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Abstract

Exotic semiring constraints arise in a variety of applications and in particular in the
context of automated termination analysis. We propose two techniques to solve such con-
straints: (a) to model them using Boolean functions and integer linear arithmetic and solve
them using an SMT solver (QF LIA, in certain cases also QF IDL); and (b) to seek finite
domain solutions by applying unary bit-blasting and solve them using a SAT solver. In
this note, we show the structure of such systems of constraints, and report on the perfor-
mance of SMT solvers and SAT encodings when solving them. In particular, we observe
that good results are obtained by unary bit-blasting, improving on previous proposals to
apply binary bit-blasting. Moreover, our results indicate that, for our benchmarks, unary
bit-blasting leads to better results than the ones directly obtained by an SMT solver.

1 Introduction

Exotic semirings [DK09] are idempotent semirings where the elements are certain subsets of
numbers (possibly including −∞ and/or +∞) and where the sum and product operations are
min, max, or +. For example, in the tropical semiring the elements are N ∪ {+∞} and the
sum and product operations are min and +, respectively. In the arctic semiring the elements
are N ∪ {−∞} and the sum and product operations are max and +, respectively. The tropical
semiring is allegedly named as such to honor Imre Simon, one of its pioneers, who comes from
tropical Brazil. Correspondingly, in [Goo98] the arctic semiring is named as such because arctic
latitudes are located “opposite” to tropical latitudes and “max” is the “opposite” operation to
“min”. Exotic semiring constraints are just like Boolean formula except that the atoms are
either propositional variables or inequalities between expressions of an exotic semiring. For
example, as we will formalize in the sequel, the following is an arctic semiring constraint

(a11 ≥ 0) ∧ (b11 ≥ 0) ∧

∧
i ∈ {1, 2}
j ∈ {1, 2}


(cij = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j)) ∧
(((ai1 ⊗ a1j)⊕ (ai2 ⊗ a2j) > (ci1 ⊗ a1j)⊕ (ci2 ⊗ a2j)) ∨
(((ai1 ⊗ a1j)⊕ (ai2 ⊗ a2j) = −∞) ∧ ((ci1 ⊗ a1j)⊕ (ci2 ⊗ a2j) = −∞))) ∧
(bij ≥ bi1 ⊗ b1j ⊕ bi2 ⊗ b2j)

(1)
where ⊕ and ⊗ correspond to max and sum. All variables are existentially quantified and the
constraint is solved for example if a11 = a12 = b11 = b21 = c11 = c11 = 0, a21 = a22 = c12 = 1,
and b12 = b22 = c21 = c22 = −∞.
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Exotic semirings and constraints come up in a variety of applications such as formal lan-
guages, as described in [Sim88], and optimization problems, idempotent analysis, and disjunc-
tive invariants in static analysis as described in [GKS11]. Exotic semirings constraints have
recently proven to be very useful in the context of termination analysis for string [Wal07] and
term rewriting [KW09, ST10]. To simplify the presentation, we focus in this paper on the
application to string rewriting, however the techniques carry over to term rewriting as well.

In string rewriting, the state of a computation is represented by a word s over an alphabet
Σ. The program underlying the state transitions is a string rewrite system (SRS), i.e., a set
R of rewrite rules ` → r where ` and r are words over Σ. A transition then corresponds to a
rewrite step u`v →R urv for some rule ` → r and words u, v (i.e., we replace the substring `
by r).

We say thatR is terminating if no infinite sequence of rewrite steps s0 →R s1 →R s2 →R . . .
exists. To prove termination, a classic method is to use interpretations, i.e., to map letters a
to elements aD of a well-founded carrier (D,>) and then to extend this mapping to words
s = a1 . . . an by multiplication sD = a1D � . . . � anD. Then R is terminating if all rules are
oriented (strictly), namely `D > rD holds for all rules `→ r ∈ R.

For example, termination of the system R =
{

a b→ b c
}

, can be shown with an interpre-
tation to the well-founded carrier (N, >) where aN = 2 and bN = cN = 1 since 2 · 1 > 1 · 1 (using
the standard multiplication on N). Such a termination proof could be found automatically by
again fixing the carrier (N, >), but leaving the interpretation for the letters open, i.e., using an
interpretation template. This yields a constraint problem over the well-founded carrier. So we
seek an interpretation which orients all of the rules (strictly). For our example we get the con-
straint aN · bN > bN · cN over the (positive) natural numbers, for which the above interpretation
is indeed a solution.

Recently, termination techniques using interpretations to exotic semirings [Wal07, KW09,
ST10], and their extensions to exotic (square) matrices (cf. also [EWZ08]) have been shown to
be very powerful. The extension of multiplication to exotic matrices is analogous to standard
matrix multiplication, where the operations on matrix entries have the semantics induced by
the underlying semiring for the entries. To compare two matrices A and B, we extend >
component-wise. With these techniques, we are typically given two sets of rewrite rules, R and
S, and required to find an interpretation which orients all rules in R ∪ S weakly, and at least
one rule in R strictly. We will formalize this in the sequel.

To solve the resulting template constraints over exotic matrices, [Wal07, KW09] suggest to
model the operations at the binary level and to apply binary bit-blasting. Binary bit-blasting
of arithmetic is convenient because of its compactness. However, size is not the only metric
to regard for SAT encodings. Instead, in other applications [TTKB09, MCLS11] unary bit-
blasting has been shown to result in encodings which often lead to smaller runtimes of the SAT
solver. In this paper, we propose a unary encoding based on the, so-called, order encoding (see
e.g. [CB94, BB03]) which has proven useful in a variety of applications involving arithmetic with
small integer values (see e.g. [TTKB09]). We also investigate the application of SMT solvers.
We observe that good results are obtained using the unary encoding, typically outperforming
binary bit-blasting as well as SMT solvers.

2 Preliminaries: Exotic Semirings

A semiring consists of a domain D equipped with operations ⊕,⊗ (addition, multiplication)
and elements 0D, 1D ∈ D such that (D,⊕, 0D) is a commutative monoid (i.e., ⊕ is associative
and 0D is its neutral element), (D,⊗, 1D) is a monoid, ⊕ distributes over ⊗ from both sides,
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and 0D is annihilating on both sides of ⊗. The standard example of a semiring is (N,+, ·, 0, 1).
We will focus on idempotent semirings, where addition is idempotent: x⊕ x = x.

Definition 1. The following idempotent semirings are collectively called exotic:

• A = ({−∞} ∪ N,max,+,−∞, 0), the arctic semiring,

• T = (N ∪ {+∞},min,+,+∞, 0), the tropical semiring,

• F = ({−∞} ∪ N ∪ {+∞},min,max,+∞,−∞), the fuzzy semiring,

• P = ({−∞} ∪ Z,max,+,−∞, 0), the Z-arctic semiring (also known as arctic below zero)
cf. [Kro98] (where arctic is called polar).

We assume, for each of the exotic semirings, D, an order extending the standard order on
N (or Z), namely, −∞ < 0 < 1 < . . . < +∞.

We denote the reflexive closure of < by ≤, and we write x <0 y for (x < y)∨ (x = 0D = y),
where 0D denotes the zero element of D. For the fuzzy semiring, we also need the following
notation: x <1 y iff (x <0 y) ∨ (x = 1D = y).

For any (exotic) semiring D, and n ∈ N, the set Mn(D) of n×n-matrices with entries from
D is again a semiring, with addition and multiplication defined in the standard way, using ⊕
and ⊗ on the elements. If D is idempotent, then Mn(D) is idempotent. The orders ≤, <0, <1

are extended from D to Mn(D) component-wise.
We call an element x ∈ D positive if x ≥ 1D. A matrix A ∈ Mn(D) is called positive,

denoted positive(A), if A1,1 (the top left element) is positive.
An exotic semiring constraint is a Boolean formula in which all atoms are either propositional

variables or exotic semiring inequalities. We say that a constraint is satisfiable if there exists an
assignment of exotic values to exotic variables such that replacing inequalities by their implied
Boolean values results in a satisfiable Boolean formula.

In the context of automated termination analysis we typically need to solve exotic termina-
tion constraints where given two sets of rewrite rules, R and S, we need to find an interpretation
to orient all rules `→ r in R∪S such that ` ≥ r (resp. >1, for the fuzzy semiring) and at least
one rule ` → r in R such that ` >0 r. In this setting the matrices are required to be positive.
For example, assuming the arctic semiring, if R =

{
a2 → a b a

}
and S =

{
b→ b2

}
with

aD = A and bD = B the constraint system for the unknown matrices A,B that make up the
interpretation is positive(A) ∧ positive(B) ∧ (A2 >0 ABA) ∧ (B ≥ B2). To seek a solution of
dimension 2, we obtain the exotic semiring constraint from Eq. 1, where the auxiliary variables
cij indicate the contents of matrix C = AB and the solution is given by

A =

(
0 0
1 1

)
, B =

(
0 −∞
0 −∞

)
.

3 From Exotic to LIA/IDL constraints

In this section we show that exotic constraints can be faithfully translated into logic over the-
ories that are standardized within SMT-LIB. In particular, arctic and tropical constraints can
be encoded into QF LIA, and fuzzy numbers constraints can be encoded into QF IDL. With
this new formalization we generalize the binary SAT encoding for arctic constraints proposed
in [KW09]. As an application, we consider a selection of termination problems from the Inter-
national Termination Competition1 where for each instance we select an exotic semiring and a

1http://www.termination-portal.org/wiki/Termination_Competition
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matrix dimension to generate exotic constraints. We then model these using LIA/IDL to obtain
a selection of instances2 that have been submitted to the SMT (2012) competition.

To model exotic domains we represent arctic and tropical numbers as pairs Boolean × N.
For an arctic a represented by (m, i), if m is true then a = −∞ and otherwise a = i, and for a
tropical t represented by (p, i), if p is true then t = +∞ and otherwise t = i. Similarly, a fuzzy
number f is represented as a triplet (m, i, p) where m is true iff f = −∞, p is true iff f = +∞
and f = i iff m = p = false. (We denote truth values by true/false or 1/0 depending on the
context.)

To encode the “maximum” operation for k arctic elements we have (m, i) =
⊕

k(mk, ik) iff

(m =
∧
k

mk) ∧ (¬m→
∧
k

(¬mk → i ≥ ik)) ∧ (¬m→
∨
k

(¬mk ∧ i = ik)).

Namely, the maximum of k arctic numbers is −∞ if all k numbers are, else it is greater than
or equal to each finite number, and equal to one finite number. To encode arctic semiring
multiplication we have (m, i) =

⊗
k(mk, ik) iff

(m =
∨
k

mk) ∧ (¬m→ (i =
∑
k

ik)).

As the formulas show, the target of the translation is the theory of integers with addition, as
defined in QF LIA. This encoding can also be used for the Z-arctic semiring (Z-arctic numbers
are modeled as pairs Boolean× Z). Symmetric formulae as for the arctic semiring hold for the
tropical semiring operations and are not detailed here. The fuzzy semiring has the minimum
and maximum operations. This implies that we do not need addition, so the constraints can be
formulated as difference constraints. In fact, we are working within the “theory of linear order”
(a subset of QF IDL, where full QF IDL would also allow addition of constants).

4 Exotic Order Encoding

The order encoding (see e.g. [CB94, BB03]) is a unary representation for natural numbers. In
this representation the bit vector x̄ = 〈x1, . . . , xk〉 constitutes a monotonic decreasing sequence
and represents values between 0 and k. For example, the value 3 in 5 bits is represented as
〈1, 1, 1, 0, 0〉. The bit xi (for 1 ≤ i ≤ k) is interpreted as the statement x̄ ≥ i.

An important property of a Boolean representation for finite domain integers is the abil-
ity to represent changes in the set of values a variable can take. It is well-known that the
order encoding facilitates the propagation of bounds. Consider an order encoding variable
x̄ = 〈x1, . . . , xk〉 with values in the interval [0, k]. To restrict x̄ to take values in the range [a, b]
(for 1 ≤ a ≤ b ≤ k), it is sufficient to assign xa = 1 and xb+1 = 0 (if b < k). The variables
xa′ for 1 ≤ a′ < a and b < b′ ≤ k are then determined true and false, respectively, by unit
propagation. For example, given x̄ = 〈x1, . . . , x9〉, assigning x3 = 1 and x6 = 0 propagates to
give x̄ = 〈1, 1, 1, x4, x5, 0, 0, 0, 0〉, signifying that x̄ can take values in the interval [3, 5]. This
property is exploited in Sugar [TTKB09] which also applies the order encoding.

In [MCLS11], the authors observe an additional property of the order encoding: its ability
to specify that a variable cannot take a specific value 1 ≤ v ≤ k in its domain by equating
two variables: xv = xv+1. This indicates that the order encoding is well-suited not only to
propagate lower and upper bounds, but also to represent integer variables with an arbitrary

2http://www.imn.htwk-leipzig.de/~waldmann/draft/2012/smt-benchmarks/real/
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finite domain. For example, for x̄ = 〈x1, . . . , x9〉, equating x2 = x3 imposes that x̄ 6= 2.
Likewise x5 = x6 and x7 = x8 impose that x̄ 6= 5 and x̄ 6= 7. Applying these equalities to
x̄ gives, x̄ = 〈x1, x2, x2, x4, x5, x5, x7, x7, x9〉, signifying that x̄ can take values from the set
{0, 1, 3, 4, 6, 8, 9}.

In the remainder of this section we present the standard order encoding for natural numbers
and describe how we extend it, first to integers and then to arctic integers. Finally we state
that the order encoding is extended to tropical and fuzzy domains in a similar way.

Encoding Naturals: Let ā = 〈a1, . . . , ak〉 denote a tuple of k bits. To encode that ā is in the
order encoding we introduce clauses: unaryN(ā) =

∧{
ai+1 → ai

∣∣ 0 < i < k
}

. We say that
ā is a k-bit natural number in the order encoding (or “natural” for short). It can take values
between 0 and k. Let ā and b̄ be k-bit and k′-bit naturals. Their sum, c̄ = 〈c1, . . . , ck+k′〉 is
defined by the clauses:

sumN(ā, b̄) =
∧ {

(ai → ci) ∧ (¬ai → ¬ck′+i) ∧ (ai ∧ bj → ci+j) ∧
(bj → cj) ∧ (¬bj → ¬ck+j) ∧ (¬ai ∧ ¬bj → ¬ci+j−1)

∣∣∣∣ 0 < i ≤ k,
0 < j ≤ k′

}
Let ā = 〈a1, . . . , ak〉 be a k-bit natural and k′ > k. Then the following is the corresponding

k′-bit natural obtained by padding with k′ − k zeros: extendN(ā, k′) = 〈a1, . . . , ak, 0, . . . , 0〉.
Assume that ā and b̄ are k-bit naturals (if they are not in the same range then apply

extendN). We define max(ā, b̄) =
∧{

ci ↔ ai ∨ bj
∣∣ 0 < i ≤ k

}
. The bits 〈c1, . . . , ck〉 are a

k-bit natural representing the maximum. We define (ā ≥ b̄) =
∧{

bi → ai
∣∣ 0 < i ≤ k

}
and

(ā > b̄) = a1 ∧ ¬bk ∧
∧{

bi → ai+1

∣∣ 0 < i < k
}

.

Encoding Integers: We propose a representation for integers in the same spirit as that
for the naturals. It facilitates an encoding which is almost identical to the order encoding
of the naturals. The key design decision is to represent integers in the range (−k,+k) as a
2k-bit monotonic decreasing sequence. So, for x̄ = 〈x1, . . . , x2k〉, the bit xi (for 1 ≤ i ≤ 2k)
is interpreted as the statement x̄ ≥ −k + i. For example, 〈0, 0〉, 〈1, 0, 0, 0〉, 〈1, 1, 0, 0, 0, 0〉 all
represent −1 in different bit lengths; 〈1, 0〉, 〈1, 1, 0, 0〉, 〈1, 1, 1, 0, 0, 0〉 all represent 0 in different
bit lengths; and 〈1, 1〉, 〈1, 1, 1, 0〉, 〈1, 1, 1, 1, 0, 0〉 all represent +1 in different bit lengths.

Given this representation, all operations are (almost) the same as for naturals. Let ā =
〈a1, . . . , a2k〉 denote a tuple of 2k bits. To encode that ā is an integer in the order encoding
we introduce clauses: unaryZ(ā) = unaryN(ā) Let ā and b̄ be 2k-bit and 2k′-bit unary order
encoding integers. Their sum, c̄ = 〈c1, . . . , c2(k+k′)〉 is defined exactly the same as for the unary
case by adding the clauses sumZ(ā, b̄) = sumN(ā, b̄). Namely, simply by viewing ā and b̄ as if
they were natural numbers. For example, 〈0, 0〉+〈1, 0, 0, 0〉 = 〈1, 0, 0, 0, 0, 0〉 (for −1+−1 = −2)
or 〈1, 0, 0, 0〉+ 〈1, 1〉 = 〈1, 1, 1, 0, 0, 0〉 (for −1 + 1 = 0).

Let ā = 〈a1, . . . , a2k〉 be a 2k-bit integer and k′ > k. Then the following is the corresponding
2k′-bit integer: extendZ(ā, k′) = 〈1, . . . , 1, a1, . . . , ak, 0, . . . , 0〉 where the original bits are padded
by (k′−k) ones on the left and (k′−k) zeros on the right. Now we will assume that ā and b̄ are
2k-bit unary order encoding integers (if they are not in the same range then apply extendZ). In
this setting, max, >, ≥ are implemented exactly the same as their natural number counterparts.

Encoding Arctic Integers: We propose the following representation for arctic integers.
Obviously, we require an extra bit to capture the case where ā = −∞. To facilitate an encoding
which is similar to the order encoding for naturals and integers, we position this extra bit as
the leftmost in a (2k + 1)-bit monotonic decreasing sequence. So, for ā = 〈a0, a1, . . . , a2k〉, the
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bit a0 is false when ā = −∞ (and then also all other bits are zero). And, just like for integers,
the bit ai (for 1 ≤ i ≤ 2k) is interpreted as the statement ā ≥ −k + i.

To encode that ā is an arctic integer in the order encoding we introduce clauses: unaryP(ā) =
unaryN(ā) (reusing the definition for naturals). We say that ā is a (2k + 1)-bit unary order
encoding integer. It can take values between −k and +k or −∞.

Let ā = 〈a0, a1, a2k〉 and b̄ = 〈b0, b1, b2k′〉 denote 2k+1 and 2k′+1 order encoding arctics. Let
c0 = a0 ∧ b0 and let 〈c1, . . . , c2(k+k′)〉 denote the usual integer (or natural) sum of 〈a1, . . . , a2k〉
and 〈b1, . . . , b2k′〉 (each without its first bit). Then, the arctic sum ā + b̄ is 〈c0, c0 ∧ c1, . . . , c0 ∧
c2(k+k′)〉.

Let ā = 〈a0, a1, . . . , a2k〉 be a unary arctic number in 2k+1 bits. Its extension to 2k′+1 bits
for k′ > k is obtained as extendP(ā, k′) = 〈a0, . . . , a0, a1, . . . , a2k, 0, . . . , 0〉 (padding by (k′ − k)
times the a0 bit on the left and (k′ − k) times a 0 bit on the right). Assume that ā and b̄ are
(2k+1)-bit arctic integers (if they are not in the same range then apply extendP). Now, max, >,
≥ are implemented directly using their natural number counterparts. So everything about the
encoding is “for free”. Encoding >0 is like this: (ā >0 b̄) = ¬bk ∧

∧{
bi → ai+1

∣∣ 0 < i < k
}

.

Encoding Tropical and Fuzzy Integers: Tropical numbers are handled in much the same
way as arctics: with an “infinity bit”, and an unary encoding of the finite value, but we put the
infinity bit in the rightmost position. That way, we can use the standard “minimum” operation
for unary integers, and get the correct result also for the case that some arguments are infinite.
For fuzzy numbers, we represent “minus infinity” by 0, and “plus infinity” by B (the bit width).
The semiring operations are standard minimum and maximum operations with the usual unary
encodings.

5 A Knockout Example

The termination status of problem SRS/Gebhardt/19 has been open since it was posed in
2006. Using the methods from this paper, we obtain a tropical matrix interpretation to prove
its termination. A key step in the proof involves the setting where (the alphabet is Σ ={

0, 1, 0#, 1#
}

):

R =

{
0# 0 0 0 → 1# 0 1 1,
1# 0 0 1 → 0# 0 1 0

}
S =

{
0 0 0 0 → 1 0 1 1,
1 0 0 1 → 0 0 1 0

}
So we seek a tropical matrix interpretation which satisfies the constraints 0#03 ≥ 1#012,
1#021 ≥ 0#010, 04 ≥ 1012, 1021 ≥ 0210 and also (04 >0 1012) ∨ (1021 >0 0210).

In approximately one hour of SAT solving time, using the order encoding with five bits per
tropical unknown we obtain the following tropical interpretation (where + indicates +∞) which
allows to remove the second rule from R to render a proof of termination.

0 7→



4 0 3 + 4 4 4 4 +
+ 4 + + 0 + + 4 +
3 + + 2 3 4 3 + +
3 0 + + + 0 + 0 +
4 2 0 + 4 + + + +
0 2 + 3 4 + 3 + 3
2 0 0 4 + 0 + 2 3
2 4 3 0 + + 0 + +
+ + + + + + + + 0


1 7→



2 + + 4 3 4 + + +
+ 3 0 2 2 0 4 + +
+ 2 0 4 0 + 0 3 +
0 4 + + 3 3 4 4 +
2 + + + 4 4 + + +
0 4 + 0 0 2 1 + 3
0 + + + + + 3 + +
+ 0 0 0 + + 2 0 1
+ + + + + + + + 0


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0# 7→



0 1 1 2 0 0 3 0 2
+ + + + + + + + +
0 + 0 1 + + + + 2
1 + 1 2 + + + + 3
0 + 1 1 + + + 1 2
0 1 + 3 + 3 2 + 4
0 + 0 3 + + + 2 2
2 4 + 4 2 + 4 + 4
+ + + + + + + + 0


1# 7→



0 4 1 1 0 1 0 + +
+ + + + + + + + +
0 2 0 1 1 + + + +
2 + 2 2 1 + 2 4 4
0 + 4 1 2 2 2 + 3
+ + 2 + 0 3 1 + +
+ + + 1 0 + + + 3
4 + 4 3 4 4 2 + +
+ + + + + + + + 0



6 Tools and Experiments

To assess our contributions empirically, we conducted several preliminary experiments. We use
three tools

(1) satchmo-smt—Johannes Waldmann enhanced his satchmo-smt [Wal] solver, which uses a
binary encoding of QF LIA (cf. e.g. [EWZ08, FGM+07]), to perform also a unary en-
coding similar to Sect. 4. The solver satchmo-smt makes use of the solver MiniSAT [ES03]
(development version based on version 2.2). So for arctic constraints, the binary encoding
essentially corresponds to that proposed in [KW09], whereas the unary encoding is new.

(2) BEE—Yoav Fekete enhanced the BEE constraint solver developed at Ben-Gurion University
to compile arctic constraints to CNF. It combines constraint and CNF simplification
techniques to provide a concise CNF representation [MCLS11]. BEE uses the SAT solver
CryptoMiniSAT [SNC09], version 2.5.1, as a back-end solver;

(3) Z3, version 3.2—This SMT solver [dB08] is developed at MS Research and can handle
QF LIA end QF IDL theories (among others).

Our experimentation initiates a comparison of these tools when solving exotic semiring
constraints. We view this experimentation as a proof of concept and starting point for a more
thorough investigation on how to solve exotic semiring constraints using SMT solvers and SAT
encodings. As the benchmark set, we generated exotic termination constraints with matrix
dimension up to 5 from the string rewriting problems of the Termination Problem Data Base
(TPDB)3, selected those that were solvable by satchmo-smt within 10 minutes, and removed
those that were solvable quickly (< 2 seconds).

Exotic constraints were given directly to BEE, and for satchmo-smt and Z3 they were being
translated to QF LIA as described in Sect. 3.

The benchmark runs were performed on a Quad-core Intel i5-2400 at 3.1 GHz with 4 GB
RAM. We conducted the following experiments which are summarized in Table 1. All times are
in seconds. The timeout is 1800 sec. The rows of the table were selected from 194 instances.
The average, max and number of timeout information in the last 3 rows is a statistic on all 194
instances.

Experiment 1: We apply satchmo-smt to compare binary and unary encodings for LIA con-
straints that stem from arctic constraints. So while here we do not directly take optimizations
by dedicated domain knowledge of the arctic semiring into account, this experiment still allows
us to make observations on performance of binary vs. unary bit-blasting. Here (arctic) variables

3http://termination-portal.org/wiki/TPDB
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instance Experiment 1 Experiment 2 Experiment 3
satchmob (3) satchmou (7) BEE (it) Z3 BEE (4) satchmou (4)

S2.1 55.09 1.20 0.73 112.39 3.74 0.70
S2.2 0.81 4.91 0.66 411.13 7.31 11.72
S2.3 11.82 7.11 12.94 111.38 2.02 154.74
S2.4 2.81 2.81 11.6 891.97 2.23 219.14
S3.1 1.51 84.34 1.62 1754.24 9.58 1.21
S3.2 4.31 23.34 4.15 428.24 6.55 2.61
S3.3 4.81 24.14 2.10 199.43 3.94 3.31
S3.4 71.41 8.42 0.97 472.16 1.66 0.70
S3.5 108.97 16.63 0.60 359.24 1.24 0.60
S3.6 TimeOut TimeOut 9.13 305.49 2.13 123.59
S3.7 2.31 8.82 9.43 TimeOut 1.82 128.1
S4.0 2.41 4.71 2.15 6.69 21.31 1.50
S4.1 4.91 26.04 6.00 610.73 8.83 3.51
S4.2 6.11 4.31 3.68 27.06 26.94 2.21
S4.3 TimeOut 172.18 2.55 TimeOut 35.68 7.71
S5.1 51.69 19.33 17.92 1550.72 15.23 4.11
S5.2 TimeOut 46.18 2.33 TimeOut 85.44 77.92
S5.3 TimeOut TimeOut 3.40 TimeOut 20.59 28.85
S5.4 TimeOut 725.44 4.16 TimeOut 160.79 44.07
S5.5 18.93 17.33 3.45 TimeOut 6.5 13.12
S6.1 4.61 9.72 9.05 45.33 27.22 4.21
S6.2 7.32 4.41 4.30 41.10 29.64 2.61
S6.3 9.82 8.02 8.57 84.25 21.10 4.31
S6.4 169.98 47.58 1.62 138.57 31.04 4.41
S6.5 TimeOut 1408.21 6.80 TimeOut 731.93 TimeOut
average 61.58 5.44 2.22 224.64 10.83 14.94
max 1800 1800 17.92 1800 731.93 1800
timeouts 6 2 0 15 0 1

Table 1: results from 3 experiments

take values {−∞, 0, . . . , 7}. This means 3 bits for the binary representation and 7 bits for the
unary as indicated in the headers of these two rows. Despite the significantly more verbose
representation in the unary encoding, the corresponding average runtime is lower by an order
of magnitude in comparison to the average runtime for the binary encoding. Also the worst-case
behavior of unary bit-blasting is better (only 2 timeouts instead of 6 for binary bit-blasting).

Experiment 2: Here we compare unary bit-blasting as in Sect. 4 using BEE [MCLS11] with
SMT solving using Z3.

SMT solvers with a dedicated theory solver like Z3 natively support all natural numbers as
search space for the input constraint. For bit-blasting with BEE, we use an iterative deepening
approach which doubles n for the search space {−∞, 0, . . . , n} until a solution is found or n
reaches a specified upper bound. This is indicated by “(it)” on the corresponding column. Here
we can show satisfiability of all instances using at most 4 bits.

With BEE, we observe an improvement in the average runtime by two orders of magnitude
over Z3. Also in the worst case BEE performs significantly better (max. runtime of less than 18
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seconds, whereas Z3 shows 15 timeouts after 1800 seconds each).

Experiment 3: Here we compare unary bit-blasting using BEE and using satchmo-smt, each
with 4 bits for the numbers (4). Here BEE and satchmo show similar performance (where BEE
is slightly faster on average). While satchmo-smt has an approach of directly bit-blasting LIA
constraints “as is” (and not taking the underlying arctic domain into account), BEE has a certain
overhead due to the simplifications applied in the SAT compilation phase, which may not always
pay out. Moreover, the two solvers use different SAT solvers (CryptoMiniSAT and MiniSAT) for
the resulting CNFs, which may also lead to differences in runtime. Here investigations with
different SAT solvers as back-ends would be interesting.

7 Discussion

In this paper, we formalize exotic semiring constraints and discuss several new ways of solving
them. In addition to the existing approach based on binary bit-blasting, we also provide new
approaches based on SMT-LIA and unary bit-blasting with order encoding.

We have applied these techniques to solve exotic semiring constraints that come up in the
context of automated termination analysis.

The LIA and IDL constraints derived from exotic termination constraints all share the
property that the only numerical constant that appears anywhere, is the number zero. Higher
numbers (than zero) may of course appear in the solution, but only as consequences of strict
equalities.

It appears that long chains of strict inequalities are “quite unlikely”, so if an exotic termi-
nation constraint has a solution at all, then it typically also has a solution that uses only small
numbers, and this explains the effectiveness of unary bit-blasting solver methods.

For more information on our experiments, we refer to our evaluation web page at the fol-
lowing URL: http://www.cs.bgu.ac.il/~mcodish/Benchmarks/SMT2012/

Ongoing research aims to provide a powerful solver for exotic semiring constraints that arise
in the context of termination analysis. Here we plan to investigate the application of SMT and
SAT solvers with unary encodings, where also applications other than termination analysis may
benefit.
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