, Spareness, and ndg).

(a) Every innermost rewrite step is an ndg rewrite step, i.e., i→ ⊆ ↪→.

(b) Every spare overlay system is ndg.

The following examples show that, in general, rc and irc do not coincide if R is not ndg.

Example 9. The TRS from Ex. 5 is spare, but not ndg due to the rewrite sequence c→ f(a)→
f(a)→ . . . where the subterm a below the root of the left-hand side is not in normal form. As
mentioned in Ex. 5, we have irc(n) ∈ Θ(1) but rc(n) ∈ Θ(ω).

The TRS in Ex. 4 is not spare, because the sequence g(sn(0)) → f(sn(0), a) → f(sn−1(0),
node(a, a))→ . . . duplicates redexes. Here, we have irc(n) ∈ Θ(n) but rc(n) ∈ Θ(2n).

The next TRS is a non-left-linear, but non-duplicating overlay system. It shows why for spare-
ness it is not enough if xσ is a normal form whenever #x(`) < #x(r) (i.e., if x is duplicated):

g(0, s(0))→ f(h, h) f(x, x)→ g(x, x) h→ 0 h→ s(0)

We have rc(n) ∈ Θ(ω) due to the non-terminating rewrite sequence g(0, s(0)) → f(h, h) →
g(h, h) →2 g(0, s(0)) → . . . However, irc(n) ∈ Θ(1) holds, as we have, e.g., g(0, s(0)) i→
f(h, h) i→2 f(0, 0) i→ g(0, 0). All other i→-sequences that start with basic terms have at most
length 4, too. Note that if in Def. 6 spareness only required xσ to be a normal form for variables
x that are duplicated, then this TRS would trivially be spare although rc 6= irc. But with our
definition of spareness in Def. 6 the TRS is not spare, since the variable x which occurs twice in
the right-hand side g(x, x) is instantiated by the redex h in the above reduction.

Our technique relies on the following important result of [25], which states that for any ndg
rewrite sequence starting in a term s, s starts an innermost rewrite sequence of the same length.

Theorem 10 (Length of ndg Rewriting [25, Lemma 8]). If s ↪→n t then s i→n u for some u∈T .

253

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Cor.11 follows from Thm.10, because if R is ndg, then s→n
R t implies s ↪→n

R t for basic terms s.

Corollary 11 (rc = irc). Let R be a TRS which is ndg. Then rcR = ircR.

According to Cor. 11, innermost and full runtime complexity coincide for TRSs that are ndg.
Unfortunately, the question whether a TRS is spare resp. ndg is undecidable.

Theorem 12 (Spareness is Undecidable). It is undecidable whether a TRS is spare (resp. ndg).

Proof. The proof relies on an encoding of Turing machines to left-linear basic TRSs where each
configuration of the Turing machine is represented by a ground term (i.e., it relies on the Turing
completeness of left-linear basic TRSs). We call a TRS basic if `, r ∈ TB for all `→ r ∈ R.

Let M = (Q,Γ, δ) be a Turing machine where Q is the set of states, Γ is the tape alphabet
with Q ∩ Γ = ∅, and � ∈ Γ is the blank symbol. A configuration of the Turing machine has
the form (q, w, a, w′) with q ∈ Q, w,w′ ∈ Γω \ Γ∗, and a ∈ Γ, where w and w′ both consist of
a finite word followed by infinitely many occurrences of �. The configuration means that q is
the current state, the symbol at the current position of the tape is a, the symbols right of the
current position are described by the infinite word w′, and the symbols left of it are described by
the infinite word w. To ease the formulation, if w = b . w then this means that b is the symbol
directly left of the current position, i.e., w is the word obtained when reading the symbols on
the tape from right to left. The transition function δ : (Q× Γ)→ (Q× Γ× {L,R}) induces a
transition relation →M on configurations where (q1, w1, a1, w

′
1)→M (q2, w2, a2, w

′
2) if either

• w1 = a2 . w2, w
′
2 = b . w′1, and δ(q1, a1) = (q2, b, L) or

• w2 = b . w1, w
′
1 = a2 . w

′
2, and δ(q1, a1) = (q2, b, R).

For any Turing machine M = (Q,Γ, δ), we define the TRS RM by adapting our previous
related encoding from [11]. In RM there is a function symbol cf of arity 4, all symbols from Γ
become function symbols of arity 1, and Q ∪ {a | a ∈ Γ} are constants.

RM = {cf(q1, a2(xs), a1, ys)→ cf(q2, xs, a2, b(ys)) | a2 ∈ Γ, δ(q1, a1) = (q2, b, L)} ∪
{cf(q1, xs, a1, a2(ys))→ cf(q2, b(xs), a2, ys) | a2 ∈ Γ, δ(q1, a1) = (q2, b, R)} ∪
{cf(q1,�, a1, ys)→ cf(q2,�,�, b(ys)) | δ(q1, a1) = (q2, b, L)} ∪
{cf(q1, xs, a1,�)→ cf(q2, b(xs),�,�) | δ(q1, a1) = (q2, b, R)}

Obviously, RM is basic and left-linear. A configuration (q, w, a, w′) of the Turing machine
can now be encoded as the ground term (q, w, a, w′)T = cf(q, wT , a, w

′
T) where vT = � if

vT = �.� . . . (i.e., if vT is the infinite word consisting only of �) and otherwise, vT = a(v′T)
where v = a.v′. Now we can prove that RM indeed simulates the Turing machine M:

(q1, w1, a1, w
′
1)→M (q2, w2, a2, w

′
2) iff (q1, w1, a1, w

′
1)T →RM (q2, w2, a2, w

′
2)T (1)

In the following, we write f1f2 . . . fnc to denote terms of the form f1(f2(. . . fn(c) . . .)) to ease read-
ability. For the “only if” direction of (1), we just regard the case δ(q1, a1) = (q2, b, L). The case
δ(q1, a1) = (q2, b, R) is analogous. Hence, w1 = a2.w2 and w′2 = b.w′1. Let w2 = b1.b2 . . .
bn.�.� . . . and w′1 = c1.c2 . . . cm.�.� . . . Note that w2 and w′1 have to be of this form, as for
every configuration of a Turing machine the tape just contains finitely many non-blank symbols.

First consider w1 6= �.� . . . Then we have (q1, w1, a1, w
′
1)T = cf(q1, a2b1b2 . . . bn�, a1, (w′1)T).

By definition, cf(q1, a2(xs), a1, ys)→ cf(q2, xs, a2, b(ys)) ∈ RM. Hence, we get (q1, w1, a1, w
′
1)T =

cf(q1, a2b1b2 . . . bn�, a1, (w′1)T)→RM cf(q2, b1b2 . . . bn�, a2, b(w′1)T) = (q2, w2, a2, w
′
2)T .

254

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Now consider w1 =�.� . . . Thus, (q1, w1, a1, w
′
1)T = cf(q1,�, a1, (w′1)T). By definition, cf(q1,

�, a1, ys)→ cf(q2,�,�, b(ys)) ∈ RM. Note that w1 = a2.w2 implies a2 = � and w2 = �.� . . .
Hence, (q1, w1, a1, w

′
1)T = cf(q1,�, a1, (w′1)T)→RM cf(q2,�,�, b(w′1)T) = (q2, w2, a2, w

′
2)T .

For the “if” direction of (1), first consider the case that a rule cf(q1, a2(xs), a1, ys) →
cf(q2, xs, a2, b(ys)) is applied to rewrite (q1, w1, a1, w

′
1)T to (q2, w2, a2, w

′
2)T . The case that a

rule of the form cf(q1, xs, a1, a2(ys))→ cf(q2, b(xs), a2, ys) is applied is analogous. Then we get
w1 = a2.w2 and w′2 = b.w′1. Moreover, we have δ(q1, a1) = (q2, b, L) by the definition of RM.
Hence, we get (q1, w1, a1, w

′
1) = (q1, a2.w2, a1, w

′
1)→M (q2, w2, a2, b.w

′
1) = (q2, w2, a2, w

′
2).

Now consider the case that a rule cf(q1,�, a1, ys)→ cf(q2,�,�, b(ys)) is applied to rewrite
(q1, w1, a1, w

′
1)T to (q2, w2, a2, w

′
2)T . The case that a rule of the form cf(q1, xs, a1,�)→ cf(q2,

b(xs),�,�) is applied is analogous. Then we get w1 = w2 = �.� . . ., a2 = �, and w′2 =
b.w′1. Moreover, δ(q1, a1) = (q2, b, L) by the definition of RM. Hence, (q1, w1, a1, w

′
1) = (q1,

�.� . . . , a1, w
′
1)→M (q2,�.� . . . ,�, b.w′1) = (q2, w2, a2, w

′
2), which finishes the proof of (1).

By (1), undecidability of termination for Turing machines implies undecidability of normal-
ization of basic ground terms w.r.t. left-linear basic TRSs like RM, as (q, w, a, w′)T is a basic
ground term. The reason is that for any Turing machine M, we have:

M is terminating w.r.t. the start configuration (q, w, a, w′)
iff RM is terminating on (q, w, a, w′)T by (1)
iff RM is normalizing on (q, w, a, w′)T see below (†)

For the step (†), note that termination and normalization of RM on basic ground terms are
equivalent as RM is basic and non-overlapping.

Now we can prove that spareness of TRSs is undecidable. To this end, let R be a left-linear
basic TRS over the signature Σ. As R is basic, every rewrite sequence that starts with a basic
term only leads to basic terms. Hence, R is spare.

Given a basic ground term f(t1, . . . , tk) ∈ TB(Σ,∅), we define a constructor system R′
over the signature Σ′ = Σ] {a, c, g, h, inf} such that normalization of f(t1, . . . , tk) w.r.t. R can
be checked by checking spareness of R′ instead. Since we have shown that normalization of
basic ground terms w.r.t. left-linear basic TRSs is undecidable, in this way one can prove that
spareness is also undecidable. As a constructor system is spare iff it is ndg by Cor. 8 (b), this
also shows that it is undecidable whether a TRS is ndg.

The construction of R′ works as follows: All rules of R are also included in R′. Moreover,
for each defined function symbol e ∈ Σd, we add rules e(. . .) → a to R′ such that for any
p1, . . . , pm ∈ T (Σc,∅), e(p1, . . . , pm) can be reduced to a iff e(p1, . . . , pm) is in→R-normal form.
Note that this is easily possible, as R is a left-linear constructor system and we only consider
basic ground terms e(p1, . . . , pm). So the new rules e(. . .) → a need to cover all constructor
ground terms that are not matched by the left-hand sides of the other e-rules of R. Furthermore,
we add the rules g→ h(inf, f(t1, . . . , tk)), h(x, a)→ c(x, x), and inf → inf. By construction, R′
is not spare iff f(t1, . . . , tk) is normalizing w.r.t. R. To see this, recall that spareness of R′
means that all rewrite sequences starting with basic terms are spare. Clearly, only rules from R
are applicable to basic terms whose root is from Σd and thus, all these rewrite sequences are
spare. Hence, we now consider all basic terms with root g, h, or inf.

• For the basic term g we have g ↪→ h(inf, f(t1, . . . , tk)). If f(t1, . . . , tk) is not normalizing,
then by construction, we can never evaluate h and hence the resulting rewrite sequence is
spare. If f(t1, . . . , tk) is normalizing, then let t be a normal form of f(t1, . . . , tk). Note
that as R is a basic TRS, t is also a basic term. Hence, we get h(inf, f(t1, . . . , tk)) ↪→∗
h(inf, t) ↪→ h(inf, a)→ c(inf, inf). Note that the last step is not spare.

255

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

• Each basic term of the form h(s, s′) is either a normal form (if s′ 6= a) or just enables the
spare rewrite step h(s, a) ↪→ c(s, s).

• If we start with the basic term inf, the only possible reduction is inf ↪→ inf ↪→ . . .

Hence, a semi-decision procedure for spareness yields a semi-decision procedure for non-
normalization of arbitrary basic ground terms for basic left-linear TRSs.

On the other hand, the question whether a TRS is not spare resp. not ndg is semi-decidable.
A semi-decision procedure is obtained by enumerating all rewrite sequences starting with basic
terms and checking whether these sequences contain non-spare resp. non-ndg steps. In fact, spare-
ness and ndg are even undecidable for left-linear constructor systems (which correspond to first-
order functional programs), as the TRS R′ constructed in the proof of Thm. 12 is a left-linear
constructor system. However, there are some obvious sufficient syntactic criteria for spareness.

Lemma 13 (Right-Linear TRSs are Spare). Every right-linear TRS is spare. Hence, every
right-linear overlay system is ndg.

By Lemma 13, ndg is a generalization of the criterion presented in [23], as mentioned in Sect. 2.

Lemma 14 (TRSs Without Nested Defined Symbols in Right-Hand Sides are ndg). If there is
no rule `→r ∈R with root(r|π), root(r|π.τ) ∈Σd where π, π.τ ∈pos(r) and τ 6=ε, then R is ndg.

Proof. Let t0 → t1 → . . . be a rewrite sequence where t0 is basic. As there is no rule where
defined symbols are nested on the right-hand side, defined symbols are not nested in any ti,
i ∈ N. Hence, t0 → t1 → . . . is an innermost and thus ndg rewrite sequence by Cor. 8 (a).

We will present a much more powerful sufficient criterion for spareness in Sect. 4 which is still
easy to automate. For spareness, this criterion subsumes Lemma 13 and 14. According to Cor. 8
(b), it can be used to prove that overlay systems are ndg. Hence, for checking ndg, the criterion
of Sect. 4 subsumes Lemma 13, but not Lemma 14, which is also applicable to non-overlay sys-
tems. In Sect. 5, we will introduce a technique to check whether a spare non-overlay system is ndg.
The combination of the techniques introduced in Sect. 4 and 5 then also subsumes Lemma 14.

4 Approximating Spareness

According to Cor. 11, innermost and full runtime complexity coincide for ndg TRSs. We
presented two simple syntactic sufficient criteria which ensure that a TRS is ndg in Lemma 13
and 14, but these criteria are still far too restrictive. Hence, we now introduce a much more
powerful technique which allows us to prove spareness in many cases. So for overlay systems,
due to Cor. 8(b) this technique can be used to prove that the system is ndg.

The idea of our technique is to over-approximate all non-innermost redexes which are
reachable from basic terms by a finite set of contexts Def where the inner redex is below �.
Similarly, for all rules ` → r with #x(r) > 1 we over-approximate the redexes `σ which are
reachable from basic terms by a finite set of contexts Dup where � stands for the “duplicated”
subterm xσ. Then, we check if there are contexts in Def and Dup that “overlap”. If this is not
the case, then the analyzed TRS is spare.

To formalize the notions of “overlap” and “over-approximation” we introduce an instance rela-
tion on contexts. Then, two contexts overlap if they have a common instance and a contextD over-

256

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

approximates all contexts that are instances of D. The intuition behind the instance relation is
that D is “more general” than C if C results from D by instantiating variables and replacing �
by a term containing �. Then, we can use a context D to represent all terms C[t] where C is an
instance of D and t has a certain property (like “may be duplicated” or “may contain redexes”).

Definition 15 (Instance v). Given two contexts C[�]π, D[�]τ we call C an instance of D
(C v D) iff π ≥ τ and D[x] matches C, where x is a fresh variable.

In other words, C v D holds iff there is a context C ′ and a substitution σ with C = Dσ[C ′].

Example 16. The context plus(s(�), s(y)) is an instance of plus(�, y), as we have 1.1 ≥ 1
(where 1.1 and 1 are the positions of � in plus(s(�), s(y)) and plus(�, y), respectively) and
plus(�, y)[x] = plus(x, y) matches plus(s(�), s(y)).

The following corollary states some useful observations on the instance relation.

Corollary 17 (Properties of v).

(a) The instance relation is transitive, i.e., C v D and D v E implies C v E.

(b) For any context C and any substitution σ we have Cσ v C.

(c) For any term t with positions π, τ ∈ pos(t), π ≥ τ implies t[�]π v t[�]τ .

Two contexts C and D overlap if there is a context which is an instance of both C and D.
In other words, C and D overlap if there exist terms that are represented both by C and by D.

Definition 18 (Overlapping Contexts). Given two contexts C,D we say that C and D overlap
if there is a context E such that E v C and E v D.

Example 19. The contexts plus(�, s(y)) and plus(s(�), y) overlap, as plus(s(�), s(y)) is an
instance of both of them.

Note that for any two contexts C and D, it is decidable whether they overlap: One has
to check whether the positions of � in C and D are not parallel and whether C[x] and a
variable-renamed version of D[y] have a most general unifier σ.

A context is duplicating if it results from a rule `→ r where a variable x occurs more than
once in r and if `σ appears in a rewrite sequence that starts with a basic term. To turn `σ into
a context, one replaces a subterm of xσ by �.

Definition 20 (Duplicating Context). Given a TRS R, we call a context C duplicating if there is
a term s ∈ TB, a substitution σ, and a rewrite sequence s→∗ t � `σ where ` is the left-hand side
of a rule `→ r ∈ R such that `|π = x ∈ V, #x(r) > 1, and C = `σ[�]π.τ for some π.τ ∈ pos(`σ).

Example 21. Reconsider the TRS Rtimes from Ex. 1. Rule (4) is the only rule where a variable
occurs more than once on the right-hand side. Its left-hand side is times(x, s(y)). If one starts
rewriting with a basic term, one can only reach instantiations of the form times(t1, s(t2)) with
t1, t2 ∈ T (Σc,V). As the variable x of the left-hand side is duplicated, the duplicating contexts
of Rtimes are times(sn(�), s(t2)) where t2 ∈ T (Σc,V) and n ∈ N. So in other words, spareness
of Rtimes can only be violated if a basic term can be rewritten to a term containing an instance
of times(sn(�), s(t2)), where � is replaced by a term that is not a normal form.

As the following theorem shows, it is undecidable whether a context is duplicating.

Theorem 22 (Duplicating Contexts are Undecidable). It is undecidable if a context is duplicating.

257

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

The proof is similar to the one of Thm. 12, i.e., for any left-linear basic TRS R and any
basic ground term t we define a left-linear constructor system R′ such that t is normalizing w.r.t.
R iff a certain context is duplicating w.r.t. R′. Hence, whether a context is duplicating is even
undecidable for left-linear constructor systems. However, the duplicating contexts of a TRS can
easily be over-approximated by a finite set of contexts Dup such that every duplicating context
is an instance of an element of Dup. In this approximation, we do not take the requirement into
account that a duplicating context must be reachable by a rewrite sequence that starts with a
basic term. Moreover, we disregard possible instantiations of left-hand sides and only consider
contexts where � is at the position of a duplicated variable.

Definition 23 (DupR). Given a TRS R, we define DupR = {C | C[x]→ r ∈ R,#x(r) > 1}.
We omit the index R if it is clear from the context.

Example 24. We have DupRtimes
= {times(�, s(y))}, as times(x, s(y))→ plus(times(x, y), x) is

Rtimes’s only rule with a non-linear right-hand side and 1 is the only position of x on the left-hand
side. Note that all duplicating contexts times(sn(�), s(t2)) are instances of times(�, s(y)).

The following lemma states that Dup indeed over-approximates all duplicating contexts.

Lemma 25 (Dup Over-Approximates Duplicating Contexts). If C is duplicating, then there is
a D ∈ Dup such that C v D.

Proof. If C is duplicating, then there is a rule `→ r ∈ R and a rewrite sequence s→∗ t � `σ =
C[p]π.τ where `|π = x is a variable that occurs more than once on the right-hand side. Then we
have `[�]π ∈ Dup and C v `[�]π. To see this, note that `[x]π = ` matches C[p]π.τ = `σ. So if
x′ is a fresh variable, then `[x′]π also matches C[�]π.τ = C. Moreover, we have π.τ ≥ π.

Defined contexts characterize those contexts with defined root that can be reached by
rewriting basic terms, where a redex may occur at the position of �.

Definition 26 (Defined Context). Given a TRS R, we call a context C defined if there is a
term s ∈ TB and a rewrite sequence s→∗ t � C[p] where root(C) ∈ Σd and p is a redex.

Example 27. Reconsider the TRS Rtimes. For any t ∈ T (Σc,V), the context plus(�, t) is defined
due to the rewrite sequence times(t, s(0))→ plus(times(t, 0), t). Further defined contexts are, e.g.,
plus(plus(�, t), t), plus(plus(plus(�, t), t), t), . . . and plus(s(�), s(t)), plus(s(s(�)), s(s(t))), . . .

Thm. 28 states that our notions of Def. 20 and 26 are indeed suitable to determine spareness.

Theorem 28 (No Defined and Duplicating Context =⇒ Spare). If no defined context is
duplicating, then R is spare. If R is left-linear and spare, then no defined context is duplicating.

Proof. If R is not spare, then there is a s ∈ TB and a sequence s→∗ t→`→r,µ u where all but
the last step are spare, i.e., there are positions π, τ such that t|µ.π.τ is a redex, `|π = x ∈ V , and
#x(r) > 1. Thus, t|µ[�]π.τ is defined and duplicating. See [10] for the converse direction.

So while the absence of contexts that are both defined and duplicating always implies
spareness, the following example shows that the converse only holds for left-linear TRSs.

Example 29. Consider the TRS with the rules f(x, x)→ g(x, x), b→ f(c, a), and c→ f(a, a).
Since the basic terms b, c, or f(t, t) for t ∈ T (Σc,V) only start rewrite sequences with spare
steps, the TRS is spare. However, the context f(�, a) is both defined (due to the rewrite sequence
b→ f(c, a)) and duplicating (due to c→ f(a, a)).

As in the proof of Thm. 12 one can show that definedness of contexts is undecidable, too.

258

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Theorem 30 (Defined Contexts are Undecidable). It is undecidable if a context is defined.

Our aim is to use Thm. 28 to prove spareness of TRSs. Thus, we have to show that there is
no context that is defined and duplicating. While these properties are both undecidable by Thm.
22 and 30, we can approximate duplicating contexts by Dup due to Lemma 25. Hence, we now
have to find a similar over-approximation for defined contexts. Here, a problem is that a defined
context may have several inner redexes (i.e., redexes can also occur on positions parallel to �).

Example 31. Consider a TRS containing the rule f(x) → h(e, g(x)), where h, e, and g are
defined symbols (and thus e is a redex). To compute all defined contexts, we have to consider
all terms t with g(s)→∗ t for some s ∈ T (Σc,V), as each of these terms gives rise to a rewrite
sequence f(s)→ h(e, g(s))→∗ h(e, t), i.e., h(�, t) is a defined context for all these terms t.

To avoid reasoning about all terms t reachable from instances of some term g(x) as in Ex.
31, we abstract inner defined symbols to variables in order to approximate the set of all defined
contexts (e.g., the context h(�, g(x)) with the defined symbols h and g is abstracted to h(�, x1)).
However, inner defined symbols above � are abstracted to � (e.g., the context g(g(�)) is
abstracted to g(�) and h(e, g(�)) is abstracted to h(x1,�)). Moreover, we also abstract from
variables that occur multiple times in a term. To this end, we replace all occurrences of variables
by pairwise different variables. The reason is that equal subterms may be reduced differently,
i.e., equality of subterms is not preserved by rewriting. Thus, Def. 32 introduces the abstraction
of a context C, which results from replacing all its topmost proper subterms that have a defined
root (but do not contain �) or that are variables by pairwise different variables.

Definition 32 (Abstraction of Contexts). For a context C, let C̃ = C[�]τ where τ is the
topmost position of C with τ 6= ε, C|τ � �, and root(C|τ) ∈ Σd ∪ {�}.3 Let Πd = {π |
root(C̃|π) ∈ Σd, π 6= ε} contain all positions of C̃’s proper subterms with defined root and let

ΠV = {π | C̃|π ∈ V} contain all positions of variables in C̃. Moreover, let Π consist of the
topmost positions of Πd ∪ ΠV , i.e., Π is the smallest subset of Πd ∪ ΠV such that for each
τ ∈ Πd∪ΠV there is a π ∈ Π with π ≤ τ . Finally, let π1, . . . , πn be Π’s elements in lexicographic
order. Then we call bCc = C̃[x1]π1

. . . [xn]πn
the abstraction of C, where x1, . . . , xn ∈ V are

pairwise different.

Example 33. Recall the rule f(x)→ h(e, g(x)) from Ex. 31. To approximate the defined contexts
induced by this rule we first replace one topmost proper subterm of the right-hand side with
defined root by � and then we take the abstraction of the resulting context. In this way, we
obtain the contexts bh(�, g(x))c = h(�, x1) and bh(e,�)c = h(x1,2).

Lemma 34 states that every context C is an instance of its abstraction bCc. Moreover, if C
is an instance of D, then bCc is also an instance of D, provided that D is a linear basic context.

Lemma 34 (Properties of b c).

(a) For any context C, we have C v bCc.

(b) For any context C and any linear basic context D, C v D implies bCc v D.

(c) For any context C, any π ∈ pos(C) with C|π 6� �, and any term t with root(t) ∈ Σd, we
have bCc v bC[t]πc.

Proof. For (a), we first show C v C̃. We have C̃|τ = �. The position of � in C is indeed below

τ since C|τ ��. Moreover C̃[x]τ matches C for a fresh variable x, since C̃[x]τ = C[x]τ .

3Note that τ is unique since � only occurs once in C.

259

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Now we show that C̃ v bCc. For all π ∈ Πd, C̃|π does not contain �. Thus, � is at the same

position in C̃ and bCc. Moreover, by instantiating every xi by C̃|πi
, bCc matches C̃. Hence,

the claim follows from transitivity of v (Cor. 17 (a)).

For (b), let C v D. We first show that this implies C̃ v D. Let C|π = � and D|µ = �. Then

C v D implies π ≥ µ. Moreover, C̃|τ = � with π ≥ τ . We also obtain τ ≥ µ, because otherwise
we have µ > τ , but then D[x]µ would not match C, since root(C|τ) ∈ Σd and root(D[x]µ|τ) =

root(D|τ) /∈ Σd as D is basic. Let σ be the matcher with D[x]µσ = C. By defining xσ′ = C̃|µ
and yσ′ = yσ for all variables y 6= x, we get D[x]µσ

′ = Dσ[C̃|µ]µ = C[C̃|µ]µ = C̃.

To show bCc v D, note again that � is at the same position τ in C̃ and bCc, i.e., for D|µ = �
we have τ ≥ µ. Moreover, as D[x]µ matches C̃ and D is basic, we must have D|πi

∈ V for all
1 ≤ i ≤ n. The variables D|πi

are pairwise different, since D is linear. Hence, by instantiating
every variable D|πi by xi, D[x]µ matches bCc.

For (c), since C|π 6� �, the position of � is the same in bCc and bC[t]πc. Moreover up to
variable renaming, their only difference is that there could be a position above or equal to π
where bC[t]πc has a fresh variable (since root(t) ∈ Σd). Hence bC[t]πc matches bCc.

To approximate the set of all defined contexts, we iteratively compute a set Def such that
each defined context is an instance of an element of Def . For every rule `→ r where ` is basic,
every subterm C[p] of r leads to a defined context Cσ if root(C) ∈ Σd and pσ reduces to a
redex. Moreover, given a rule ` → r with `|π = x ∈ V and a defined context D, consider the
case that D overlaps with the context `[�]π. So D represents terms which have a redex below
the position of � and `[2]π also represents some of these terms. Then by the application of the
rule `→ r, the inner defined symbol represented by � is copied to all occurrences of x in r. If
one of these occurrences is below a defined symbol, then we again obtain a defined context.

Example 35. Consider the following TRS:

f(w, x, y, z)→ g(h) (5) g(s(x))→ f(x, x, x, h) (6) h→ s(h) (7)

The context g(�) is defined due to (5). By replacing the variable x in the left-hand side of (6)
with �, we obtain the context g(s(�)). As g(�) and g(s(�)) overlap, the defined symbol below
� in g(�) can be copied to all occurrences of x in the right-hand side of (6). Hence, instances
of f(�, x, x, h), f(x,�, x, h), and f(x, x,�, h) might be defined. To avoid reasoning about the
terms reachable from h, we replace it with a variable. Finally, we abstract from the multiple
occurrences of x by replacing them with different variables. Hence, we add bf(�, x, x, h)c =
f(�, x1, x2, x3), bf(x,�, x, h)c = f(x1,�, x2, x3), and bf(x, x,�, h)c = f(x1, x2,�, x3) to Def .

In Rule (5) of Ex. 35, we obtained a defined context by replacing the subterm h of the
right-hand side with �. In general, we have to consider all instances of subterms which reduce to
a redex. For the sake of simplicity, we over-approximate the set of such subterms by considering
all subterms p of right-hand sides with root(p) ∈ Σd. Then, we obtain an over-approximation of
all defined contexts by iterating the construction illustrated in Ex. 35.

Definition 36 (Def R). Given a TRS R, we define Def R to be the smallest set such that:

(a) If `→ r ∈ R, r � C[p], and root(C), root(p) ∈ Σd, then bCc ∈ Def R.

(b) If D ∈ Def R, `[x]π → r ∈ R with r � C[x] and root(C) ∈ Σd, and D and `[�]π overlap,
then bCc ∈ Def R.

We omit the index R if it is clear from the context.

260

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

Lemma 37 shows that Def is finite (and hence computable), as it only contains abstractions
of contexts that result from replacing subterms of right-hand sides of rules with �.

Lemma 37 (Finiteness of Def). For each TRS R, Def R is finite.

Example 38. For the TRS Rtimes of Ex. 1, by Def. 36 (a) we have bplus(�, x)c = plus(�, x1) ∈
Def Rtimes

due to the right-hand side of Rule (4). This context overlaps with the context
plus(s(�), y) obtained from the left-hand side of Rule (2) by replacing the variable x by �.
Since the corresponding right-hand side is s(plus(x, y)), this implies bplus(�, y)c ∈ Def Rtimes

. As
bplus(�, y)c = plus(�, x1), we therefore obtain Def Rtimes

= {plus(�, x1)}.

Lemma 39 shows that the approximation of Def. 36 is indeed correct.

Lemma 39 (Def Over-Approximates Defined Contexts). If C is defined, then there is a
D ∈ Def such that C v D.

Proof. We use induction on n to prove that if there is a rewrite sequence s→n t �π C[p]τ where
s is basic, C|τ = �, and root(C), root(p) ∈ Σd, then there is a D ∈ Def with C v D.

Induction Base (n = 0). As s is basic, s cannot have a subterm C[p] such that root(C), root(p)
∈ Σd. Hence, our claim trivially holds.

Induction Step (n > 0). Here, we have s→n−1 s′ →`→r,µ t �π C[p]τ for some rule `→ r.

Case 1: µ and π are parallel positions, i.e., µ‖π. Then we also have s →n−1 s′ �π
C[p]τ and hence our claim follows from the induction hypothesis.

Case 2: µ is below π, but parallel to π.τ , i.e., µ = π.ι and ι‖τ . We get s →n−1 s′ �π
C[`σ]ι[p]τ . By the induction hypothesis, there is a D ∈ Def such that C[`σ]ι[�]τ v D. By con-
struction, each D ∈ Def is basic and linear. Hence by Lemma 34 (b), we get bC[`σ]ι[�]τc v D.
Moreover, we have C v bCc by Lemma 34 (a) and bCc = bC[rσ]ι[�]τc v bC[`σ]ι[�]τc by
Lemma 34 (c), since root(`σ) ∈ Σd. Hence, C v D follows by transitivity of v (Cor. 17 (a)).

Case 3: µ is below π.τ (µ ≥ π.τ). Here, s→n−1 s′ �π C[q]τ with root(q) ∈ Σd, as q = `σ if
µ = π.τ and root(q) = root(p) if µ > π.τ . So our claim follows from the induction hypothesis.

Case 4: µ is strictly below π, but strictly above π.τ (π.τ > µ > π). Then there is a posi-

tion ν with π.ν = µ. We get s→n−1 s′ �π C[`σ]ν where root(`σ) ∈ Σd. The induction hypothe-
sis implies that there is a D ∈ Def such that C[�]ν v D. Clearly, we have ν < τ and hence,
C = C[�]τ v C[�]ν by Cor. 17 (c). Hence, C v D follows from transitivity of v (Cor. 17 (a)).

Case 5: π is below µ, i.e., µ ≤ π. Then there is a position ν such that µ.ν = π. Thus, we
have s→n−1 s′ →`→r,µ s

′[rσ]µ � rσ[C[p]τ]ν .

Case 5.1: ν.τ ∈ pos(r) and r|ν.τ /∈ V. Then root(C) = root(r|ν) and root(p) = root(r|ν.τ).
Hence, we obtain br|ν [�]τc ∈ Def by Def. 36 (a). Moreover, C v r|ν [�]τ holds as C also has �
at the position τ , and as r|ν σ = C[p]τ and thus, r|ν [x]τ σ

′ = C if xσ′ = � and yσ′ = yσ for all
variables y 6= x. By Lemma 34 (a) and transitivity of v (Cor. 17 (a)), we get C v br|ν [�]τc.
Case 5.2: ν ∈ pos(r), r|ν /∈ V, and (ν.τ /∈ pos(r) or r|ν.τ ∈ V). In this case, the root of C is
“above” and p is “below” some variable x of r in rσ, cf. Fig. 1. So τ = ξ.ι such that ξ 6= ε,
r|ν.ξ = x ∈ V, and xσ|ι = rσ|ν.ξ.ι = rσ|ν.τ = p. As V(r) ⊆ V(`), there is also some π ∈ pos(`)
with `|π = x. Note that `σ|π.ι = xσ|ι = p.

261

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

r

C

σ

p

x

τ

ν

ι

ξ

Figure 1: Case 5.2

As ` /∈ V, we have π 6= ε. Since root(`),
root(p) ∈ Σd and s →n−1 s′ � `σ = `σ[p]π.ι,
there is a D ∈ Def such that `σ[�]π.ι v D by
the induction hypothesis. Moreover, we have
root(r|ν) ∈ Σd as ν is the position of C in rσ
and as r|ν /∈ V. We obtain br|ν [�]ξc ∈ Def by
Def. 36 (b), since the following holds:

• D ∈ Def

• `→ r = `[x]π → r ∈ R with r = r[x]ν.ξ � r|ν [x]ξ

• root(r|ν) ∈ Σd

• D and `[�]π overlap as `σ[�]π.ι v D and `σ[�]π.ι v `[�]π; the latter holds due to Cor. 17
(b), (c), and (a)

We now prove C v r|ν [�]ξ. Then, C v br|ν [�]ξc follows by Lemma 34 (a) and transitivity of v
(Cor. 17 (a)). Note that � is at position τ in C and at position ξ in r|ν [�]ξ with ξ ≤ τ = ξ.ι.
Moreover, let x′ be a fresh variable where x′σ = xσ[�]ι. Then r|ν [x′]ξ σ = rσ|ν [x′σ]ξ =
rσ|ν [xσ[�]ι]ξ = (rσ[xσ]νξ[�]νξι)|ν = rσ[�]ντ |ν = rσ|ν [�]τ = C[p]τ [�]τ = C.

Case 5.3: ν /∈ pos(r) or r|ν ∈ V. Then there is an x ∈ V(r) with xσ � C[p]. As we also have
x ∈ V(`), we obtain s′ � `σ � xσ � C[p], i.e., the claim follows by the induction hypothesis.

This leads to our main theorem: If the contexts in Def do not overlap with the contexts in
Dup, then R is spare. So if R is an overlay system then rc and irc coincide by Cor. 8 (b) and 11.

Theorem 40 (Approximating Spareness by Def and Dup). If there is no D ∈ Def R which
overlaps with some C ∈ DupR, then R is spare.

Proof. Assume that R is not spare. By Thm. 28, then there is a defined context E that is
duplicating. By Lemma 25 and 39 there are C ∈ DupR and D ∈ Def R with E v C and E v D.
Hence, C and D overlap which contradicts the prerequisite of the theorem.

The criterion of Thm. 40 can easily be automated since Def R and DupR are computable
finite sets of contexts and for any two contexts, it is decidable whether they overlap.

Example 41. We have DupRtimes
= {times(�, s(y))} and Def Rtimes

= {plus(�, x1)}, cf. Ex. 24
and 38. Clearly, DupRtimes

and Def Rtimes
do not overlap. As Rtimes is an overlay system, this

implies rcRtimes = ircRtimes . Current complexity analysis tools are able to prove the tight upper
bound ircRtimes(n) ∈ O(n3) automatically. However, they could not infer any polynomial upper
bound for rcRtimes so far. Using our new technique from this section, our tool AProVE can now
prove rcRtimes(n) ∈ O(n3) automatically by showing ircRtimes(n) ∈ O(n3) and rcRtimes = ircRtimes .

Note that for spareness, Thm. 40 clearly subsumes Lemma 13 and 14. Lemma 13 is subsumed
as DupR = ∅ if R is right-linear. Lemma 14 is subsumed since Def R = ∅ if R has no rules
where defined symbols are nested on right-hand sides. Thus, in both cases Thm. 40 implies
spareness.

5 Handling Non-Overlay Systems

For overlay systems, our criterion for spareness in Thm. 40 implies the desired ndg property as
well. We now introduce a technique to prove ndg also for non-overlay systems. It tries to iden-
tify rules with non-basic left-hand sides that are not reachable from basic terms. These rules can
be removed from the TRS without affecting its runtime complexity. If this removal is possible

262

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

for all rules with non-basic left-hand sides, then we obtain a constructor system and hence, an
overlay system, where spareness and ndg are equivalent. Of course, the technique of this section
could also be used in other applications concerned with reachability analysis for TRSs.

To detect these removable rules, we analyze which functions are “called” by other functions, si-
milar to the computation of “usable rules” in the dependency pair technique [2, 12]. However, in
contrast to usable rules, we have to infer information on the possible nesting of defined symbols,
i.e., we determine whether some function symbol g can possibly occur in the i-th argument of
some function symbol f . To this end, for each defined symbol f and each argument position i of
f , we compute a set Σd|f,i which over-approximates those defined symbols that may occur below
the i-th argument of f in rewrite sequences starting with basic terms. Thus, we can remove all
rules where some defined symbol g /∈ Σd|f,i is below the i-th argument of f on the left-hand
side. In the following, let Σd(t) denote the set of all defined symbols occurring in a term t.

Example 42. Consider the following TRS R.

inc(x) → s(x) (8) times(x, 0) → 0 (11)
plus(0, y) → y (9) times(x, s(y)) → plus(times(x, y), x) (12)

plus(s(x), y) → plus(x, inc(y)) (10) plus(x, plus(y, z)) → plus(plus(x, y), z) (13)

Since the left-hand side of (10) is basic, inc can occur below the second argument of plus in rewrite
sequences starting with basic terms, i.e., inc ∈ Σd|plus,2. Similarly, as the left-hand side of (12) is
basic, times can occur below plus’s first argument, i.e., times ∈ Σd|plus,1. So in general, we include
g ∈ Σd|f,i if a rule `→ r can be applied in rewrite sequences starting with basic terms, where
root(r|π) = f and g ∈ Σd(r|π.i) for some π. This leads to Condition (a) in Thm. 43 below.

As times may rewrite to a term containing plus or inc due to Rules (12) and (10), plus and
inc may also occur below the first argument of plus, i.e., {plus, inc} ⊆ Σd|plus,1. Thus, in general
we include g ∈ Σd|f,i if there is a rule `→ r that is applicable in rewrite sequences starting with
basic terms, where root(`) ∈ Σd|f,i and g ∈ Σd(r), cf. Condition (c) in Thm. 43.

Since inc may occur below the second argument of plus, the variable y may match a term
containing inc in Rule (10). Hence, inc may also occur below the only argument of inc, i.e.,
inc ∈ Σd|inc,1. So in general, we also include g ∈ Σd|f,i if a rule h(t1, . . . , tn)→ r is applicable
in rewrite sequences starting with basic terms, where root(r|π) = f , y ∈ V(r|π.i) for some π,
y ∈ V(tj), and g ∈ Σd|h,j for some j ∈ {1, . . . , n}. This leads to Condition (b) in Thm. 43.

In our example, no other defined symbols can be nested in rewrite sequences starting with basic
terms. As plus /∈ Σd|plus,2, Rule (13) can never be applied in such sequences and hence, it may be
removed from the TRS. Then, our tool AProVE can prove the tight bound rcR\{(13)}(n) ∈ O(n3)
using the technique from Sect. 4, which was not possible with existing tools so far.

Theorem 43 (Removing Non-Reachable Rules for rc). For each f ∈ Σd and each i ∈
{1, . . . , arity(f)}, let Σd|f,i be the smallest set such that g ∈ Σd|f,i if there is some rule
` = h(t1, . . . , tn) → r ∈ R where Σd(tj) ⊆ Σd|h,j for all j ∈ {1, . . . , n} and at least one
of the following conditions (a) – (c) holds:

(a) root(r|π) = f and g ∈ Σd(r|π.i) for some position π ∈ pos(r)

(b) root(r|π) = f , y ∈ V(r|π.i), y ∈ V(tj), and g ∈ Σd|h,j for some π and some j ∈ {1, . . . , n}

(c) root(`) ∈ Σd|f,i and g ∈ Σd(r)

If `→ r ∈ R, π ∈ pos(`), root(`|π) = f ∈ Σd, and g ∈ Σd(`|π.i) \ Σd|f,i, then rcR = rcR\{`→r}.

Proof. By induction on m, we prove that if there is a rewrite sequence q0 → q1 → . . .→ qm−1 →
qm � f(s1, . . . , sk) where q0 ∈ TB , f ∈ Σd, and g ∈ Σd(si), then g ∈ Σd|f,i.

263

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

In the induction base, we have m = 1. Thus g ∈ Σd|f,i follows by (a) as q0 is basic. In the
induction step (m > 1), let h(t1, . . . , tn)→ r be the rule applied in the rewrite step qm−1 → qm,
i.e., qm−1|π = h(t1, . . . , tn)σ and qm = qm−1[rσ]π. As qm−1 � h(t1σ, . . . , tnσ), the induction hy-
pothesis implies Σd(tj) ⊆ Σd(tjσ) ⊆ Σd|h,j for all j ∈ {1, . . . , n}. Thus, the rule h(t1, . . . , tn)→ r
satisfies the requirements of Thm. 43. Let ι ∈ pos(qm) with qm|ι = f(s1, . . . , sk).

Case 1: ι‖π. Then qm−1 � f(s1, . . . , sk) and g ∈ Σd(si) ⊆ Σd|f,i by the induction hypothesis.

Case 2: ι ≥ π, i.e., there is a position τ such that ι = π.τ .

Case 2.1: τ /∈ pos(r) or r|τ ∈ V. Then again we have qm−1�f(s1, . . . , sk) and thus, g ∈ Σd|f,i
follows from the induction hypothesis.

Case 2.2: τ ∈ pos(r) and r|τ /∈ V. Thus, root(r|τ) = f and hence τ.i ∈ pos(r). Let ξ ∈ pos(si)
with root(si|ξ) = g.

Case 2.2.1: τ.i.ξ ∈ pos(r) and r|τ.i.ξ /∈ V. Then r|τ.i.ξ σ = rσ|τ.i.ξ = f(s1, . . . , sk)|i.ξ = si|ξ
implies root(r|τ.i.ξ) = g. Hence, we have g ∈ Σd|f,i by (a).

Case 2.2.2: τ.i.ξ /∈ pos(r) or r|τ.i.ξ ∈ V. Then there is a prefix ξ′ of ξ such that r|τ.i.ξ′ = y ∈ V
and g ∈ Σd(yσ). Hence, we also have y ∈ V(tj) for some j ∈ {1, . . . , n}, and thus g ∈ Σd(tjσ).
Therefore, qm−1 � h(t1σ, . . . , tnσ) implies g ∈ Σd|h,j by the induction hypothesis. So we have
root(r|τ) = f , y ∈ V(r|τ.i), y ∈ V(tj), and g ∈ Σd|h,j , which implies g ∈ Σd|f,i by (b).

Case 3: ι < π, i.e., there is a τ 6= ε with π = ι.τ . Again, let ξ ∈ pos(si) with root(si|ξ) = g.

Case 3.1: τ‖i.ξ or τ > i.ξ Then qm−1 � f(s′1, . . . , s
′
k) where g ∈ Σd(s

′
i). Hence, we get

g ∈ Σd|f,i by the induction hypothesis.

Case 3.2: τ = i.τ ′ with τ ′ ≤ ξ. Then we have root(qm−1|ι) = f and root(qm−1|ι.i.τ ′) = h.
Hence, we have h ∈ Σd|f,i by the induction hypothesis. Moreover, g ∈ Σd(si|ξ) ⊆ Σd(si|τ ′) =
Σd(rσ). Hence, we have g ∈ Σd(r) or there is a variable y ∈ V(r) such that g ∈ Σd(yσ).

Case 3.2.1: g ∈ Σd(r). As we have h ∈ Σd|f,i, we get g ∈ Σd|f,i by (c).

Case 3.2.2: there is a variable y ∈ V(r) such that g ∈ Σd(yσ). As we also have y ∈ V(h(t1, ..., tn)),
we get g ∈ Σd(qm−1|π). Since root(qm−1|ι) = f and ι.i.τ ′ = ι.τ = π, we obtain g ∈ Σd|f,i by
the induction hypothesis.

Note that together with our criterion for checking spareness (Thm. 40), Thm. 43 subsumes
the simple criterion for ndg in Lemma 14, because all sets Σd|f,i are empty for TRSs without
nested defined symbols in right-hand sides. So for such TRSs, Thm. 43 allows us to remove all
rules with nested defined symbols in the left-hand side and thus, spareness implies ndg.

We also considered re-using our approximation Def from Sect. 4 in order to obtain more
precise information on possible nestings of defined symbols than the information provided by
the sets Σd|f,i. For each C ∈ Def one could compute which defined symbols can occur below �.
Then in Ex. 42 we would find out that inc might occur below � in the context plus(x1,�) ∈ Def R.
Thus, if we had plus(x1, s(�)) ∈ Def R, we could express that certain defined symbols may only
occur below plus’s second argument if the root of plus’s second argument is s. However, a proto-
typical implementation of this approach did not improve the results, such that we discarded it.

6 Experiments and Conclusion

We presented a novel technique to prove upper bounds on the runtime complexity of TRSs. Our
technique is based on the observation that rc and irc coincide if the TRS is ndg. So for this class of

264

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

TRSs, all techniques to analyze irc can be used to analyze rc. A TRS is ndg if in all rewrite sequen-
ces that start with basic terms, (i) the variables that occur more than once on right-hand sides
and (ii) proper subterms of left-hand sides with defined root symbols are instantiated to normal
forms, cf. Sect. 3. We showed that, (i) – called spareness – is already undecidable. Hence, we
developed an approximation which can prove spareness of TRSs in many cases, cf. Sect. 4. Here,
the idea is to over-approximate the contexts of nested defined symbols as well as the contexts
of terms that are duplicated. If both approximations do not overlap, then the TRS is spare.
As (ii) trivially holds for overlay systems, this technique can prove that overlay systems are
ndg. To handle non-overlay systems, we introduced a technique to identify rules with non-basic
left-hand sides that are not reachable from basic terms, cf. Sect. 5. By removing these rules
before analyzing runtime complexity, many TRSs can be transformed into overlay systems.

We implemented our technique in the tool AProVE. To evaluate its power, we analyzed all
examples of the category “Runtime Complexity – Full Rewriting” of the Termination Problems
Data Base 10.4. This collection of examples was used at the Termination Competition 2016. Be-
sides our tool AProVE, we also tested with TcT [7], since AProVE and TcT were the most power-
ful tools for analyzing rc at the Termination Competition 2016. There, AProVE applied a prelimi-
nary version of the technique from this paper (which was the reason why AProVE won this cate-
gory). While both AProVE and TcT also support the inference of lower bounds, in the following
experiments both tools were configured to just prove upper bounds unless stated otherwise.
(While our results also allow to apply techniques for lower bounds on rc to infer lower bounds
on irc, further experiments showed that existing techniques do not benefit from this approach.)

We omitted 60 non-standard TRSs with extra variables on right-hand sides from our experi-
ments. Moreover, in the following Tables 1 – 3 we omitted 235 examples where AProVE can prove
a super-polynomial lower bound on rc. The reason is that AProVE and TcT just support poly-
nomial upper bounds. In all tables, “> poly” refers to (possibly infinite) super-polynomial bounds.

AProVE

T
cT

rcR(n) O(1) O(n) O(n2) O(n3) O(n5) > poly
O(1) 21 1 – – – –
O(n) 18 110 9 – – 24
O(n2) – 7 8 2 – 4
O(n3) – – 1 1 – 2
O(n5) – – – – – 1
> poly 7 65 17 3 – 363

Table 1: TcT vs. AProVE

Table 1 compares TcT with
AProVE where we used a time-
out of 60 s for each tool on
each example. The entries be-
low the diagonal correspond to
examples where AProVE’s re-
sults are better than TcT’s (e.g.,
there are 65 examples where
TcT could not prove any poly-
nomial upper bound on rc whereas AProVE now infers a linear bound). Similarly, the entries on
the diagonal denote examples where both tools obtain the same result, and the entries above
the diagonal are examples where TcT is better than AProVE. Thus, AProVE yields better results
in 118 cases and TcT yields better results in 43 cases. Among the 270 TRSs where AProVE
infers a polynomial upper bound are 120 non-constructor systems where the technique of Sect.
5 removes rules with non-basic left-hand sides, i.e., the improvement of Sect. 5 increases the
performance of AProVE significantly. The average runtime of AProVE on each example was
11.4 s and the average runtime of TcT was 40.3 s. However, comparisons of the performance
of different complexity analysis tools should be treated with caution. The reason is that we
deal with an optimization problem and, in general, it is not possible to check if the current
solution is optimal. Hence, it is often a good strategy to try to improve the current result until
the specified timeout expires, even though AProVE does not take this approach.

According to Table 1, AProVE is now the most powerful tool for upper bounds on rc. However,
this is only due to the results of the current paper. To demonstrate this, we show that TcT

265

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

AProVE

T
cT

pr
ep
ro
c

rcR(n) O(1) O(n) O(n2) O(n3) O(n5) > poly
O(1) 39 1 – – – –
O(n) 5 174 12 – – 28
O(n2) – 5 18 2 – 3
O(n3) – – 1 4 – 6
O(n5) – – – – – 1
> poly 2 3 4 – – 356

Table 2: TcT preproc vs. AProVE

can outperform AProVE again
by integrating the technique
from this paper. To this end,
Table 2 compares AProVE with
“TcT preproc”, i.e., with the
results obtained by applying
AProVE’s implementation of
the technique from Sect. 4 and
5 and analyzing the resulting
TRS with TcT afterwards. Here, we used a timeout of 60 s for TcT after preprocessing the TRS
with AProVE. “TcT preproc” can prove upper bounds in 299 cases, while AProVE only succeeds in
270 cases. Hence, combining TcT with the technique of the current paper results in the most pow-
erful tool for upper bounds on rc. However, the results of the tools are orthogonal: There are 20
examples where AProVE obtains better bounds and 53 examples where “TcT preproc” is better.

rcR(n) TcT AProVE TcT preproc AProVE & TcT

O(1) 22 46 40 47
O(n) or less 183 229 259 269
O(n2) or less 204 264 287 297
O(n3) or less 208 270 298 307
O(n5) or less 209 270 299 308

Table 3: comparing different settings for upper bounds

Table 3 compares the results of
all the different settings used to
prove upper bounds with AProVE
and TcT. Moreover, the “union”
of AProVE and “TcT preproc” is
presented separately (“AProVE &
TcT”). Here, we used the best bound
obtained by AProVE or “TcT preproc”
for each example. The entries in the row “O(nk) or less” of Table 3 mean that the corresponding
tool proved at least the upper bound O(nk), but maybe even a smaller upper bound (so the
entry 229 in the second row, second column, means that AProVE proved constant or linear upper
bounds in 229 cases). At the Termination Competition 2015, TcT was the only tool for upper
bounds on rc and hence it represents the former state of the art for this task. Thus, the setting
“AProVE & TcT” shows how the state of the art has improved by the technique presented in this
paper. Compared to TcT, “AProVE & TcT” proves 99 additional upper bounds.

AProVE lower

A
P
ro
V
E
&

T
cT

rcR(n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n>3) > poly
O(1) 47 – – – – –
O(n) 10 212 – – – –
O(n2) – 21 7 – – –
O(n3) – 1 2 7 – –
O(n>3) – 1 – – – –
> poly 6 298 47 4 1 235

Table 4: AProVE & TcT vs. AProVE lower

Finally, Table 4 compares
“AProVE & TcT” with the lower
bounds proved by AProVE. To
infer the lower bounds, we used
a timeout of 300 s. The reason
for the larger timeout is that
“AProVE lower” does not “com-
pete” with the upper bounds
proved by AProVE and TcT. In
contrast, better lower bounds can emphasize the quality of the obtained upper bounds by showing
that these upper bounds are optimal (if the lower and upper bounds coincide). This allows us
to estimate the quality of the inferred upper bounds. Indeed, the upper bounds are tight in all
but 35 cases. In 33 of these cases, the lower and upper bounds just differ by a factor of n. This
comparison clearly shows that the quality of the bounds found by AProVE and TcT is very good.

See [1] for further information about the evaluation. Moreover, [1] offers a custom web-
interface which can be used to access our implementation of the presented technique.

Acknowledgments. We are grateful to the reviewers for their suggestions and comments.

266

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

References

[1] AProVE: https://aprove-developers.github.io/complexityFullRewriting/.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer
Science, 236:133–178, 2000.

[3] M. Avanzini and G. Moser. Dependency pairs and polynomial path orders. In Proc. RTA ’09,
LNCS 5595, pages 48–62, 2009.

[4] M. Avanzini and G. Moser. Complexity analysis by graph rewriting. In Proc. FLOPS ’10, LNCS
6009, pages 257–271, 2010.

[5] M. Avanzini and G. Moser. Polynomial path orders. Logical Methods in Computer Science, 9(4),
2013.

[6] M. Avanzini and G. Moser. A combination framework for complexity. Information and Computation,
248:22–55, 2016.

[7] M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean complexity tool. In Proc. TACAS ’16,
LNCS 9636, pages 407–423, 2016.

[8] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[9] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial interpretation
termination proof. Journal of Functional Programming, 11(1):33–53, 2001.

[10] F. Frohn and J. Giesl. Analyzing runtime complexity via innermost runtime complexity. Tech-
nical Report AIB-2017-02, RWTH Aachen University, 2017. Available from aib.informatik.

rwth-aachen.de and from [1].

[11] F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder. Lower bounds for runtime complexity
of term rewriting. Journal of Automated Reasoning, 2017. To appear. DOI: 10.1007/s10817-016-
9397-x.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency
pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

[13] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. Journal of Automated Reasoning, 58(1):3–
31, 2017.

[14] B. Gramlich. Abstract relations between restricted termination and confluence properties of rewrite
systems. Fundamenta Informaticae, 24(1/2):2–23, 1995.

[15] N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair method.
In Proc. IJCAR ’08, LNAI 5195, pages 364–379, 2008.

[16] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for innermost termination and derivational
complexity. Journal of Automated Reasoning, 50(3):279–315, 2013.

[17] D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.
RTA ’89, LNCS 355, pages 167–177, 1989.

[18] M. Hofmann and G. Moser. Amortised resource analysis and typed polynomial interpretations. In
Proc. RTA-TLCA ’14, LNCS 8560, pages 272–286, 2014.

[19] C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting. Logical
Methods in Computer Science, 13(1), 2017.

[20] A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, and H. Zankl. Joint spectral radius theory
for automated complexity analysis of rewrite systems. In Proc. CAI ’11, LNCS 6742, pages 1–20,
2011.

[21] G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method.
Logical Methods in Computer Science, 7(3), 2011.

[22] L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term rewriting
by dependency pairs. Journal of Automated Reasoning, 51(1):27–56, 2013.

267

https://aprove-developers.github.io/complexityFullRewriting/
aib.informatik.rwth-aachen.de
aib.informatik.rwth-aachen.de

Analyzing Runtime Complexity via Innermost Runtime Complexity F. Frohn and J. Giesl

[23] M. Sakai, K. Okamoto, and T. Sakabe. Innermost reductions find all normal forms on right-linear
terminating overlay TRSs. In WRS ’03, 2003.

[24] Termination Competition: http://termination-portal.org/wiki/Termination_Competition.

[25] J. van de Pol and H. Zantema. Generalized innermost rewriting. In Proc. RTA ’05, LNCS 3467,
pages 2–16, 2005.

[26] H. Zankl and M. Korp. Modular complexity analysis for term rewriting. Logical Methods in
Computer Science, 10(1), 2014.

268

http://termination-portal.org/wiki/Termination_Competition

	Introduction
	Preliminaries and Related Work
	Non-Dup-Generalized Innermost Rewriting
	Approximating Spareness
	Handling Non-Overlay Systems
	Experiments and Conclusion

