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Abstract

We present the results of the ARCH1 2024 friendly competition for formal verification
of continuous and hybrid systems with linear continuous dynamics. In its eighth edition,
two tools participated to solve eight different benchmark problems in the category for
linear continuous dynamics (in alphabetical order): CORA and JuliaReach. This report
is a snapshot of the current landscape of tools and the types of benchmarks they are
particularly suited for. Due to the diversity of problems, we are not ranking tools.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with linear continuous dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others.

We consider the verification of hybrid systems (i.e., mixed discrete/continuous systems) with
linear continuous dynamics

ẋ(t) = Ax(t) +Bu(t),
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where A ∈ Rn×n, x ∈ Rn, B ∈ Rn×m, and u ∈ Rm. For all results reported by each participant,
we have run an independent repeatability evaluation. To establish further trustworthiness
of the results, the code with which the results have been obtained is publicly available at
gitlab.com/goranf/ARCH-COMP. The selection of the benchmarks has been conducted within
the forum of the ARCH website (cps-vo.org/group/ARCH), which is visible for registered users
and registration is open to anybody. All tools presented in this report use some form of
reachability analysis. This, however, is not a constraint set by the organizers of the friendly
competition. We hope to encourage further tool developers to showcase their results in future
editions. All tools are run on the same machine.

2 Participating Tools

The tools participating in the category Continuous and Hybrid Systems with Linear Continuous
Dynamics are subsequently introduced in alphabetical order.

CORA (Matthias Althoff, Mark Wetzlinger) The tool COntinuous Reachability Analyzer
(CORA) [2, 5, 6, 4, 25, 11] realizes techniques for reachability analysis with a special focus
on developing scalable solutions for verifying hybrid systems with nonlinear continuous dynam-
ics and/or nonlinear differential-algebraic equations. A further focus is on considering uncertain
parameters and system inputs. Due to the modular design of CORA, much functionality can
be used for other purposes that require resource-efficient representations of multi-dimensional
sets and operations on them. CORA is implemented as object-oriented MATLAB code and is
available at cora.in.tum.de.

JuliaReach (Marcelo Forets, Christian Schilling) JuliaReach [17] is an open-source software
suite for reachability computations of dynamical systems, written in the Julia language and
available at http://github.com/JuliaReach. The core library is ReachabilityAnalysis.jl. For
the set computations, we use our LazySets.jl library [23]. JuliaReach can analyze systems
in either continuous-time or discrete-time semantics. For some of the models, we use our
custom parser for SpaceEx model files, and otherwise we create the models in Julia. In this
competition, we use the following algorithms: BFFPSV18 (based on the support function on low-
dimensional subspaces [18, 16]), GLGM06 (based on zonotopes [27]), ASB07 (based on zonotopes
for parametric systems [10]), and LGG09 (based on the support function [30]). These algorithms
can be combined with different approximation models [24], such as forward and correction hull,
adapted from [16] and [1], respectively. For hybrid systems with time-triggered transitions, we
use the algorithm from [22].

3 Verification of Benchmarks

For the 2024 edition, we decided to remove the space station benchmark from our 2023 friendly
competition [12] and added for the first time random benchmarks that are unknown to the tool
developers.

Special Features We briefly list the special features of each benchmark:
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• Heat 3D benchmark from [14]: This is a purely continuous benchmark resulting from
a spatial discretization of a heat partial differential equation in three dimensions. The
system can be scaled from a 5× 5× 5 mesh (125 dimensions) to a 100× 100× 100 mesh
(one million dimensions), each variation being roughly an order of magnitude apart.

• Clamped beam benchmark from [31, Sec. 4.2]: This purely continuous benchmark models
a spatially discretized beam clamped on one end and pulled on the other end yielding
interesting oscillations. The system dimension ranges from 200 to 2000 depending on the
number of nodes used for the discretization. A challenge of this benchmark is that it has
very little damping.

• Spacecraft rendezvous benchmark from [19]: This benchmark has hybrid dynamics and is a
linearization of a benchmark in the other ARCH-COMP category Continuous and Hybrid
Systems with Nonlinear Dynamics. Consequently, the reader can observe the difference in
computation time and verification results between the linearized version and the original
dynamics.

• Random benchmark from [35]: Purely continuous benchmarks are automatically gener-
ated. These benchmarks are unknown to the tool developers so that the tools have to
solve them fully automatically. This year, the random problems had 10 continuous state
variables.

• Powertrain benchmark from [7, Sec. 6]: This is a hybrid system for which one can select
the number of continuous state variables and the size of the initial set. Up to 51 continuous
state variables are considered.

• Platooning benchmark from [15]: A rather small number of continuous state variables is
considered, but one can arbitrarily switch between two discrete states: a normal operation
mode and a communication-failure mode.

• Gearbox benchmark from [20]: This benchmark has the smallest number of continuous
state variables, but the reachable set does not converge to a steady state and the reachable
set for one point in time might intersect multiple guards at once.

• Brake benchmark from [34]: This hybrid benchmark has a time-triggered discrete transi-
tion that has to be taken 1,001 times.

Types of Inputs Generally, we distinguish between three types of inputs:

1. Fixed inputs, where u(t) is precisely known. In some cases, u(t) = const as in the gearbox
benchmark.

2. Uncertain but constant inputs, where u(t) ∈ U ⊂ Rm is uncertain within a set U , but
each uncertain input is constant over time: u(t) = const.

3. Uncertain, time-varying inputs u(t) ∈ U ⊂ Rm where u(t) ̸= const. Those systems do not
converge to a steady state solution and consider uncertain inputs of all frequencies. For
tools that cannot consider arbitrarily varying inputs, we mention that changes in inputs
are only considered at fixed points in time.

Different Paths to Success When tools use a fundamentally different way of solving a
benchmark problem, we add further explanations.
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Computation Time The computation times specified in this report include the computation
time of the reachable set and the time needed for the verification of the specifications.

3.1 Heat3D

3.1.1 Model

Using a mesh, the Heat3D benchmark is a spatially-discretized partial differential equation
(PDE) for heat transfer in three dimensions, resulting in ordinary differential equations (ODEs),
where each variable represents a mesh point. Depending on the granularity of the discretization,
one can adjust the number of variables. This system has no switching or inputs and serves to
evaluate the scalability with respect to the number of system dimensions. It is an academic
example, although modifications, such as external inputs or more complicated specifications,
can be added in the future. This benchmark was used in [14] and is based on a 2D version
originally described and evaluated in [29, 28].

All of the sides of the considered heated block are insulated, except the x = 1 edge, causing
heat exchange with the ambient environment with a heat exchange constant of 0.5. A heated
initial region is present in the region, where x ∈ [0.0, 0.4], y ∈ [0.0, 0.2], and z ∈ [0.0, 0.1].
The entire initial heated region is the same temperature, which is nondeterministic and chosen
in the range 0.9 to 1.1, with the remaining material initially at temperature 0.0. The system
dynamics is given by the heat equation PDE ut = α2(uxx + uyy + uzz), where α = 0.01 is the
diffusivity of the material.

A linear model of the system is obtained using the semi-finite difference method, discretizing
the block with an m×m×m grid. This results in an m3-dimensional linear system describing
the evolution of the temperature at each mesh point.

Due to the initially heated region, we expect the temperature at the center of the block
to first increase, and then decrease due to the heat loss along the x = 1 edge. Further, the
discretization error increases for smaller m, motivating the higher-dimensional versions of the
benchmark. We suggest a time bound of T = 40 and a step size of 0.02 (2000 steps).

3.1.2 Specifications

The goal is to find the maximum temperature reached at the center of a 1× 1× 1 block, where
one edge of the block is initially heated. This can be converted to a safety verification problem
by checking that Tmax is reachable but Tmax + δ is not, for some small δ like 10−4.

There are five suggested sizes, roughly each one an order of magnitude apart in terms of the
number of dimensions. The higher-dimensional versions usually prevent explicitly representing
the dynamics as a dense matrix in memory. Storing a million by million dense matrix requires
a trillion numbers, which at 8 bytes per double-precision number would require eight terabytes
of storage.

HEAT01 5 × 5 × 5 (125 dimensions). Note: the initial set is modified to be heated when
z ∈ [0.0, 0.2] (single mesh point), since that is the best we can do with this granularity.
Tmax: 0.10369 at time 9.44.

HEAT02 10× 10× 10 (1000 dimensions). Tmax: 0.02966 at time 25.5.

HEAT03 20× 20× 20 (8000 dimensions). Tmax: 0.01716 at time 22.62.

HEAT04 50× 50× 50 (125,000 dimensions). Tmax: 0.01161 at time 18.88.

HEAT05 100× 100× 100 (1,000,000 dimensions). Tmax: 0.01005 at time 17.5.
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3.1.3 Results

Plots for the 5× 5× 5 case are shown in Figure 1. Results are shown in Table 1.

Note CORA CORA applies the fully automated verification algorithm in [36] for the
benchmark instances HEAT01 and HEAT02. For the higher-dimensional benchmark instance
HEAT03 we compute the reachable set using the Krylov-subspace-based reachability algorithm
in [3] using a time step size of 0.005 and a zonotope order of 2.

Note JuliaReach We use the LGG09 algorithm with step size 0.02 (both in dense and discrete
time). For HEAT03 and HEAT04, we lazily compute the matrix exponential using the Lanczos
algorithm [32] with Krylov subspace dimension 94 and 211, respectively.

Figure 1: Heat3D: Reachable sets obtained by JuliaReach for the temperature at the center of
the block over time for benchmark version HEAT01.

Table 1: Computation Times for the Heat3D Benchmark in [s].

tool HEAT01 HEAT02 HEAT03 HEAT04 HEAT05 language

CORA 0.17 3.44 246 − − MATLAB

JuliaReach 0.11 2.93 − − − Julia

discrete-time tools

JuliaReach 0.01 0.71 117 4,832 − Julia

3.2 Clamped Beam

3.2.1 Model

Similarly to the Heat3D benchmark, the Clamped Beam benchmark [31, Sec. 4.2] also results
from the spatial discretization of a partial differential equation (PDE), where each variable
represents a node along the beam. The number of states scales proportionally with the number
of nodes used for the discretization and the system is influenced by a single external input.
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A beam of length L is fixed at one end, while an external load F (t) acts on the other end.
Further model parameters are the cross-section area A as well as the Young modulus E and the
density ρ of the material. The governing PDE models the displacement u(x, t) as a function of
the position x along the beam and the time t: EAuxx − ρAutt = 0. Here the indices indicate
partial derivatives with respect to the indexed variables. To obtain a linear system, the beam
is spatially discretized using N nodes from x = 0 to x = L depending on the stiffness matrix
K ∈ RN×N and the mass matrix M ∈ RN×N . The original model is extended by introducing a
damping matrix D = aK+bM , where a = b = 10−6, to model a more realistic beam. Rewriting
the equation into a first-order system of linear ODEs yields a system dimension of 2N describing
the displacement and velocity of each node over time. The sparsity pattern reveals four blocks
of size N ×N : The block (1,1) is all-zero, the block (1,2) is the identity matrix, and the blocks
(2,1) and (2,2) are tridiagonal matrices.

The initial condition is chosen such that all nodes have displacement and velocity zero, i.e.,
∀x ∈ [0, L] : u(x, 0) = 0, ut(x, 0) = 0. The boundary condition keeps the displacement at the
fixed end zero at all times so that ∀t : u(0, t) = 0. The load is modeled by F (t) = 10000H(t)
with H(t) denoting the Heaviside function. Finally, the time horizon is set to T = 0.01. For
discrete-time tools, a step size of 9.88 · 10−7 is used.

3.2.2 Specifications

The maximum velocity reached at the position x = 0.7L should be below 76.

CB01 N = 100 (200 dimensions).

CB02 N = 500 (1000 dimensions).

CB03 N = 1000 (2000 dimensions).

The load F (t) is modeled in two different ways:

CBC (constant inputs) The inputs are uncertain only in their initial value and constant over
time: F (0) ∈ F , Ḟ (t) = 0, with F = [9900, 10100].

CBF (time-varying inputs) The inputs can change arbitrarily over time: ∀t : F (t) ∈ F , with
F = [9900, 10100].

Note that the load F (t) of the original model is different from the input u(t) to the spatially
discretized system ẋ(t) = Ax(t) + u(t).

3.2.3 Results

Plots for the velocity of the node at x = 0.7L (corresponding to node 70) are shown in Figure 2
over the time interval t ∈ [0, 0.01]. The computation times are shown in Table 2.

Note CORA For all instances, CORA uses the fully automated verification algorithm from
[36].

Note JuliaReach We use the LGG09 algorithm with step sizes 10−6 (CBC) and 10−7 (CBF).
For CBC, we also use Krylov methods to efficiently compute the large matrix exponentials. In
discrete time, we use the step size 9.88 · 10−7.
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(a) CBC01. (b) CBF01.

Figure 2: Clamped Beam: Reachable sets for the velocity at node 70. All plots are obtained
from JuliaReach.

Table 2: Computation Times in [s] for the clamped beam benchmark.

tool CBC01 CBF01 CBC02 CBF02 CBC03 CBF03 language

CORA 0.22 0.43 2.54 4.57 39.0 69.3 MATLAB

JuliaReach 5.79 6.58 6.35 38.3 17.1 − Julia

discrete-time tools

JuliaReach 1.69 0.52 3.37 2.11 5.8 7.89 Julia

3.3 Random Benchmarks

3.3.1 Model

To evaluate the capabilities of tools without manual tuning by experts, one requires randomly
generated benchmarks. To solve the other ARCH benchmarks, tool developers often tune
their tools to best solve a given verification task. However, most users of the participating
tools typically do not have the knowledge or time to tune algorithms for reachability analysis.
Thus, this benchmark category currently best evaluates the performance when a tool is used in
practice.

We use the method in [35] for the random generation of benchmarks. These benchmarks
are directly created on the server for evaluation and, consequently, are not known to the tool
developers in advance. The method in [35] creates challenging benchmarks by placing unsafe
sets close to the reachable set. This is done by first computing the reachable set for a provided
degree of over-approximation. By placing unsafe sets directly at the border of the reachable
set, the approach varies the difficulty by adapting the degree of over-approximation. The same
technique is used to create unsatisfiable benchmarks for checking whether unsatisfiability is
properly detected. For these benchmarks, under-approximative reachable sets are computed
to which the unsafe sets are attached; the difficulty is analogously adapted by changing the
amount of under-approximation.
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Models are created randomly of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + v(t),

where x ∈ Rn is the state vector, A ∈ Rn×n is the state matrix, u ∈ Rm is the input vector,
B ∈ Rn×m is the input matrix, y ∈ Rr is the output vector, C ∈ Rr×n is the output matrix, and
v ∈ Rr is the sensor noise. The linear system is generated randomly according to [35, Alg. 1].
This algorithm creates the system matrices A so that a specified distribution of eigenvalues is
realized; the matrices B and C are simply random matrices whose entries are sampled from
a given probability distribution. We chose n = 10 states, m = 2 inputs, r = 3 outputs, and
the intervals [−5,−1] and [−0.5, 0.5] bounding the real and imaginary parts of the eigenvalues
of the system matrix A. Similarly, random initial sets and input sets are created, see [35,
Sec. 3.2], represented as intervals. For the reachable set computation required for the benchmark
generation, we chose an error relative to the initial set with factor µ = 0.1 in [35, (12)].

3.3.2 Specifications

Let us denote the reachable outputs y(t) as Y(t) and the sets of unsafe states as Ũi, the
verification problem is to show that for a time horizon tf

∀t ∈ [0, tf ] : Y(t) ∩
w⋃
i=1

Ũi = ∅. (1)

In case the specification should involve the reachable set of the system state instead of the
system output, one can simply set C = I, where I is the identity matrix.

In addition to the safety specification, for each version there is an UNSAT instance that
serves as a sanity check to ensure that the model and the tool work as intended. Verifying an
UNSAT instance requires a witness, e.g., a counter-example or an under-approximation of the
reachable set.

RND01 Bounded time, safety property (1). This property is satisfied by the system.

RNDU01 Bounded time, safety property (1). This property is not satisfied by the system.

In both cases, we have generated two such specifications using intervals as set representation.

3.3.3 Results

The computation times of various tools for the benchmark are listed in Tab. 3.

Note CORA CORA applies the fully automated verification algorithm from [36].

Note JuliaReach We use the GLGM06 implementation in a simple refinement loop, starting
with step size 10−2, repeatedly dividing by two if the result was inconclusive, and giving up
when below 10−5.
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Table 3: Computation Times for the Random Benchmark in [s].

tool RND01 RNDU01 language

CORA 9.46 38.4 MATLAB

JuliaReach 8.15 31.5 Julia

3.4 Spacecraft Rendezvous Benchmark

3.4.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems since mis-
sion failure can cost lives and is extremely expensive. This benchmark is taken from [19]; its
original continuous dynamics is nonlinear, and the original system is verified in the ARCH-
COMP category Continuous and Hybrid Systems with Nonlinear Dynamics. When spacecraft
are in close proximity (such as rendezvous operations), a common approximation to analyze
the nonlinear dynamics is to use the linearized Clohessy-Wiltshire-Hill (CWH) equations [21].
This benchmark analyzes this linear hybrid model.

The hybrid nature of this benchmark originates from a switched controller, while the dy-
namics of the spacecraft is purely continuous. In particular, the modes are approaching (100m-
1000m), rendezvous attempt (less than 100m), and aborting. Discrete-time analysis for the
rendezvous system should be done with a step size of 0.1. The model is available in C2E2,
SDVTool, and SpaceEx format on the ARCH website2. The set of initial states is

X0 =


−900
−400
0
0

⊕


[−25, 25]
[−25, 25]

0
0

 .

The following benchmark instances are considered:

SRNA01 The spacecraft approaches the target as planned and there exists no transition into
the aborting mode.

SRA01 A transition into aborting mode occurs at time t = 120 [min].

SRA02 A transition into aborting mode occurs nondeterministically, t ∈ [120, 125] [min].

SRA03 A transition into aborting mode occurs nondeterministically, t ∈ [120, 145] [min].

SRA04 A transition into aborting mode occurs at time t = 240 [min].

SRA05 A transition into aborting mode occurs nondeterministically, t ∈ [235, 240] [min].

SRA06 A transition into aborting mode occurs nondeterministically, t ∈ [230, 240] [min].

SRA07 A transition into aborting mode occurs nondeterministically, t ∈ [50, 150] [min].

SRA08 A transition into aborting mode occurs nondeterministically, t ∈ [0, 240] [min].

2cps-vo.org/node/36349
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An initial, discrete-time analysis indicated it is safe to enter the aborting mode up to around
time t = 250 [min]. We also added the following two instances, which are presumably unsafe.
For timing, tools should use the same settings for these as for the safe cases.

SRU01 A transition into aborting mode occurs at time t = 260 [min].

SRU02 A transition into aborting mode occurs nondeterministically, t ∈ [0, 260] [min].

3.4.2 Specifications

Given the thrust constraints of the specified model, in mode rendezvous attempt, the absolute
velocity must stay below 0.055 m/s. In the aborting mode, the vehicle must avoid the target,
which is modeled as a box B with 0.2 m edge length and the center placed as the origin. In the
rendezvous attempt the spacecraft must remain within the line-of-sight cone L = {[x, y]T | (x ≥
−100m) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}. It is sufficient to check these parameters for
a time horizon of 300 minutes.

Let us denote the discrete state by z(t) and the continuous state vector by x(t) =
[sx, sy, vx, vy]

T , where sx and sy are the positions in x- and y-direction, respectively, and vx
and vy are the velocities in x- and y-direction, respectively. The mode approaching is denoted
by z1, the mode rendezvous attempt by z2, and the mode aborting by z3. We can formalize the
specification as

SR02 ∀t ∈ [0, 300min],∀x(0) ∈ X0 : (z(t) = z2) =⇒
(√

v2x + v2y ≤ 0.055m/s ∧

[sx, sy]
T ∈ L

)
∧ (z(t) = z3) =⇒ ([sx, sy]

T /∈ B).

To solve the above specification, all tools under-approximate the nonlinear constraint√
v2x + v2y ≤ 0.055m/s by an octagon as shown in Fig. 3.

x

y

0.055m/s

under-approximating
octagon original

constraint

Figure 3: Under-approximation of the nonlinear velocity constraint by an octagon.

Remark on nonlinear constraint In the original benchmark, the constraint on the ve-
locity was set to 0.05 m/s, but it can be shown that this constraint cannot be satisfied by a
counterexample. For this reason, we have relaxed the constraint to 0.055 m/s.

3.4.3 Results

Results of the spacecraft rendezvous benchmark for the sx-sy-plane are shown for the version
SRNA01 in Fig. 4 and for the version SRA01 in Fig. 5. The computation times of various tools
for the spacecraft rendezvous benchmark are listed in Tab. 4.
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Note CORA For both benchmark versions, CORA was run with a zonotope order of 10
and with the following step sizes: 0.2 [min] for the mode approaching, 0.02 [min] for the mode
rendezvous attempt, and 0.2 [min] for the mode aborting (does not exist for version SRNA01).
Intersections with deterministic guards are calculated with the method of Girard and Le Guernic
in [26]. In order to find suitable orthogonal directions for the method in [26], we perform the
following procedure: first, we project the last zonotope not intersecting the guard set onto the
guard set; second, we apply principal component analysis to the generators of the projected
zonotope, providing us with the orthogonal directions. For non-deterministic guards we first
unite all reachable sets intersecting the guard set and then compute the intersection using
constrained zonotopes [33].

Note JuliaReach We use the BFFPSV18 algorithm with a one-block partition and hyper-
rectangular reach sets with step size 0.04 for most instances. We handle discrete transitions
by computing the intersection with invariants and guards lazily before their overapproximation
with hyperrectangles. For the instance SRA04, we use a clustering strategy of order 40 and
step size 0.01. In discrete time, we use the step size 0.1.

(a) CORA. (b) JuliaReach.

Figure 4: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant without maneuver abortion (SRNA01).

Table 4: Computation time [s] for the spacecraft rendezvous benchmarks (SR*) for specification
SR02.

tool NA01 A01 A02 A03 A04 A05 A06 A07 A08 U01 U02

CORA 18.8 3.86 4.19 8.37 15.0 17.0 17.4 32.1 83.0 13.8 89.5

JuliaReach 1.11 1.08 1.15 1.66 110 − − − − 11.5 20.8

discrete-time tools

JuliaReach 0.44 0.41 0.43 0.63 − − − − − − 10.3
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(a) CORA. (b) JuliaReach.

Figure 5: Reachable sets for the spacecraft rendezvous benchmark in the sx-sy-plane for the
benchmark variant with maneuver abortion at t = 120 [min] (SRA01, over analysis time horizon
of 300 [min])

3.5 Powertrain with Backlash

3.5.1 Model

The powertrain benchmark is an extensible benchmark for hybrid systems with linear continuous
dynamics taken from [7, Sec. 6] and [13, Sec. 4]. The essence of this benchmark is recalled here,
and the reader is referred to the above-cited papers for more details. The benchmark considers
the powertrain of a vehicle consisting of its motor and several rotating masses representing
different components of the powertrain, e.g., gears, differential, and clutch, as illustrated in
Fig. 6. The benchmark is extensible in the sense that the number of continuous states can be
easily extended to n = 7+2θ, where θ is the number of additional rotating masses. The number
of discrete modes, however, is fixed and originates from backlash, which is caused by a physical
gap between two components that are normally touching, such as gears. When the rotating
components switch direction, for a short time they temporarily disconnect, and the system is
said to be in the dead zone. The model is available in SpaceEx format on the ARCH website3.
The set of initial states is

X0 = {c+ αg | α ∈ [−1, 1]},
c = [−0.0432,−11, 0, 30, 0, 30, 360,−0.0013, 30, . . . ,−0.0013, 30]T ,

g = [0.0056, 4.67, 0, 10, 0, 10, 120, 0.0006, 10, . . . , 0.0006, 10]T .

3.5.2 Specifications

We analyze an extreme maneuver from a maximum negative acceleration that lasts for 0.2 [s],
followed by a maximum positive acceleration that lasts for 1.8 [s]. The initial states of the
model are on a line segment in the n-dimensional space. We create different difficulty levels
of the reachability problem by scaling down the initial states by some percentage. The model

3cps-vo.org/node/49115
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J m
J 1 J 2 J θ

J l

k s k 1 k 2 k θ

Θ m
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dynamics
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Tm

Θ s

2α

Figure 6: Powertrain model.

has the following non-formal specification: after the change of direction of acceleration, the
powertrain completely passes the dead zone before being able to transmit torque again. Due
to oscillations in the torque transmission, the powertrain should not re-enter the dead zone of
the backlash.

To formalize the specification using linear time logic (LTL), let us introduce the following
discrete states:

• z1 : left contact zone

• z2 : dead zone

• z3 : right contact zone

For all instances, the common specification is: For all t ∈ [0, 2], x(0) ∈ X0, (z2Uz3) =⇒
G(z3). The instances only differ in the size of the system and the initial set, where center(·)
returns the volumetric center of a set.

DTN01 θ = 2, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN02 θ = 2, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN03 θ = 2, no change of X0.

DTN04 θ = 22, X0 := 0.05(X0 − center(X0)) + center(X0).

DTN05 θ = 22, X0 := 0.3(X0 − center(X0)) + center(X0).

DTN06 θ = 22, no change of X0.

3.5.3 Results

Results of the powertrain benchmark in the x1-x3-plane are shown in Fig. 7. The computation
times of various tools for the powertrain benchmark are listed in Tab. 5.
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Note CORA CORA uses the following time step sizes: 0.0005s for DTN01, DTN02, and
DTN03; 0.0002s for DTN04 and DTN05; and 0.0001s for DTN06. For all benchmark versions,
CORA was run with a zonotope order of 20. The intersections with the guard sets are calculated
with the approach from [26], and principal component analysis is used to find suitable directions
for the enclosure of the guard intersections.

Note JuliaReach We use the GLGM06 algorithm with step size 0.001. In addition, we use
slightly different analysis parameters for different modes.

(a) CORA (DTN03). (b) JuliaReach (DTN03).

Figure 7: Reachable sets in the x1-x3-plane.

Table 5: Computation Times for the Powertrain Benchmark in [s].

tool DTN01 DTN02 DTN03 DTN04 DTN05 DTN06 language

CORA 5.7 5.2 5.6 48.1 90.3 235 MATLAB

JuliaReach 0.83 0.79 0.74 1.52 1.92 2.38 Julia

3.6 Platooning Benchmark

3.6.1 Model

The platooning benchmark considers a platoon of three vehicles following each other. This
benchmark considers loss of communication between vehicles. The initial discrete state is qc.
Three scenarios are considered for the loss of communication:

PLAA01 (arbitrary loss) The loss of communication can occur at any time, see Fig. 8(a). This
includes the possibility of no communication at all.

PLADxy (loss at deterministic times) The loss of communication occurs at fixed points in time,
which are determined by clock constraints c1 and c2 in Fig. 8(b). The clock t is reset
when communication is lost and when it is re-established. Note that the transitions have
must-semantics, i.e., they take place as soon as possible.
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PLAD01: c1 = c2 = 5.

PLANxy (loss at nondeterministic times) The loss of communication occurs at any time
t ∈ [tb, tc] in Fig. 8(c). The clock t is reset when communication is lost and when it
is re-established. Communication is reestablished at any time t ∈ [0, tr]. This scenario
covers loss of communication after an arbitrarily long time t ≥ tc by reestablishing com-
munication in zero time.

PLAN01: tb = 10, tc = 20, tr = 20.

The models are available in SpaceEx, KeYmaera, and MATLAB/Simulink format on the ARCH
website4. Discrete-time analysis for the platoon system should use a step size of 0.1.

Discussion The arbitrary-loss scenario (PLAA) subsumes the other two instances (PLAD,
PLAN).

qc

ẋ = Acx + BcaL

x ∈ Dc

qn

ẋ = Anx + BnaL

x ∈ Dn

(a) Arbitrary switching.

qc

ẋ = Acx + BcaL

ṫ = 1

x ∈ Dc

qn

ẋ = Anx + BnaL

ṫ = 1

x ∈ Dn

t = c1

t := 0

t = c2

t := 0

(b) Deterministic switching.

qc

ẋ = Acx + BcaL

ṫ = 1

x ∈ Dc

qn

ẋ = Anx + BnaL

ṫ = 1

x ∈ Dn

t ∈ [tb, tc]

t := 0

t ∈ [0, tr ]

t := 0

(c) Nondeterministic switching.

Figure 8: Three options adapted from the original benchmark proposal [15]. On the left,
the system can switch arbitrarily between the modes. In the middle, mode switches are only
possible at given points in time. On the right, mode switches are only possible during given
time intervals.

3.6.2 Specifications

The verification goal is to check whether the minimum distance between vehicles is preserved.
The choice of the coordinate system is such that the minimum distance is a negative value.

BNDxy Bounded time (no explicit bound on the number of transitions): For all t ∈ [0, 20] [s],
x1(t) ≥ −dmin [m], x4(t) ≥ −dmin [m], and x7(t) ≥ −dmin [m].

BND50: dmin = 50.

BND42: dmin = 42.

BND30: dmin = 30.

UNBxy Unbounded time and unbounded switching: For all t ≥ 0 [s], x1(t) ≥ −dmin [m],
x4(t) ≥ −dmin [m], and x7(t) ≥ −dmin [m].

UNB50: dmin = 50.

UNB42: dmin = 42.

UNB30: dmin = 30.
4cps-vo.org/node/15096
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3.6.3 Results

Results of the platoon benchmark for state x1 over time are shown in Fig. 9-11. The computation
times of various tools for the platoon benchmark are listed in Tab. 6.

Note CORA CORA was run with the following settings:

• PLAA01-BND50: zonotope order 400 and time step size 0.02s.

• PLAA01-BND42: zonotope order 800 and time step size 0.009s.

• PLAD01-BND42: zonotope order 20 and time step size 0.02s.

• PLAD01-BND30: zonotope order 200 and time step size 0.02s.

• PLAN01-UNB50: zonotope order 400 and time step size 0.01s. To verify the specification
for all times, the reachable set was increased by 1% at t = 50 and it was checked whether
this set is re-entered.

• PLAA01: we used continuization [8, 9] to rewrite the hybrid automaton as a purely
continuous system with uncertain parameters.

Note JuliaReach For PLAD01-BND42, we use the BFFPSV18 algorithm with a one-block
partition, hyperrectangular reach sets, and step size 0.01. For PLAD01-BND30, we use the
LGG09 algorithm with step size 0.03, and intersections with the guard are taken lazily with an
octagonal template. In discrete time, we use the step size 0.1.

(a) CORA.

Figure 9: PLAA01: Reachable sets of x1 plotted over time. CORA additionally shows possible
trajectories.
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(a) CORA (BND30). (b) JuliaReach (BND30).

Figure 10: PLAD01: Reachable sets of x1 plotted over time. CORA additionally shows possible
trajectories.

Figure 11: PLAN01: Reachable sets of x1 plotted over time using CORA.

Table 6: Computation Times for the Platoon Benchmark in [s].

PLAA01 PLAA01 PLAD01 PLAD01 PLAN01

tool BND50 BND42 BND42 BND30 UNB50 language

CORA 7.17 26.2 0.82 1.77 106 MATLAB

JuliaReach − − 0.06 56.8 − Julia

discrete-time tools

JuliaReach − − 0.97 1.14 − Julia
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3.7 Gearbox Benchmark

3.7.1 Model

The gearbox benchmark models the motion of two meshing gears. When the gears collide, an
elastic impact takes place. As soon as the gears are close enough, the gear is considered meshed.
The model includes a monitor state that checks whether the gears are meshed or free and is
available in SpaceEx format5 and as a Simulink model6. Once the monitor reaches the state
meshed, it stays there indefinitely.

With four continuous state variables, the gearbox benchmark has a relatively low number
of continuous state variables. The challenging aspect of this benchmark is that the solution
heavily depends on the initial state as already pointed out in [20]. For some initial continuous
states, the target region is reached without any discrete transition, while for other initial states,
several discrete transitions are required.

In the original benchmark, the position uncertainty in the direction of the velocity vector
of the gear teeth (x-direction) is across the full width of the gear spline. Uncertainties of the
position and velocity in y-direction, which is perpendicular to the x-direction, are considered
to be smaller. Due to the sensitivity with respect to the initial set, we consider smaller initial
sets. The full uncertainty in x-direction could be considered by splitting the uncertainty in
x-direction and aggregating the individual results. For discrete-time analysis of the gearbox
system, a step size of 0.0001 (1.0E-4) should be used.

GRBX01: The initial set is X0 = 0× 0× [−0.0168,−0.0166]× [0.0029, 0.0031]× 0.

GRBX02: The initial set is X0 = 0× 0× [−0.01675,−0.01665]× [0.00285, 0.00315]× 0.

3.7.2 Specification

The goal is to show that the gears are meshed within a time frame of 0.2 [s] and that the bound
x5 ≤ 20 [Nm] of the cumulated impulse is met. Using the monitor states free and meshed , and a
global clock t, this can be expressed as a safety property as follows: For all t ≥ 0.2, the monitor
should be in meshed . Under nonblocking assumptions, this means that t < 0.2 whenever the
monitor is not in meshed , i.e., when it is in free.

MES01: forbidden states: (free ∧ t ≥ 0.2) ∨ (x5 ≥ 20)

3.7.3 Results

Results of the benchmark for state x3 and x4 are shown in Fig. 12. The computation times of
various tools for the benchmark are listed in Tab. 7.

Note CORA CORA was run with a time step size of 0.0011 and a zonotope order of 20. The
intersections with the guard sets were calculated with the method of Girard and Le Guernic
[26]. In order to find suitable orthogonal directions for the method in [26], we perform the
following procedure: first, we project the last zonotope not intersecting the guard set onto the
guard set; second, we apply principal component analysis to the generators of the projected
zonotope, providing us with the orthogonal directions.

5cps-vo.org/node/34375
6cps-vo.org/node/34374
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Note JuliaReach We use the LGG09 algorithm with step sizes 0.0005 (GRBX01) resp. 0.0008
(GRBX02). In discrete time, we use the step size 0.0001.

(a) CORA. (b) JuliaReach.

Figure 12: Gearbox (GRBX01): Reachable sets of x3 and x4.

Table 7: Computation Times of the Gearbox Benchmark in [s].

tool GRBX01-MES01 GRBX02-MES01 language

CORA 1.49 1.97 MATLAB

JuliaReach 4.68 3.05 Julia

discrete-time tools

JuliaReach 16.4 17 Julia

3.8 Brake Benchmark

3.8.1 Model

The brake benchmark models an electro-mechanical braking system, where a motor pushes a
brake caliper against a brake disk that is connected to a (car) wheel [34]. The model describes
a closed-loop system comprising a plant model as well as a controller and is representative for
challenges in automotive systems. The original Simulink model has been simplified for usage
in various analysis tools7. Here, we consider a linearized version with parameters.

The model is a hybrid automaton (see Fig. 13) with four state variables (the motor current I,
the brake position x, and two auxiliary linearization variables) and a clock variable T . The
automaton consists of a single mode and a self-loop transition. The transition is time-triggered,
i.e., it only depends on the value of the clock variable.

7cps-vo.org/node/20289
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İ = 1
L ·

(
(KP · xe +KI · xc)− (R+ K2

drot
) · I

)
ẋ = K

i·drot
· I

ẋe = 0

ẋc = 0

Ṫ = 1

T ≤ Tsample + ζ

T ≥ Tsample + ζ

x′
e := x0 − x

x′
c := xc + Tsample · (x0 − x)

T ′ := T − Tsample

Figure 13: Hybrid automaton of the electro-mechanical brake with periodic discrete-time PI
controller and sampling jitter.

We consider two types of uncertainties in the model. The first uncertainty is a variation
in the model parameters. We use the settings from [34] for the nonparametric and parametric
scenarios. The second uncertainty is sampling jitter (i.e., nondeterministic switching). Unlike
the linear model in [34], we consider jitter with a periodic clock (instead of a drifting clock).

3.8.2 Specification

While structurally simple, the benchmark is challenging due to the large number of 1,001
discrete jumps within the time horizon 0.1. The initial state is the origin, we use the parameters
x0 = 0.05 and Tsample = 10−4, and in the case of nondeterministic switching the transitions are
taken at multiples of Tsample with a nondeterministic jitter from the interval ζ = [−10−8, 10−7].
We study the property x < x0 in both scenarios without and with parameter ranges:

BRKDC01: Verify that x < x0 holds for the whole time horizon 0.1 (non-parametric scenario
with deterministic switching).

BRKNC01: Same as BRKDC01, but with non-deterministic switching.

BRKNP01: Report the largest time horizon for which x < x0 holds (parametric scenario with
non-deterministic switching).

3.8.3 Results

Results of the benchmark are shown in Fig. 14. The computation times of various tools for the
benchmark are listed in Tab. 8.

Note CORA CORA was run with a time step size of 2−5, a zonotope order of 20, and the
intersections with the non-deterministic guard sets were calculated with constrained zonotopes
[33].

Note JuliaReach For the BRKDC01 and BRKNC01 scenario, we use the GLGM06 algorithm
with fixed step sizes 10−7 resp. 10−8 (both in dense and discrete time). For the BRKNP01
scenario, we use the ASB07 algorithm with step size 10−8 (both in dense and discrete time). In
all scenarios, we use the maximum zonotope order 1 (i.e., boxes). We use a custom analysis for
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dealing with the time-triggered transition efficiently, considering intersections with the guard
separately from the flowpipe computation, as described in [22]. The largest time horizon for
which we can prove x < x0 in the BRKNP01 scenario is 0.0823 s and 0.0824 s in dense and
discrete time, respectively.

(a) CORA. (b) JuliaReach.

Figure 14: Brake: Reachable sets for x over time.

Table 8: Computation Times of the Brake Benchmark in [s].

tool BRKDC01 BRKNC01 BRKP01 language

CORA 13.6 2.33 1.73 MATLAB

JuliaReach 0.15 2.04 9.63 Julia

discrete-time tools

JuliaReach 0.04 1.95 9.66 Julia

4 Conclusion and Outlook

This report presents the results of the eighth friendly competition for the formal verification
of continuous and hybrid systems with linear continuous dynamics as part of the ARCH’24
workshop. The reports of other categories can be found in the proceedings and on the ARCH
website: cps-vo.org/group/ARCH.

A main observation of the 2024 edition is that all participating tools could handle randomly
generated benchmarks. One can execute the dockerfiles of all tools on gitlab.com/goranf/ARCH-
COMP. Information about the competition in 2025 will be announced on the ARCH website.
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