
EPiC Series in Computing
Volume 73, 2020, Pages 390–408

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

Beyond Symbolic Heaps: Deciding Separation Logic with

Inductive Definitions

Jens Pagel and Florian Zuleger

1 TU Wien, Vienna, Austria
pagel@forsyte.at

2 TU Wien, Vienna, Austria
zuleger@forsyte.at

Abstract

Symbolic-heap separation logic with inductive definitions is a popular formalism for
reasoning about heap-manipulating programs. The fragment SLIDbtw introduced by Iosif,
Rogalewicz and Simacek, is one of the most expressive fragments with a decidable entailment
problem. In recent work, we improved on the original decidability proof by providing a
direct model-theoretic construction, obtaining a 2-Exptime upper bound. In this paper,
we investigate separation logics built on top of the inductive definitions from SLIDbtw, i.e.,
logics that feature the standard Boolean and separation-logic operators. We give an almost
tight delineation between decidability and undecidabilty. We establish the decidability of
the satisfiability problem (in 2-Exptime) of a separation logic with conjunction, disjunction,
separating conjunction and guarded forms of negation, magic wand, and septraction. We
show that any further generalization leads to undecidabilty (under mild assumptions).

1 Introduction

Separation logics (SL) are a popular formalism for reasoning about the usage of dynamic
resources [30, 25], and have been widely used in static analysis [11, 10], automated verification [5,
7, 13, 19, 29, 24, 31], and interactive verification [2, 21]. SLs extend first-order logic with
so-called separating connectives, most importantly the separating conjunction ?, in order to be
able to split resources and reason about program parts in isolation.

In this article, we study SLs for reasoning about the heap structures arising in heap-
manipulating programs. Here, the SL formula φ1 ? φ2 specifies that a heap can be split into two
disjoint sub-heaps that satisfy φ1 and φ2. In addition to the separating connectives, SLs for the
heap usually feature points-to predicates and predicates for unbounded data-structures such as
lists, trees, etc. While satisfiability and related problems for separation logic are undecidable
in general, many decidable fragments have been proposed. Most decidability results have
been obtained for the symbolic-heap fragment [6, 4, 16, 9, 17, 32, 20, 33]. Symbolic heaps are
separation-logic formulas in which atomic predicates can only be combined with the separating
conjunction; no other separating connectives or Boolean connectives are allowed. The decidability
results fall into two categories: Logics with built-in predicates—usually for expressing linked
lists and/or trees [4, 14, 27, 28, 22]; and logics with user-defined inductive definitions (SLID).

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 390–408

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

odd(x1, x2) ⇐ x1 7→ x2

odd(x1, x2) ⇐ ∃y. (x1 7→ y) ? even(y, x2)
even(x1, x2) ⇐ ∃y. (x1 7→ y) ? odd(y, x2)
lseg(x1, x2) ⇐ x1 7→ x2

lseg(x1, x2) ⇐ ∃y. (x1 7→ y) ? lseg(y, x2)

In SLID, users specify the shape of data
structures by a set of recursive definitions. For
example, the definitions on the right define seg-
ments of singly-linked lists of odd length, even
length, and length at least one. Importantly,
the formulae on the right-hand side of ⇐ in the
SLID definitions are restricted to be symbolic
heaps, i.e., formulae built from atomic predicates (here (· 7→ ·), odd, even, and lseg) and the
separating conjunction ?. The satisfiability problem for SLID is decidable in exponential time [9].
The entailment problem, which is crucial for Hoare-style deductive verification, is, however,
undecidable in general [1]. Consequently, restricted fragments of SLID definitions have been
studied. While it is natural to consider restrictions to trees [17, 32, 33], it is possible to obtain
decidability results for more expressive logics. Iosif et al. [16] proved the decidability of a
particularly expressive fragment of SLID. The fragment, for example, supports the definition of
binary trees whose leaves form a linked list (which might be used to implement a sorted set data
structure). Following [16], we denote this logic by SLIDbtw, where the subscript alludes to the
fact that that all models of SLIDbtw formulas (when viewed as graphs) are of bounded treewidth
(BTW). The original decidability result [16] was obtained by a reduction to the satisfiability
problem of monadic second-order logic over graphs of BTW. Deciding the satisfiability via this
reduction would involve a blowup of several exponentials and therefore seems impractical to
implement [17]. In recent work [26], we improved on the original decidability proof by provid-
ing a direct model-theoretic construction, obtaining a 2-Exptime upper bound and promising
experimental results. A matching lower bound has been announced in [15].

In this article, we study SLs that go beyond the symbolic-heap fragment. We consider SLs
that feature the standard Boolean and separation-logic connectives in addition to atomic SLIDbtw

predicates. In these logics, the predicates (such as odd and even above) must still be defined
using symbolic heaps, but the SL formulae that are built on top of atomic predicates can use
other classical and separating connectives. For example, our decidability result allows discharging
entailment queries such as (lseg(x, y)∧ (even(y, nil)−?odd(x, nil)))∧¬(x 7→ y) |=Φ odd(x, y). Such
queries naturally arise in Hoare-style verification, where conditions require reasoning about the
Boolean connectives (∧, ∨ and ¬) and weakest pre-condition computation requires reasoning
about the magic-wand −? [18, 30]. In this paper, we are concerned with the fundamental question
what is decidable about an SL that is built on top of the inductive definitions from SLIDbtw.

Inspired by work on guarded first-order logic [3], we propose a guarded fragment of separation
logic, SLg

btw. Formulas in SLg
btw may combine user-defined predicates from SLIDbtw with the

separating conjunction ?, classical conjunction ∧ and classical ∨. Moreover, we allow negation
¬, magic wand −? and septraction −©? [8] to appear in formulas of the form φ ∧ ¬ψ, φ ∧ (ψ−?ζ),
and φ ∧ (ψ−©?ζ). Here, φ acts as a guard on the operators; hence the name.

Contributions. Our two main technical results are as follows:

• We show that further generalizing SLg
btw by allowing any one of the three operators ¬, −?

and −©? in an unguarded form yields an undecidable logic.

• We then prove that our approach for satisfiability- and entailment checking from [26] can
be lifted to SLg

btw, obtaining a 2-Exptime decision procedure for guarded separation logic.
We thus obtain the first decidability result for a separation logic with support both for
unbounded data structures and for the magic wand.

391

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

We thus obtain an (almost perfectly) tight delineation between what is decidable and undecidable
in SLs with inductive definitions from SLIDbtw; the only cases left open are whether the
undecidability results can be tightened to proper subsets of {∧, ∗, t}, {∧, ∗,¬} and {∧, ∗,−?}.

Outline. We introduce SL with inductive definitions and its guarded fragment SLg
btw in

Section 2. We show that all extensions of SLg
btw are undecidable in Section 3. In Section 4,

we introduce the abstraction that underlies our decision procedure for SLg
btw. We present the

decidability result in Section 5 and conclude in Section 6. All proofs omitted in Sections 4 and 5
are in our technical report [26].

2 Separation Logic with Inductive Definitions

Preliminaries. We denote by |X| the cardinality of the set X. Let f be a (partial) function.
Then dom(f) and img(f) denote the domain and image of f , respectively. We frequently use set
notation to define and reason about partial functions. For example, f := {x1 7→ y1, . . . , xk 7→ yk}
is the partial function that maps xi to yi, 1 ≤ i ≤ k, and is undefined on all other values; f ∪ g is
the union of partial functions f and g; and f ⊆ g means f(x) = g(x) for all x ∈ dom(f). Sets and
ordered sequences are denoted in boldface, e.g., x. To list the elements of a sequence, we write
〈x1, . . . , xk〉. We shorten 〈x〉 to x to reduce clutter. The empty sequence is ε, the concatenation
of x and y is x · y. We lift functions to sequences, i.e, f(〈x1, . . . , xk〉) := 〈f(x1), . . . , f(xk)〉.

Syntax of separation logic. Let Var denote an infinite set of variables, with nil ∈ Var. We
assume a set Preds of predicate identifiers. Each predicate pred ∈ Preds is equipped with an
arity ar(pred) ∈ N, representing the number of parameters to be passed to the predicate. The
semantics of such predicates are defined by means of inductive definitions, introduced later.

The grammar in Fig. 1 defines three variants of separation logic (SL) with inductive definitions:
guarded SL, formulas of the form φg, collected in the set SLg

btw; quantifier-free SL, formulas of

the form φqf , collected in SLqf
btw; and existentially-quantified symbolic heaps, collected in SH∃.

In Fig. 1, pred ∈ Preds is a predicate identifier, x, y ∈ Var are variables, and x,y, z ∈ Var∗

are (possibly empty) sequences of variables with |x| = ar(pred). The first line of Fig. 1 defines
the atomic formulas, τ , common to all SL variants studied in this article. emp is the empty heap,
x 7→ y asserts that x points to y, x ≈ y asserts the equality between variables x and y, and x 6≈ y
asserts the disequality of x and y. Guarded formulas, φg, are built from atomic formulas using
the separating conjunction ?, conjunction ∧, disjunction ∨, guarded negation φg ∧ ¬φg, guarded
septraction φg ∧ (φg−©?φg), and guarded magic wands φg ∧ (φg−?φg). In quantifier-free formulas,
φqf , all operators may occur unguarded and we include an additional atom t representing true.
Finally, φsh formulas are existentially-quantified symbolic heaps. We use ? instead of ∧ in the
pure constraint, Π, because in our semantics, (dis)equalities only hold in empty heaps.

τ ::= emp | x 7→ y | pred(x) | x ≈ y | x 6≈ y
φg ::= τ | φg ? φg | φg ∧ φg | φg ∨ φg | φg ∧ ¬φg | φg ∧ (φg−©?φg) | φg ∧ (φg−?φg)
φqf ::= τ | t | φqf ? φqf | φqf−?φqf | φqf−©?φqf | φqf ∧ φqf | φqf ∨ φqf | ¬φqf
φsh ::= ∃e. (x1 7→ y1) ? · · · ? (xk 7→ yk) ? pred1(z1) ? · · · ? predl(zl) ?Π,

where Π ::= a1 ≈ b1 ? · · · ? am ≈ bm ? c1 6≈ d1 ? · · · ? cn 6≈ dn

Figure 1: The syntax of the separation-logic fragments studied in this article: Guarded formulas
φg; quantifier-free formulas φqf ; and existentially-quantified symbolic heaps, φsh.

392

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

tll(x1, x2, x3) ⇐ x1 7→ (nil, nil, x3) ? x1 = x2

tll(x1, x2, x3) ⇐ ∃l, r,m. x1 7→ (l, r, nil)
? tll(l, x2,m) ? tll(r,m, x3)

(a) The definition of the tll predicate representing trees with
linked leaves.

x1

x2 x3

(b) A model of tll(x1, x2, x3).

Figure 2: A system of inductive definition (SID) defining trees with linked leaves.

We denote by SL(·1, . . . , ·k) the restriction of SLqf
btw to formulas built from τ and the

additional symbols and operators ·1, . . . , ·k. For example, SL(∧, ?, t) is the SL in which formulas
are built from atomic predicates τ , additional predicate t and binary operators ?, ∧.

Additional notation. We write φ[〈x1, . . . , xk〉 / 〈y1, . . . , yk〉] for the formula obtained from
φ by instantiating every occurrence of xi with yi. We sometimes write F1≤i≤nφi to denote
φ1 ? · · · ? φn. For n = 0, this expression evaluates to the neutral element of ?, emp. For an
atomic formula τ and a formula φ, τ ∈ φ denotes that τ occurs in φ. The size of a formula φ,
|φ|, is the sum of the number of atoms, the number of unary operators and binary operators,
and the number of quantifiers in the formula. Finally, fvars(φ) is the set of all free variables in φ.

Inductive definitions. Predicates are defined by a system of inductive definitions (SID).
An SID is a finite set Φ of rules of the form pred(x) ⇐ φ, where pred ∈ Preds is a predicate
symbol, x are the parameters of pred, and φ ∈ SH∃ is an existentially-quantified symbolic heap
as defined in Fig. 1 [16, 1]. We assume that all rules of the same predicate pred have the same
parameters. We collect these free variables of pred in the set fvars(pred). The size of an SID Φ,
|Φ|, is the sum of the sizes of the formulas in its rules.

Example 2.1. The predicates odd and even in Section 1 define all lists of odd and even length,
respectively. The predicate tll in Fig. 2a defines binary trees whose leaves are connected in a
singly-linked list (TLL). The parameters correspond to the root, the left-most leaf (x2) and the
successor of the right-most leaf (x3). Every node of a TLL contains three pointer fields: The left
successor, the right successor (non-null at inner nodes, null at leaves), and the next leaf (null at
inner nodes, non-null at the leaves). We show a graphical representation of a TLL in Fig. 2b.

Semantics. We use the standard stack–heap semantics of separation logic [30]. Let Loc be
an infinite set of locations. A stack is a finite partial function s : Var ⇀ Loc. A heap is a finite
partial function h : Loc ⇀ Loc+. A model is a stack–heap pair (s, h) with s(nil) /∈ dom(h).

We define the set of allocated variables of a model, alloced(s, h) := {x | s(x) ∈ dom(h)}. We
denote by h1 +h2 the disjoint union of the heaps h1, h2. If dom(h1)∩dom(h2) 6= ∅, then h1 +h2 is
undefined. We let locs(h) := dom(h)∪

⋃
img(h) and dangling(h) := {l ∈

⋃
img(h) | l /∈ dom(h)}.

Figure 3 defines the semantics of separation logic formulas φ w.r.t. a fixed SID Φ. In the
semantics of equalities and disequalities, we follow [27, 22] and require that the heap is empty.
This ensures that t is not definable in guarded formulas (e.g., as x ≈ x). Observe that we use a
precise [12] semantics of the points-to assertion: (s, h) |=Φ x 7→ y holds only in single-pointer
heaps. A heap is the model of a predicate call pred(y) iff it is the model of a rule of the predicate
once the free variables of the rule, x, have been replaced by the actual arguments, y. Our
semantics of predicates is equivalent to the least fixed-point semantics as used e.g. in [9].

As usual, (s, h) |=Φ φ1 ? φ2 iff h can be split into disjoint heaps that are models of φ1 and φ2;
(s, h) |=Φ φ1−?φ2 iff extending h with a model of φ1 always yields a model of φ2, provided the

393

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

(s, h) |=Φ emp iff dom(h) = ∅
(s, h) |=Φ x ≈ y iff dom(h) = ∅ and s(x) = s(y)
(s, h) |=Φ x 6≈ y iff dom(h) = ∅ and s(x) 6= s(y)
(s, h) |=Φ x 7→ 〈y1, . . . , yk〉 iff h = {s(x) 7→ 〈s(y1), . . . , s(yk)〉}
(s, h) |=Φ pred(y) iff (s, h) |=Φ ψ[x/y] for some (pred(x)⇐ ψ) ∈ Φ
(s, h) |=Φ t always
(s, h) |=Φ φ1 ? φ2 iff ex. h1, h2 s.t. h = h1 + h2, (s, h1) |=Φ φ1 and (s, h2) |=Φ φ2

(s, h) |=Φ φ1−?φ2 iff for all h1, h2, if h2 = h1 + h and (s, h1) |=Φ φ1

then (s, h2) |=Φ φ2

(s, h) |=Φ φ1−©?φ2 iff there ex. h1 s.t. (s, h1) |=Φ φ1 and (s, h + h1) |=Φ φ2

(s, h) |=Φ φ1 ∧ φ2 iff (s, h) |=Φ φ1 and (s, h) |=Φ φ2

(s, h) |=Φ φ1 ∨ φ2 iff (s, h) |=Φ φ1 or (s, h) |=Φ φ2

(s, h) |=Φ ¬φ1 iff (s, h) 6|=Φ φ1

(s, h) |=Φ ∃e. φ iff exists v ∈ Loc s.t. (s ∪ {e 7→ v} , h) |=Φ φ

Figure 3: The semantics of separation logic.

extension is defined; (s, h) |=Φ φ1−©?φ2 if there exists a way to extend h with a model of φ1 and
obtain a model of φ2. The semantics of the Boolean connectives and quantifiers is standard.

Let φ, ψ be SL formulas. We say that φ is satisfiable w.r.t. SID Φ if there exists a model
(s, h) such that (s, h) |=Φ φ. We say that φ entails ψ w.r.t. Φ, denoted φ |=Φ ψ, iff for all models
(s, h), if (s, h) |=Φ φ then (s, h) |=Φ ψ.

Formulas cannot distinguish between isomorphic models.

Definition 2.2. Let (s, h), (s′, h′) be models. (s, h) and (s′, h′) are isomorphic, (s, h) ∼= (s′, h′),
if there exists a bijection σ : (locs(h) ∪ img(s)) → (locs(h′) ∪ img(s′)) such that (1) for all x,
s′(x) = σ(s(x)) and (2) h′ = {σ(l) 7→ σ(h(l)) | l ∈ dom(h)}.

Lemma 2.3. Let φ ∈ SLqf
btw. Let (s, h) and (s′, h′) be models with (s, h) ∼= (s′, h′). Then

(s, h) |=Φ φ iff (s′, h′) |=Φ φ.

The logic SLIDbtw [16]. In this article, we assume that all SIDs satisfy progress, connectivity,
and establishment and denote the resulting restricted formalism by SLIDbtw.

A predicate pred satisfies progress iff every rule of pred contains exactly one points-to assertion
and there exists a variable x ∈ fvars(pred) such that for all rules (pred⇐ φ) ∈ Φ, x is the variable
on the left-hand side of this points-to assertion. In this case, we call x the root of the predicate.
Moreover, if the i-th parameter of pred is the root of pred, then predroot(pred(z1, . . . , zk)) := zi.

A predicate pred satisfies connectivity iff for all rules (pred(x) ⇐ (x 7→ y) ∗ ψ) ∈ Φ, the
root parameters of the recursive calls in ψ occur in y. A predicate pred is established iff all
existentially quantified variables across all rules of pred are eventually allocated. Formally, for
all rules (pred⇐ ∃y. φ) ∈ Φ and for all models (s, h), if (s, h) |=Φ φ then s(y) ⊆ dom(h).

Example 2.4 (SID Assumptions). The SIDs in Ex. 2.1 are all in SLIDbtw.

Throughout this article, we often restrict our attention to models of guarded formulas, which
we call guarded models and collect in Mg

Φ := {(s, h) | ex. φ ∈ SLg
btw s.t. (s, h) |=Φ φ}.

In guarded models, only locations in img(s) can be dangling.

Lemma 2.5. Let φ ∈ SLg
btw and (s, h) |=Φ φ. Then dangling(h) ⊆ fvars(φ).

394

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

letteri(a) ⇐ a 7→ 〈nil, . . . , nil〉︸ ︷︷ ︸
length i

, 1 ≤ i ≤ n

N(x1, x2, x3) ⇐ ∃l, r,m. (x1 7→ 〈l, r〉) ? A(l, x2,m) ? B(r,m, x3), j ∈ {1, 2} , N → AB ∈ Rj

N(x1, x2, x3) ⇐ ∃a. (x1 7→ 〈x3, a〉) ? letterk(a) ? x1 ≈ x2, j ∈ {1, 2} , N → ak ∈ Rj

word(x, y) ⇐ ∃a. (x 7→ 〈y, a〉) ? letteri(a), 1 ≤ i ≤ n
word(x, y) ⇐ ∃n, a. (x 7→ 〈n, a〉) ? letteri(a) ? word(n, y), 1 ≤ i ≤ n

Figure 4: The SID Φ that encodes the derivations of the context-free grammars G1 =
〈N1,T,R1,S1〉 and G2 = 〈N2,T,R2,S2〉.

3 Undecidability of Extensions

In this section, we justify the use of guarded negation, magic wand, and septraction in SLg
btw by

proving that allowing any of these three operators to be used unguarded leads to an undecidable
logic. Together with the decidability result for SLg

btw that we present later in the paper, this
yields an almost tight delineation between decidability and undecidability.

Context-free grammars. Our undecidability results are based on an encoding of the
language-intersection problem for context-free grammars.

Definition 3.1. A context-free grammar (CFG) is a 4-tuple G = 〈N,T,R,S〉, where N is a
finite set of nonterminals; T is a finite set of terminals, disjoint from N; R ⊆ N× (N2 ∪T) is
a finite set of production rules; and S ∈ N is the start symbol. CFG is the set of all CFGs.

We often denote production rules (a, b) by a → b to improve readability. We assume
w.l.o.g. that CFGs are in Chomsky normal form. Further, we only consider CFGs that do
not accept the empty word. Under these assumptions, rules are either of the form N → AB,
A,B ∈ N, or of the form N → a, a ∈ T.

Definition 3.2. Let G = (N,T,R,S) ∈ CFG and let v, w ∈ N ∪T∗. We write v ⇒ w if there
exist u1, u2 ∈ N ∪T∗, (a, b) ∈ R such that v = u1 · a · u2 and w = u1 · b · u2. We write ⇒+ for
the transitive closure of ⇒. The language of G is given by L(G) := {w ∈ T∗ | S⇒+ w}.

In the following, we exploit the following classic result.

Theorem 3.3. Let G1,G2 ∈ CFG. It is undecidable whether L(G1) ∩ L(G2) 6= ∅.

Encoding CFGs as SIDs. Let T = {a1, . . . , an} and for 1 ≤ i ≤ 2, let Gi = 〈Ni,T,Ri,Si〉
be a context-free grammar. Assume w.l.o.g. that N1 ∩N2 = ∅. Consider the SID Φ defined
in Fig. 4. The predicates N , N ∈ N1 ∪N2, and letteri, 1 ≤ i ≤ n, encode the derivations of
the grammars G1,G2 as trees with linked leaves (TLL), similar to the SID in Example 2.1. The
predicate word is an auxiliary predicate that overapproximates the lists of linked leaves that
the TLLs may contain; we will need it later. Every word in L(Gi) corresponds to at least one
model (s, h) with (s, h) |=Φ Si(x1, x2, x3); and every model (s, h) with (s, h) |=Φ Si(x1, x2, x3)
corresponds to a derivation tree and a word in L(Gi), where the inner nodes of the TLL
correspond to the derivation tree and the linked list of leaves correspond to the word in L(Gi).

Example 3.4. We illustrate the encoding in Fig. 5. Figure 5a shows the rules R of a simple
CFG G = 〈{S,A,B,C} , {a1, a2} ,R, S〉. Figure 5b In Fig. 5c, we show the stack–heap model
that encodes the aforementioned derivation tree. Every nonterminal is translated to a node in a

395

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

S → AB

A→ CC

B → BB

B → a1

C → a2

(a) Production rules of
a CFG G.

a2 a2 B B a1

a1 a1

C C B B

A B

S

(b) A derivation tree for the word
a2a2a1a1a1 ∈ L(G).

x2 x3

x1

⊥⊥ ⊥⊥

⊥ ⊥

⊥

(c) The corresponding model of the
predicate call S(x1, x2, x3).

Figure 5: Encoding a derivation of a context-free grammar as a stack–heap model.

binary tree (blue). The leaves of the tree are linked. They each have a successor that encodes a
terminal symbol of the derivation (orange): The node contains k pointers to nil (denoted as ⊥
in the figure) to represent terminal ak. The list of linked leaves and orange nodes together form
the induced word of the model as defined later in Definition 3.7.

To show the correctness of the encoding, we need the induced words of the models of Φ.

Definition 3.5. Let G = 〈N,T,R,S〉 and let Φ be the corresponding SID encoding. Let
(s, h) |=Φ word(x, y) and let j1, . . . , jm ∈ {1, . . . , n} be such that

(s, h) |=Φ∃n1, . . . , nm−1, b1, . . . , bm. ((x 7→ 〈n1, b1〉) ? letterj1(b1))

? ((n1 7→ 〈n2, b2〉) ? letterj2(b2)) ? · · · ? ((nm−1 7→ 〈y, bm〉) ? letterjm(bm)).

We define the induced letters of (s, h) and x, y as letters(s, h, x, y) := aj1aj2 · · · ajm .

Every model that satisfies N(x1, x2, x3) contains a sub-heap that satisfies the word predicate.

Lemma 3.6. Let G1 = 〈N1,T,R1,S1〉, G2 = 〈N2,T,R2,S2〉 and let Φ be the corresponding
SID encoding. Let x1, x2, x3 ∈ Var, N ∈ N1 ∪N2 and let (s, h) |=Φ N(x1, x2, x3) ? t. Then
there exists a unique heap hw ⊆ h with (s, hw) |=Φ word(x2, x3).

Lemma 3.6 ensures that the following is well defined.

Definition 3.7. Let G = 〈N,T,R,S〉 and let Φ be the corresponding SID encoding. Let
x1, x2, x3 ∈ Var, N ∈ N and let (s, h) |=Φ N(x1, x2, x3). Let hw ⊆ h be the unique heap with
(s, hw) |=Φ word(x2, x3). We define the induced word of (s, h) and N as wordofN (s, h, x2, x3) :=
letters(s, hw, x2, x3).

Lemma 3.8. Let G = 〈N,T,R,S〉 and let Φ be the corresponding SID encoding. Let 1 ≤ i ≤ 2,
x1, x2, x3 ∈ Var, and let w ∈ L(G). Then there exists a model (s, h) with (s, h) |=Φ S(x1, x2, x3)
and wordofS(s, h, x2, x3) = w.

Lemma 3.9. Let G = 〈N,T,R,S〉 and let Φ be the corresponding SID encoding. Let x1, x2, x3 ∈
Var and let (s, h) be a model with (s, h) |=Φ S(x1, x2, x3). Then wordofS(s, h, x2, x3) ∈ L(G).

We need an auxiliary result involving the formula

word2(x, y) := (word(x, y)−©?S2(a, x, y))−©?S2(a, x, y)

before we can prove the undecidability results.

396

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

Lemma 3.10. Let G2 = 〈N2,T,R2,S2〉, let Φ be the corresponding SID encoding, and let (s, h)
be a model. Then (s, h) |=Φ word2(x, y) iff (s, h) |=Φ word(x, y) and letters(s, h, x, y) ∈ L(G2).

Proof. Let (s, h) |=Φ word2(x, y). By the semantics of −©? , there exists a heap h1 with (s, h1) |=Φ

word(x, y)−©?S2(a, x, y) such that (s, h + h1) |=Φ S2(a, x, y). Observe that h1 contains precisely
the inner nodes of the model (s, h + h1), i.e., everything except the part of the model that
induces the word. Consequently, h is the part of the model that induces the word, i.e.,
wordofS2

(s, h + h1, x, y) = letters(s, h, x, y) and (s, h) |=Φ word(x, y). Lemma 3.9 then yields
letters(s, h, x, y) ∈ L(G2).

Conversely, let (s, h) be such that w := letters(s, h, x, y) ∈ L(G2). As a consequence of
Lemma 3.8, there exists a heap h1 with (s, h+h1) |=Φ S2(a, x, y). By the semantics of −©? and be-
cause (s, h) |=Φ word(x, y) by assumption, we then have (s, h1) |=Φ word(x, y)−©?S2(a, x, y).
Because (s, h + h1) |=Φ S2(a, x, y), we obtain by the semantics of −©? that (s, h) |=Φ

(word(x, y)−©?S2(a, x, y))−©?S2(a, x, y).

We are ready to prove the undecidability results.

Theorem 3.11. The satisfiability problems of the separation logics (1) SL(∧, ?, t), (2)
SL(∧, ?,¬), (3) SL(∧, ?,−?), and (4) SL(−©?) are undecidable.

Proof. Throughout this proof, let G1 = 〈N1,T,R1,S1〉 ,G2 = 〈N2,T,R2,S2〉 ∈ CFG and let
Φ be the corresponding SID encoding.

Undecidability of SL(∧, ?, t): We claim that φ := (S1(a, x, y)? t)∧(S2(b, x, y)? t) is satisfiable
iff L(G1) ∩ L(G2) 6= ∅. We prove the implications separately.

Assume φ is satisfiable. Then there exists a model (s, h) with (s, h) |=Φ φ. Let hw1 , hw2 ⊆ h
be such that wordofSi

(s, h, x, y) = letters(s, hwi
, x, y); such heaps exist by Lemma 3.6.

Observe that both (s, hw1) |=Φ word(x, y) and (s, hw2) |=Φ word(x, y). Consequently, hw1 =
hw2 , which implies wordofS1(s, h, x, y) = wordofS2(s, h, x, y) =: w. By Lemma 3.9, it follows that
w ∈ L(G1) and w ∈ L(G2), i.e., w ∈ L(G1) ∩ L(G2).

Conversely, assume L(G1) ∩ L(G2) 6= ∅ and let w ∈ L(G1) ∩ L(G2). By Lemma 3.8,
there exist models (s, h1), (s, h2) with (s, h1) |=Φ S1(a, x, y) and (s, h2) |=Φ S2(b, x, y). Let
hw1
⊆ h1, hw2

⊆ h2 be the unique heaps with wordofS1
(s, h1, x, y) = letters(s, hw1

, x, y) = w =
letters(s, hw2

, x, y) = wordofS2
(s, h2, x, y).

Observe that (s, hw1) ∼= (s, hw2). Consequently, we can replace h2 with an isomorphic heap
that contains hw1

(as opposed to hw2
) as sub-heap and is otherwise disjoint from h1, i.e., there

exists a heap h′2 such that h2
∼= h′2, locs(h′2) ∩ locs(h1) = locs(hw1

), and wordofS2
(s, h′2, x, y) =

letters(s, hw1
, x, y) = w. Note in particular that (s, h′2) |=Φ S2(b, x, y), because isomorphic

models satisfy the same formulas. Now let h := h1 ∪ h′2 be the (non-disjoint) union of h1 and
h′2. Since h1 ⊆ h and (s, h1) |=Φ S1(a, x, y), we have (s, h) |=Φ S1(a, x, y) ? t; and similarly, since
h′2 ⊆ h and (s, h′2) |=Φ S2(a, x, y), we have that (s, h) |=Φ S2(b, x, y). Consequently, (s, h) |=Φ φ.

Undecidability of SL(∧, ?,¬): Follows directly from the undecidability of SL(∧, ?, t), because
t is definable in SL(∧, ?,¬); for example t := ¬(emp ∧ ¬emp).

Undecidability of SL(∧, ?,−?): Follows directly from the undecidability of SL(∧, ?, t), because
t is definable in SL(∧, ?,−?); for example t := (x 6≈ x)−?emp.

Undecidability of SL(−©?): We claim that that ψ := word2(x, y)−©?S1(a, x, y), for word2 as
defined earlier in this section, is satisfiable iff L(G1) ∩ L(G2) 6= ∅. Intuitively, this holds because
ψ is satisfiable iff it is possible to replace the “word part” of a model of S1(a, x, y) with the
“word part” of a model of S2(b, x, y).

We now formalize this intuition. Assume ψ is satisfiable and let (s, h) be such that (s, h) |=Φ ψ.
By the semantics of −©? , we have that there exists a heap h0 ⊆ h with h0 |=Φ word2(x, y)

397

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

and (s, h + h0) |=Φ S1(a, x, y). As letters(s, h0, x, y) ∈ L(G2) by Lemma 3.10, we have in
particular that (s, h0) |=Φ word(x, y). It follows that h0 is the unique sub-heap of h + h0 with
wordofS1

(s, h + h0) = letters(s, h0, x, y). By Lemma 3.9, letters(s, h0, x, y) ∈ L(G1). Together
with Lemma 3.10, we thus have that letters(s, h0, x, y) ∈ L(G1) ∩ L(G2).

Conversely, assume there exists a word w ∈ L(G1) ∩ L(G2). By Lemma 3.8, there exist
heaps h, h0, h

′, h′0 with (s, h) |=Φ S1(a, x, y), wordofS1(s, h, x, y) = letters(s, h0, x, y), (s, h′) |=Φ

S2(a, x, y), and wordofS2(s, h′, x, y) = letters(s, h′0, x, y).
Because letters(s, h0, x, y) = letters(s, h′0, x, y), it holds that h0

∼= h′0, so we can assume
w.l.o.g. that h0 = h′0—if the models are not isomorphic, simply replace h′ with an appropriate
isomorphic heap to establish this property. Let h2 ⊆ h′ be the sub-heap of h′ with h2 + h0 = h′.
By Lemma 3.10, (s, h0) |=Φ word2(x, y). Consequently, (s, h2) |=Φ ψ, i.e., ψ is satisfiable.

The fundamental difference between the logics in Theorem 3.11 and SLg
btw lies in the

possibility to decompose the heap into parts with unboundedly many dangling pointers: The
number of dangling pointers in the models of SLg

btw formulas is always bounded by the number
of free variables of the formula (cf. Lemma 2.5).

4 The Types Abstraction

Having established that all natural extensions of SLg
btw are undecidable, we now turn to the

decidability of SLg
btw. In this section, we present the Φ-type abstraction that is at the heart of

our decision procedure. The Φ-types abstraction and the associated results essentially follow
our paper [23]; we only summarize here what is needed for proving the decidability results in
the next section. We note, however, that since the publication of [23], we have tweaked the
definition of the abstraction to fix an incompleteness issue and improve the presentation; we
refer the reader to our technical report [26] for a full self-contained exposition.

The idea behind the Φ-type abstraction is as follows. Given a SID Φ and a model (s, h), we
compute a set of formulas that encodes all the ways that one or more predicates of Φ can be
partially unfolded such that (s, h) is a model of the partially-unfolded predicates.

Example 4.1. Consider the following SID Φ.

tree(r) ⇐ ∃x. (r 7→ x) ? treerp(x, r)
treerp(x, r) ⇐ (x 7→ 〈nil, nil, r〉)
treerp(x, r) ⇐ ∃c1, c2. (x 7→ 〈c1, c2, r〉) ? treerp(c1, r) ? treerp(c2, r)

Let s = {r 7→ 1, x 7→ 2, y 7→ 4}, h = {1 7→ 2, 2 7→ 〈3, 4, 1〉 , 3 7→ 〈0, 0, 1〉 , 4 7→ 〈5, 6, 1〉 , 5 7→
〈0, 0, 1〉 , 6 7→ 〈0, 0, 1〉}. We display (s, h) in Figure 6a. Each node is labeled with a location and
the stack variable interpreted by the location (if any). The first two outgoing pointers of each
node are displayed by solid edges, the third pointer by a dashed edge. Fig. 6b shows a Φ-forest
f = {t1, t2, t3} that encodes one way to derive the model (s, h) by unfolding predicates of the SID.
Both t1 and t2 only partially unfold the predicates at their roots. The stack–forest projection of
s and f is the formula (treerp(x, r)−?tree(r)) ? (treerp(y, r)−?treerp(x, r)) ? (emp−?treerp(y, r)).

In this section, we formalize the notion of Φ-forests; and we show how to systematically
obtain the projections of all relevant forests of a model.

4.1 Φ-Forests

We begin by formalizing partial unfoldings of Φ-predicates. To this end, we introduce Φ-forests
(Definition 4.3) made up of Φ-trees (Definition 4.2). Intuitively, a Φ-tree encodes one fixed way

398

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

1 : r

2: x

3 4: y

5 6
⊥⊥

⊥⊥ ⊥⊥

(a) A model of tree(r).

t1

t2

t3

tree(1) ⇐ (1 7→ 2) ? treerp(2, 1)

treerp(2, 1) ⇐ (2 7→ 3, 4, 1) ? treerp(3, 1) ? treerp(4, 1)

treerp(3, 1) ⇐ (3 7→ 0, 0, 1)

treerp(4, 1) ⇐ (4 7→ 5, 6, 1) ? treerp(5, 1) ? treerp(6, 1)

treerp(5, 1) ⇐ (5 7→ 0, 0, 1) treerp(6, 1) ⇐ (6 7→ 0, 0, 1)

(b) A corresponding Φ-forest f consisting of trees t1, t2, t3.

Figure 6: A model of tree(r) and one of the Φ-forests corresponding to this model.

to unfold a predicate call by means of the rules of the SID Φ. Our notion of Φ-trees is related
to the unfolding trees used, e.g., in [16, 17, 20], but there are two key differences. First, we
instantiate variables with locations; second, we explicitly allow the unfolding process to stop
at any point, i.e., we allow that one or more of the predicate calls introduced in the unfolding
process remain folded. We call such folded predicate calls the holes of the Φ-tree.

The nodes of a Φ-tree are labeled with rule instances, which are obtained from the rules
of the SID by instantiating both the formal arguments of the predicates and the existentially
quantified variables of the rule with locations:

RuleInst(Φ) := {pred(l)⇐ φ[x · y/l ·m] |(pred(x)⇐ ∃y. φ) ∈ Φ,

l ∈ Locar(pred),m ∈ Loc|y| and all

(dis)equalities in φ[x · y/l ·m] are valid}

Rule instances are not SL formulas themselves, as the terms in rule instances are locations
rather than variables. We will come back to this point later.

We model Φ-trees as functions t : Loc ⇀ (Loc∗ ×RuleInst(Φ)). The set of locations Loc
serves as the nodes of the tree; and every node is mapped to its successors in the (directed) tree
as well as to a rule instance that serves as a node label. For t to be a Φ-tree, it must satisfy
a certain set of consistency criteria. To make it easier to work with Φ-trees and formalize the
consistency criteria, we first introduce some additional notation.

Let Φ be an SID and let t(l) = 〈m, (pred(z)⇐ (a 7→ b) ? φ〉. Note that, by progress of the
SID Φ, φ does not contain points-to assertions. We define:

succt(l) := m ptrt(l) := a 7→ b headt(l) := pred(z) callst(l) := φ
holepredst(l) :=

{
pred′(z′) ∈ callst(l) | ∀c ∈ succt(l). headt(c) 6= pred′(z′)

}
Informally, the hole predicates of l are those predicate calls in callst(l) whose root does not
occur in succt(m). We collect all hole predicates of t in allholepreds(t) :=

⋃
c∈dom(t) holepredst(c).

Finally, we define the projection of t onto the directed graph, graph(t) ⊆ Loc× Loc, induced
by its first component, graph(t) := {(x, y) | x ∈ dom(t), y ∈ succt(x)}.

Definition 4.2 (Φ-Tree). Let Φ be an SID. A partial function t : Loc ⇀ (Loc∗ ×RuleInst(Φ))
is a Φ-tree iff

399

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

1. graph(t) is a (directed) tree and

2. t is Φ-consistent, i.e., for all l ∈ dom(t), if succt(l) = 〈y1, . . . , yk〉, headt(l) = pred(z),
ptrt(l) = a 7→ b, and callst(l) = pred1(z1) ? · · · predm(zm) ∗Π, Π pure, then (1) l = a, (2)
succt(l) v b, and (3) {headt(y1), . . . , headt(yk)} ⊆ {pred1(z1), . . . , predm(zm)}.

Let t be a Φ-tree. As t is a directed tree, it has a root, which we denote by root(t). We set
rootpred(t) := headt(root(t)).

We combine zero or more Φ-trees into Φ-forests.

Definition 4.3 (Φ-Forest). Let Φ be an SID. Let t1, . . . , tk be Φ-trees. The set f = {t1, . . . , tk}
is a Φ-forest iff dom(ti) ∩ dom(tj) = ∅ for i 6= j.

Example 4.4 (Φ-forest). Figure 6b shows the Φ-forest f = {t1, t2, t3} with t1 = {1 7→
〈ε, tree(1) ⇐ (1 7→ 2) ? treerp(2, 1)〉}, t2 = {2 7→ 〈3, treerp(2, 1) ⇐ (2 7→ 3, 4, 1) ? treerp(3, 1) ?
treerp(4, 1)〉, 3 7→ 〈ε, treerp(3, 1) ⇐ (3 7→ 0, 0, 1)〉}, and t3 = {4 7→ 〈〈5, 6〉 , treerp(4, 1) ⇐ (4 7→
5, 6, 1) ? treerp(5, 1) ? treerp(6, 1)〉, 5 7→ 〈ε, treerp(5, 1) ⇐ (5 7→ 0, 0, 1)〉, 6 7→ 〈ε, treerp(6, 1) ⇐
(6 7→ 0, 0, 1)〉}

Definition 4.5 (Induced Heap). Let f be a Φ-forest. The induced heap of f is given by
heap(f) :=

⋃
t∈f
⋃

c∈dom(t) ptrt(c).

Example 4.6. For h and f as in Example 4.1, h = heap(f).

Our notion of Φ-trees generalizes “unfolding trees” [16] in the sense that every model of a
predicate call corresponds to (at least one) Φ-tree without holes.

Lemma 4.7. Let Φ be an SID, pred(z) a predicate call, and (s, h) a model. If (s, h) |=Φ pred(z)
there exists a Φ-tree t with rootpred(t) = pred(s(z)), allholepreds(t) = ∅, and heap({t}) = h.

4.2 Projecting Φ-Forests onto Formulas

The main insight behind the projection of Φ-forests onto SL formulas is that every Φ-tree t can
be viewed as encoding a model of rootpred(t) from which models of allholepreds(t) have been
subtracted. This can be naturally encoded by a magic wand, (Fallholepreds(t))−?rootpred(t).

Recall, however, that the above is not a formula, because it contains locations rather than
variables. In our projection function, we thus need to replace the locations with variables. To
this end, we need guarded versions of both existential and universal quantifiers, which we denoteE

and

A

. They have the following semantics.

• (s, h) |=Φ

E

〈e1, . . . , ek〉 . φ iff there exist pairwise different v1, . . . , vk ∈ dom(h) \ img(s)
such that (s ∪ {e1 7→ v1, . . . , ek 7→ vk} , h) |=Φ φ.

• (s, h) |=Φ

A

〈a1, . . . , ak〉 . φ iff for all pairwise different v1, . . . , vk ∈ Loc \ (locs(h)∪ img(s)),
it holds that (s ∪ {a1 7→ v1, . . . , ak 7→ vk} , h) |=Φ φ.

Note that these quantifiers are not quite dual, i.e.,

E

x. φ is not equivalent to ¬

A

x.¬φ. We take
the following approach to translate a forest f to a formula with guarded quantifiers:

1. Every location v ∈ img(s) is replaced by an arbitrary variable in s−1(v).

2. Every location v ∈ locs(heap(f)) with v /∈ img(s) is replaced by a guarded existential. Note
that by Lemma 2.5, v ∈ dom(heap(f)), as required by the above semantics of

E

.

400

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

3. All other locations are replaced by a guarded universal.

Let us formalize this construction. In the following, we assume for all stacks that dom(s) ∩
({a1, a2, . . .} ∪ {e1, e2, . . .}) = ∅.

Definition 4.8 (Tree projection). Let t be a Φ-tree and let v ⊆ Loc. Let locs(φ) be the set of
all locations that occur in φ. The tree projection of t w.r.t. v, projectLoc(v, t), is then given by

projectLoc(v, t) :=

A

a. ψ[w/a] where ψ := (Fallholepreds(t))−?rootpred(t)

w := locs(ψ) \ (v ∪ locs(heap({t})))
a :=

〈
a1, . . . , a|w|

〉
.

Definition 4.9. Let f = {t1, . . . , tk} be a Φ-forest with heap(f) ∈ Mg
Φ. Let v := img(s) and

let w := locs(heap(f)) \ img(s) be the (arbitrarily ordered) sequence of locations that occur in
a pointer in heap(f) but are not the value of any stack variable. Let x ⊆ dom(s) be such that
s(x) = v and let e :=

〈
e1, e2, . . . , e|w|

〉
. Finally, let ψ := F1≤i≤kproject

Loc(v ∪ w, ti). The
stack–forest projection of s and f, project(s, f), is given by

E

e. ψ[v ·w/x · e].

Example 4.10. Let Φ, s, t1, t2, t3 and f be as in Example 4.1. (1) The formula
project(s, f) is given in Example 4.1. (2) Let s′ = {x 7→ 2, y 7→ 4}. Then project(s′, {t2, t3}) =E

e1. (treerp(y, e1)−?treerp(x, e1)) ? (emp−?treerp(y, e1)). (3) For s′′ = {x 7→ 1, y 7→ 2} and t′′ =
{1 7→ 〈ε, even(1, 3)⇐ (1 7→ 2) ? odd(2, 3)〉}, project(s′′, {t′′}) =

A

a1. odd(y, a1)−?even(x, a1).

Stack–forest projection is sound in the following sense.

Lemma 4.11. Let f be a Φ-forest with heap(f) ∈Mg
Φ and let s be a stack. Then (s, heap(f)) |=Φ

project(s, f).

The correctness of Lemma 4.11 hinges on the use of guarded quantifiers. For example, let Φ =
{pred(x1, x2)⇐ (x1 7→ nil) ? (x1 6≈ x2)} and t = {v1 7→ 〈ε, pred(v1, v2)⇐ (v1 7→ 0) ? (v1 6≈ v2)〉},
f = {t}, and s = {y 7→ v1}. Then (s, heap(f)) |=Φ project(s, f) =

A

a1. emp−?pred(y, a1), but
(s, heap(f)) 6|=Φ emp−?pred(y, y), so (s, heap(f)) 6|=Φ ∀a1. emp−?pred(y, a1).

All stack–forest projections can be obtained by “partially unfolding” symbolic heaps (and
adding appropriate quantifiers), so we call them unfolded symbolic heaps (USHs) w.r.t. Φ.

Delimited USHs. Clearly, there are infinitely many USHs w.r.t. any (nonempty) SID Φ.
This makes USHs unsuitable for defining a finite abstraction. To obtain a finite abstraction, we
only consider USHs where (1) all root parameters of predicate calls are free variables and (2)
every variable occurs at most once as a root parameter on the left-hand side of a magic wand.

Definition 4.12. An unfolded symbolic heap φ is delimited iff

1. for all pred(z) ∈ φ, predroot(pred(z)) ∈ fvars(φ), and

2. for all z there exists at most one predicate call pred(z) ∈ φ such that z = predroot(pred(z))
and pred(z) occurs on the left-hand side of a magic wand.

Example 4.13. All projections in Example 4.10 are DUSHs. Let t′′ be as in Example 4.10.
Then project({x 7→ 1} , {t′′}) =

E

e1.

A

a1. odd(e1, a1)−?even(x, a1) is not a DUSH, because e1 =
predroot(odd(e1, a1)), but e1 /∈ dom(s).

We let DUSHΦ := {φ | φ is USH w.r.t. Φ and delimited} be the set of delimited USHs
(DUSHs) over SID Φ and DUSHx

Φ the restriction of DUSHΦ to formulas φ with fvars(φ) ⊆ x.

401

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

Lemma 4.14. Let Φ be an SID and let x ∈ 2Var be a finite set of variables. Let n := |Φ|+ |x|.
Then |DUSHx

Φ| ∈ 2O(n2 log(n)).

We will abstract a model by the set of all DUSHs that hold in the model. This makes sense
because we can effectively compose such sets, as we will see next.

4.3 The Φ-Type Abstraction

We abstract a model (s, h) by its Φ-type, which consists of the set of DUSHs that hold in (s, h).

Definition 4.15 (Φ-Type). Let (s, h) ∈Mg
Φ be a guarded model and Φ an SID. The Φ-type of

(s, h) is given by typeΦ(s, h) := {project(s, f) | f is a forest with heap(f) = h} ∩DUSHΦ.

In our decision procedure, we need to compose types, i.e., we need an operation • such that

typeΦ(s, h1 + h2) = typeΦ(s, h1) • typeΦ(s, h2). (†)

We now develop such an operation. We begin by defining an operation •P that satisfies the
identity (†), provided that we know that h1 + h2 6= ⊥. To define •P, we need two ingredients:
(1) a variant of ? that captures all sound ways to move the existential quantifiers to the front of
the formula project(s, f1) ? project(s, f2) and (2) a derivation operation on projections, B, that
rewrites formulas based on the fact that

((pred2(x2) ? ψ)−?pred1(x1)) ? (ψ′−?pred2(x2)) implies (ψ ? ψ′)−?pred1(x1). (‡)

We need the following auxiliary notation. We write

A

a. φ

Ee/ Au−−−→

A

b. φ′ if there exist disjoint
subsets ā1, ā2 ⊆ a and subsets ū ⊆ u, ē ⊆ e such that φ′ = φ[ā1 ·ā2/ū·ē] and b = a\(ā1∪ā2)∪ū.

Example 4.16. Let φ =

A

〈a1, a2〉 . (odd(y, a2)−?odd(e1, a2)) ? (even(e1, a1)−?odd(x, a1)). Then

1. φ

Ee2/

Au1−−−−−→

A

u1. (odd(y, e2)−?odd(e1, e2)) ? (even(e1, u1)−?odd(x, u1)), but also

2. φ

Ee2/

Au1−−−−−→

A

u1. (odd(y, u1)−?odd(e1, u1)) ? (even(e1, e2)−?odd(x, e2)), and

3. φ

Ee2/

Au1−−−−−→

A

a1. (odd(y, e2)−?odd(e1, e2)) ? (even(e1, a1)−?odd(x, a1)), etc.

The notions of re-scoping and derivability provide the two ingredients we need to define •P.

Definition 4.17 (Re-scoping). Let φi =

E

ei.F1≤j≤ni
ψi,j for 1 ≤ i ≤ 2 such that e1 ∩ e2 = ∅.

We say that ζ is a re-scoping of φ1 and φ2 if there exist formulas ψ′1,1, . . . , ψ
′
2,n2

such that (1)

ψi,j

Ee3−i/

Aε−−−−−→ ψ′i,j for all i, j; and (2) ζ =

E

e1 · e2.F1≤j≤n1
ψ′1,j ?F1≤j≤n2

ψ′2,j.

Definition 4.18 (Derivability). We say that ψ is derivable from ζ =

E

e.F1≤i≤n

A

ai. ζi, written
ζ B ψ, iff there exist indices m1 and m2, variables u1,u2,b1,b2, and formulas φ1, φ2, φ such

that (1)

A

ami
. ζmi

Eε/ Aui−−−−→

A

bi. φi for 1 ≤ i ≤ 2, (2) φ1 ? φ2 =⇒ φ by (‡) and (3) ψ is obtained
from ζ by removing the subformulas

A

ami
. ζmi

and adding the subformula

A

(b1 ∪ b2). φ.

We are finally ready to define a composition operation •P that satisfies (†).

Definition 4.19 (Projection composition). Let φ1, φ2 ∈ DUSHΦ. Then

φ1 •P φ2 := {φ |there exist a k ≥ 1 and ζ1, . . . , ζk s.t. ζ1 is a re-scoping of φ1 and φ2,

ζi B ζi+1 for all 1 ≤ i < k, and ζk = φ}.

402

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

Example 4.20. • For φ1 = ls(x2, x3)−?ls(x1, x3) and φ2 = emp−?ls(x2, x3), it holds that
φ1 ? φ2 B emp−?ls(x1, x3). Hence, (emp−?ls(x1, x3)) ∈ φ1 •P φ2.

• Let φ1 =

A

a. ls(x2, a)−?ls(x1, a) and φ2 =

A

b. ls(x3, b)−?ls(x2, b), φ
′
1 =

A

c. ls(x2, c)−?ls(x1, c),

and φ′2 =

A

c. ls(x3, c)−?ls(x2, c). Observe that φi

Eε/ Ac−−−→ φ′i and that (ls(x2, c)−?ls(x1, c)) ?
(ls(x3, c)−?ls(x2, c)) B ls(x3, c)−?ls(x1, c). Hence, (

A

c. ls(x3, c)−?ls(x1, c)) ∈ φ1 •P φ2.

• Let φ1 =

E

e1. (treerp(y, e1)−?treerp(x, e1)) ? (emp−?treerp(y, e1)) and φ2 = emp. Then
ψ =

E

e1. (treerp(y, e1)−?treerp(x, e1)) ? (emp−?treerp(y, e1)) is a re-scoping of φ1 and
φ2 and (treerp(y, e1)−?treerp(x, e1)) ? (emp−?treerp(y, e1)) B emp−?treerp(x, e1), so
(

E

e1. emp−?treerp(x, e1)) ∈ φ1 •P φ2.

Lemma 4.21 (Soundness). Let s be a stack, let h1, h2 be heaps, and φ1 ∈ typeΦ(s, h1), φ2 ∈
typeΦ(s, h2). If h1 +h2 6= ⊥ and (s, h1), (s, h2) ∈Mg

Φ then (s, h1 +h2) |=Φ ψ for all ψ ∈ φ1 •P φ2.

Moreover, •P satisfies (†) when applied to disjoint models. The only missing piece is to
ensure that the composition is only defined if the underlying heaps can be composed via +.
This is easy to ensure, as it is possible to infer from typeΦ(s, h) the set of variables alloced(s, h):
Let T be a Φ-type. We define the set of allocated variables of T as

alloced(T) := {x | there ex. φ ∈ T and (ψ−?pred(z)) ∈ φ s.t. x = predroot(pred(z))}}.

Lemma 4.22. For all models (s, h) ∈Mg
Φ, it holds that alloced(s, h) = alloced(typeΦ(s, h)).

This allows us to check for double allocation in the definition of composition.

Definition 4.23 (Type composition). Let T1, T2 be types. The composition of T1 and T2 is

T1 • T2 :=

{
⊥, if alloced(T1) ∩ alloced(T2) 6= ∅
φ1 •P φ2, otherwise.

Furthermore, typeΦ(s, ·) is the desired homomorphism (†) from heaps and + to types and •.

Theorem 4.24. Let s be a stack and Let h1, h2 be heaps with h1 + h2 6= ⊥ and (s, h1), (s, h2) ∈
Mg

Φ. Then typeΦ(s, h1 + h2) = typeΦ(s, h1) • typeΦ(s, h2).

We use Φ-types to define an abstraction of formulas.

Definition 4.25 (s-Types of a formula). Let φ ∈ SLg
btw. The s-types of φ are given by

TypessΦ(φ) := {typeΦ(s, h) | h heap, (s, h) |=Φ φ}.

There are only finitely many Φ-types for every fixed set of variables.

Lemma 4.26. For SID Φ and stack s, let n := |Φ|+|dom(s)|. Then |Typess(Φ)| ∈ 22O(n2 log(n))

.

Theorem 4.24 and Lemma 4.26 make it possible to effectively compute the set of all types of
the predicates of an SID. Intuitively, this can be achieved by a fixed-point computation: In the
first iteration, we compute the types of the models of non-recursive rules of the SID; in later
iterations, we compute the types of models of recursive rules by combining the types discovered
in previous iterations by means of the composition operation, •. We showed in [26] that this
approach yields the types of all predicates in double-exponential time.

Theorem 4.27 ([26]). Let Φ be a SID, let pred(y) be a predicate call, and let s be a stack with

y ⊆ dom(s). Let n := |Φ|+ |dom(s)|. The set TypessΦ(pred(y)) can be computed in 22O(n2 log(n))

.

403

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

5 Deciding Guarded Separation Logic

In this final technical section, we address two questions. First, how to compute the Φ-types of
arbitrary SLg

btw formulas. Second, how to use Φ-types to decide satisfiability and entailment.
In this section, we assume that Φ is a fixed SID that is pointer-closed, by which me mean that

Φ contains predicates predicate ptr1, . . . , ptrk defined by the rule ptrk(x)⇐ x1 7→ 〈x2, . . . , xk+1〉,
where k is the largest number of variables that occur on the right-hand side of points-to assertions
in our satisfiability and entailment queries.

Our crucial insight is that Φ-types (of pointer-closed SIDs) refine the satisfaction relation
of SLg

btw: Models with the same types satisfy the same formulas. To show this for formulas
with separating connectives, we need a way to reverse composition: we need to show that if
T = T1 • T2, then the models of the type T are a composition of models of types T1 and T2.

Lemma 5.1 (Decomposition lemma). Let s be a stack, let h′, h1, h2 be heaps such that
(s, h′), (s, h1), (s, h2) ∈ Mg

Φ and typeΦ(s, h′) = typeΦ(s, h1 + h2). Then there exist h′1, h
′
2 such

that (s, h′1), (s, h′2) ∈Mg
Φ, h′ = h′1 + h′2 and typeΦ(s, hi) = typeΦ(s, h′i) for 1 ≤ i ≤ 2.

Using the decomposition lemma for the separating connectives ?, −? and −©? , the refinement
theorem can be proved by a straightforward induction.

Theorem 5.2 (Refinement theorem). Let s be a stack and h1, h2 be heaps. Let φ ∈ SLg
btw.

Moreover, assume typeΦ(s, h1) = typeΦ(s, h2). Then (s, h1) |=Φ φ iff (s, h2) |=Φ φ.

We rely on Theorems 4.27 and 5.2 in our algorithm for computing the types of arbitrary
SLg

btw formulas, presented in Fig. 7. We explain why the algorithm is correct.

1. The formulas emp, x ≈ y and x 6≈ y only hold in empty heaps and emp is the only DUSH
that holds in the empty heap.

2. To compute typeΦ(s, {s(a) 7→ s(b)}), we check for all rule instances of the SID whether
they contain the pointer a 7→ b; if so, we take a single-tree Φ-forest that contains this rule
instance and nothing else and project this forest onto a formula. All such formulas make
up the type of a 7→ b. The details of this construction are in [26].

3. The set TypessΦ(pred(y)) is computable by Theorem 4.27. We present this computation
in detail in [23, 26].

4. Theorem 4.24 guarantees that the types of φ1 ? φ2 can be computed via •.

5. Theorem 5.2 guarantees that the Boolean operators can be implemented via set operations.

6. Magic wand and septraction are implemented by lifting their semantics from individual
models to types in a straightforward way.

7. Guardedness guarantees that throughout the computation, we only need to consider
guarded models. This is necessary for applying Theorems 4.24 and 5.2.

The asymptotic complexity of each operation is bounded by the size of the type abstraction.
We thus obtain a double-exponential decision procedure for SLg

btw for every fixed stack.

Theorem 5.3. Let φ ∈ SLg
btw with fvars(φ) = x. Let s be a stack with dom(s) = x. Then (1)

TypessΦ(φ) = types(φ, s) and (2) types(φ, s) can be computed in 22O(n2 log(n))

.

404

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

types(emp, s) := {{emp}}
types(x ≈ y, s) := if s(x) = s(y) then {{emp}} else ∅
types(x 6≈ y, s) := if s(x) 6= s(y) then {{emp}} else ∅
types(a 7→ b, s) := {typeΦ(s, {s(a) 7→ s(b)})}
types(pred(y), s) := TypessΦ(pred(y))
types(φ1 ? φ2, s) := {T1 • T2 | T1 ∈ types(φ1, s), T2 ∈ types(φ2, s)}
types(φ1 ∧ φ2, s) := types(φ1, s) ∩ types(φ2, s)
types(φ1 ∨ φ2, s) := types(φ1, s) ∪ types(φ2, s)
types(φ1 ∧ ¬φ2, s) := types(φ1, s) \ types(φ2, s)
types(φ0 ∧ (φ1−©?φ2), s) := {T ∈ types(φ0, s) | ∃T ′ ∈ types(φ1, s). T • T ′ ∈ types(φ2, s)}
types(φ0 ∧ (φ1−?φ2), s) := {T ∈ types(φ0, s) | ∀T ′ ∈ types(φ1, s). T • T ′ ∈ types(φ2, s)}

Figure 7: Computing the Φ-types of guarded formula φ ∈ SLg
btw for models with stack s.

Now that we know that types(φ, s) computes TypessΦ(φ), we are ready to prove that
satisfiability of SLg

btw formulas is decidable in double-exponential time.

Theorem 5.4. Let Φ be an SID and φ ∈ SLg
btw. Let n := |Φ| + |φ|. It is decidable in time

22O(n2 log(n))

whether φ is satisfiable.

Proof. Consider the aliasing constraint of stack s, {(x, y) | x, y ∈ dom(s) and s(x) = s(y)}. If s

and s′ have the same aliasing constraint, then TypessΦ(φ) = Typess
′

Φ (φ). Since there are only
exponentially many (in n) different aliasing constraints, the claim follows from Theorem 5.3.

Since the entailment query φ |=Φ ψ is equivalent to checking the unsatisfiability of φ ∧ ¬ψ,
and the negation in φ∧¬ψ is guarded, we obtain an entailment checker with the same complexity.

Corollary 5.5. Let Φ be a SID, φ, ψ ∈ SLg
btw and n := |Φ|+ |φ|+ |ψ|. The entailment problem

φ |=Φ ψ is decidable in time 22O(n2 log(n))

.

6 Conclusion

We developed a 2-Exptime algorithm for deciding SLg
btw, an SL in which formulas are built from

user-defined predicates from SLIDbtw [16] using ?, ∧, ∨, and guarded forms of ¬, −?, and −©? .
The only previously known decidability results for any SL with user-defined inductive definitions
are limited to symbolic heaps, with a matching 2-Exptime bound for SLIDbtw [26]. Further, we
showed that removing the guard of any of the guarded operators of SLg

btw leads to undecidability,
obtaining an almost perfect delineation between decidability and undecidability. We leave the
integration of our decision procedure into a Hoare-style verification framework for future work.

References

[1] Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ouaknine.
Foundations for decision problems in separation logic with general inductive predicates. In Anca
Muscholl, editor, Foundations of Software Science and Computation Structures - 17th International
Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8412
of Lecture Notes in Computer Science, pages 411–425. Springer, 2014.

405

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

[2] Andrew W. Appel. Program Logics - for Certified Compilers. Cambridge University Press, 2014.

[3] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3):22:1–22:26,
2015.

[4] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation
logic. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations of Software
Technology and Theoretical Computer Science, 24th International Conference, Chennai, India,
December 16-18, 2004, Proceedings, volume 3328 of Lecture Notes in Computer Science, pages
97–109. Springer, 2004.

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures,
volume 4111 of Lecture Notes in Computer Science, pages 115–137. Springer, 2005.

[6] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation
logic. In Kwangkeun Yi, editor, Programming Languages and Systems, Third Asian Symposium,
APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, volume 3780 of Lecture Notes in
Computer Science, pages 52–68. Springer, 2005.

[7] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-level code. In
Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 178–183. Springer, 2011.

[8] Rémi Brochenin, Stéphane Demri, and Étienne Lozes. On the almighty wand. Inf. Comput.,
211:106–137, 2012.

[9] James Brotherston, Carsten Fuhs, Juan Antonio Navarro Pérez, and Nikos Gorogiannis. A decision
procedure for satisfiability in separation logic with inductive predicates. In Thomas A. Henzinger and
Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 25:1–25:10. ACM, 2014.

[10] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving
fast with software verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors,
NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Computer Science, pages 3–11. Springer,
2015.

[11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional shape
analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66, 2011.

[12] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract separation
logic. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007,
Wroclaw, Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007.

[13] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verification
of shape, size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program., 77(9):1006–1036, 2012.

[14] Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell. Tractable
reasoning in a fragment of separation logic. In Joost-Pieter Katoen and Barbara König, editors,
CONCUR 2011 - Concurrency Theory - 22nd International Conference, CONCUR 2011, Aachen,
Germany, September 6-9, 2011. Proceedings, volume 6901 of Lecture Notes in Computer Science,
pages 235–249. Springer, 2011.

[15] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. The lower bound of decidable entailments in
separation logic with inductive definitions. hal-02388028, 2019.

[16] Radu Iosif, Adam Rogalewicz, and Jiŕı Simácek. The tree width of separation logic with recursive

406

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

definitions. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume
7898 of Lecture Notes in Computer Science, pages 21–38. Springer, 2013.

[17] Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive separation logic
with tree automata. In Franck Cassez and Jean-François Raskin, editors, Automated Technology for
Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia,
November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 201–218.
Springer, 2014.

[18] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.
In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London, UK, January
17-19, 2001, pages 14–26. ACM, 2001.

[19] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens.
Verifast: A powerful, sound, predictable, fast verifier for C and java. In Mihaela Gheorghiu Bobaru,
Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods - Third
International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume
6617 of Lecture Notes in Computer Science, pages 41–55. Springer, 2011.

[20] Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Unified
reasoning about robustness properties of symbolic-heap separation logic. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer
Science, pages 611–638. Springer, 2017.

[21] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018.

[22] Jens Katelaan, Dejan Jovanovic, and Georg Weissenbacher. A separation logic with data: Small
models and automation. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900
of Lecture Notes in Computer Science, pages 455–471. Springer, 2018.

[23] Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for separation
logic with inductive definitions. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in
Computer Science, pages 319–336. Springer, 2019.

[24] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In Alexander Pretschner, Doron Peled, and Thomas Hutzelmann,
editors, Dependable Software Systems Engineering, volume 50 of NATO Science for Peace and
Security Series - D: Information and Communication Security, pages 104–125. IOS Press, 2017.

[25] Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019.

[26] Jens Pagel, Christoph Matheja, and Florian Zuleger. Complete entailment checking for separation
logic with inductive definitions. CoRR, abs/2002.01202, 2020.

[27] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic using SMT. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 773–789. Springer, 2013.

[28] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees and
data. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification - 26th International

407

Beyond Symbolic Heaps: Deciding Separation Logic with Inductive Definitions Pagel and Zuleger

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 711–728.
Springer, 2014.

[29] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Grasshopper - complete heap verification with
mixed specifications. In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages
124–139. Springer, 2014.

[30] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society, 2002.

[31] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated lemma
synthesis in symbolic-heap separation logic. PACMPL, 2(POPL):9:1–9:29, 2018.

[32] Makoto Tatsuta and Daisuke Kimura. Separation logic with monadic inductive definitions and
implicit existentials. In Xinyu Feng and Sungwoo Park, editors, Programming Languages and
Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 - December 2,
2015, Proceedings, volume 9458 of Lecture Notes in Computer Science, pages 69–89. Springer, 2015.

[33] Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. Completeness of cyclic proofs for symbolic
heaps with inductive definitions. In Anthony Widjaja Lin, editor, Programming Languages and
Systems - 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019,
Proceedings, volume 11893 of Lecture Notes in Computer Science, pages 367–387. Springer, 2019.

408

	Introduction
	Separation Logic with Inductive Definitions
	Undecidability of Extensions
	The Types Abstraction
	-Forests
	Projecting -Forests onto Formulas
	The -Type Abstraction

	Deciding Guarded Separation Logic
	Conclusion

