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Abstract

The cvch solver is today one of the strongest systems for solving first order problems
with theories but also without them. In this work we equip its enumeration-based instan-
tiation with a neural network that guides the choice of the quantified formulas and their
instances. For that we develop a relatively fast graph neural network that repeatedly scores
all available instantiation options with respect to the available formulas. The network runs
directly on a CPU without the need for any special hardware. We train the neural guidance
on a large set of proofs generated by the e-matching instantiation strategy and evaluate
its performance on a set of previously unseen problems.

1 Introduction

In recent years, machine learning (ML) and neural methods have been increasingly used to
guide the search procedures of automated theorem provers (ATPs). Such methods have been
so far developed for choosing inferences in connection tableaux systems [50, 27, 29, 37, 51],
resolution/superposition-based systems [24, 23, 20, 49], SAT solvers [48], tactical ITPs [17, 3,
5, 18, 30, 42, 40] and most recently also for the iProver [31] instantiation-based system [9].
In SMT (Satisfiability Modulo Theories), ML has so far been mainly used for tasks such as
portfolio and strategy optimization [47, 36, 2]. Previous work [41, 15, 8] has explored fast
non-neural ML guiding methods based on decision trees and manual features. Direct neural
guidance of state-of-the-art SMT systems such as cve5 [4] and Z3 [12] however has not been
attempted yet.

One reason for that is the large number of choices typically available within the standard
SMT procedures. Any ground term that already exists in the current context can be used to
instantiate any free variable in the problem. While e.g. in the resolution/superposition systems,
only the choice of the given clause can be guided and the rest of the work (its particular
inferences with the set of processed clauses) is computed automatically by the ATPs,* in SMT,
the trained ML system needs to make many more and finer decisions. This is both more fragile
— due to the many interconnected low-level decisions instead of one high-level decision — and

1This is similar also in the iProver instantiation-based system with its given-clause loop.
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also slower. The ML (and especially neural) guidance is typically much more expensive than the
standard guiding heuristics implemented in the systems, and the more low-level and exhaustive
such guidance is, the larger the slowdown incurred by it becomes.

Despite that, there is a good motivation for experimenting with neural guidance for instan-
tiation. Today’s instantiation-based systems and SMT solvers such as cvch, iProver and Z3 are
becoming competitive on large sets of related problems coming e.g. from the hammer [7] links
between ITPs and ATPs, and even for problems that do not contain explicit theories in the
SMT sense [6, 13, 21]. The problems that they solve are often complementary to those solved
by the state-of-the-art superposition-based systems such as E [46] and Vampire [32].

Contributions: In this work we develop efficient neural guidance for the enumerative instan-
tiation in cveb. We first give a brief overview of the instantiation procedures used by cve5 (and
generally SMTs) in Section 2. We then design a graph neural network (GNN) that is trained
on cveh’s proofs and tightly integrated with cveb’s proof search. This yields a neurally guided
version of cveh that runs reasonably fast without the need for specialized hardware, such as
GPUs. Section 3 explains the GNN design, its training, collection of the training data from cvch
and the neural instantiation procedure. Finally in Section 4, we show that the GNN-guided
enumeration mode outperforms cveb’s standard enumeration by 72% in real (CPU) time. This
is measured on previously unseen problems extracted from the Mizar Mathematical library, af-
ter training the GNN on many proofs obtained on a large training set. We also investigate the
behavior of cvcd’s instantiation strategies, in terms of the number of instantiations performed
in successful proof attempts. We show that e-matching can instantiate many more times than
the enumeration strategies on our dataset. When we compensate for this, we arrive at an ML
solver that improves on the enumeration mode by 109% in real time.

2 Proving By Instantiation

Quantifiers are essential in mathematics and reasoning. Practically, all today’s systems used to
formalize mathematics and for software verification are based on foundations such as first-order
and higher-order logic, set theory and type theory, which make extensive use of quantification.
Instantiation is a powerful method for formal reasoning with quantifiers. For example, the
statement “All countries are completely in the northern hemisphere” is a quantified (false)
statement, where “All countries” is a quantifier. This statement is readily shown false by
instantiating with the country Brazil. The power of instantiation is formalized by Herbrand’s
theorem [22], which states that a set S of first-order clauses is unsatisfiable if and only if there
is a finite set of ground instances of S that is unsatisfiable. In other words, quantifiers in false
formulas can always be eliminated by a finite number of appropriate instantiations. Herbrand’s
theorem further states that it is sufficient to consider instantiations from the Herbrand universe,
which consists of ground terms constructed from the symbols appearing in the problem. This
fundamental result has been explored in automated reasoning (AR) systems since the 1950s [11,
10, 45, 16).

SMT solvers such as cvch and z3 handle quantifiers in a loop illustrated by Figure 1. The loop
alternates between the quantifier module, which provides new instantiations (called lemmas),
and the SAT solver, which decides whether the instantiations already lead to unsatisfiability.
In the context of this work, we refer to one iteration of this high-level loop as a round.

There is extensive work on techniques that calculate new instantiations. Here we provide
a concise explanation of three different quantifier instantiation methods implemented in cvc5.
While e-matching is usually seen as the standard method (and is in fact part of the default
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procedure of cvch), we start with the enumerative instantiation method in our explanation, as
it is relatively simple and allows us to introduce concepts more gradually.

Enumerative Instantiation: exhaustively instantiates with ground terms present in the cur-
rent context [38]. In each round, it instantiates each quantified expression? with a tuple of
ground terms—one term per variable. For a schematic overview, see Figure 2. The default
strategy of the solver is to first try the instantiations that use terms that were created earlier in
the process (or were already in the input problem) — we refer to this as the age heuristic. For
instance, for the ground part {p(c)} and the quantifier Vz. ¢(f(x)), the solver would instantiate
by ¢ in the first round and by f(c¢) in the second round. There is also the option to restrict
the set of terms using the relevant domain, but in our experiments we turn this off. Disabling
this option simplifies the integration of the machine learning component. The relevant domain
option is also turned off in our machine learning experiments. When we say enumeration mode,
we mean the pure enumeration without relevant domain. The enumeration procedure only
produces one instantiation per quantified expression per round.

E-matching: In e-matching instantiation [14, 34], the solver looks for instantiations (substitu-
tions) that yield an existing ground term, modulo equality. Since there may be many such terms,
it only considers terms fitting a certain pattern—called trigger. Triggers may be provided by
the user or generated by heuristics. As an example, consider the ground facts {a = f(17),p(a)}
and the quantifier formula Vz. —p(f(x)) V& < 0. The trigger p(f(x)) would cause e-matching
to instantiate x with 17 because the term p(f(17)) fits the trigger and it is semantically equal
to the existing term p(a). This instantiation would yield the lemma —p(f(17)) V 17 < 0, which
would give a contradiction with the ground facts. Preliminary investigations indicate that it is
possible to use a similar machine learning setup as we used here to choose the triggers, but we
leave it for future work here. Note that in contrast to the enumeration mode, e-matching may
produce (potentially many) more than one instantiation per quantified expression per round.
This difference in generative capacity becomes relevant in our experiments (Section 4).

Conflict-driven Instantiation: In conflict-driven quantifier instantiation [39], the solver
looks for easily-detectable contradictions between the quantified part and the current model
of the ground part; this reasoning is done modulo equality. As an example, consider a
model M that contains the facts {f(a) # g(b),b = h(a)} and there is a quantified formula

Quantifier
/ Instantiation \
SAT Model New lemma
UNSAT SAT Solver

Figure 1: High-level architecture of cveb. The techniques explained in Section 2, as well as our
neural method (Section 3 and on), are particular cases of the top rectangle.

2These are in general formulas, however in our experiments here we restrict ourselves to clausal problems.
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V. f(z) # g(h(z)). Then, the solver quickly identifies that instantiating z with a causes a
contradiction with M and therefore, yielding the lemma f(a) # g(h(a)). Adding this lemma
effectively excludes M from further search. The method only looks for instantiations that
guarantee a conflict with the current model and aims to be fast and is therefore inherently
incomplete. This technique is part of the default settings of cveh and we can turn this off using
--no-cbqi to arrive at a solver that uses only e-matching to instantiate.

Term Creation & Proliferation: In any of these strategies, new ground terms are created
by the instantiations that they propose. For example, when a subterm f(f(X)) is instantiated
with a constant ¢, the new ground term f(f(c)) is created, as well as its subterm f(c), if this
subterm did not already exist as a ground term in the problem. Potentially, this can create a
lot of new terms, which make the problem of choosing terms for instantiations harder.

3 Neural Instantiation for cvcb

Setting: We build our neural guidance on top of the enumerative instantiation. This is because
(i) enumeration is the conceptually simplest of the instantiation strategies, (ii) it is general and
complete, and (iii) it allows fine-grained control over the instantiations (which can however also
have the downsides mentioned in Section 1). That said, our current neural guidance method
is not necessarily complete — it may be very unfair. This is exactly the objective of training
a machine learning heuristic: we want to learn from previous proofs how we can push the
solver to be biased towards choices similar to the ones that were previously successful. While
in principle, it is possible to create the training data for the neural network also from the

Enumerative Instantiation

Asserted Quantified Expressions

@iables Term Selection ¢ \ Lemma Construction

A DD @ - w
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Decreasing Term Scores—)/

o

Figure 2: A schematic description of 1 instantiation within the enumerative instantiation pro-
cedure, which we heavily modify to create our neural solver. In the example a new ground
lemma is created by instantiating the variables (A,B,C) in quantified expression 3 (QE3) with
the ground terms (t7, t7, t1) respectively. In the default enumerative instantiation procedure,
all quantified expressions are instantiated each round.
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enumerative instantiation mode, we chose to use the e-matching procedure for that. This is
because e-matching is much stronger on our dataset of FOL problems (see Section 4), providing
us with much more training data. This is similar to the experiments done with the E and
ENIGMA systems in [19], where the training data collected from the “smart” E strategies are
used to train a guidance for a tabula rasa version of E.

GNN: While many different neural network methods can be used to guide automated theorem
provers, a natural choice, based on the graph representation that cvceb uses for the proof state,
is the class of predictors called graph neural networks (GNNs) [43]. On a high level, GNNs
represent each node in a graph with a vector of floating point numbers, and update these vectors
using the vector representations of neighbouring nodes in the graph. By using optimization
procedures, the GNN ‘learns’ to aggregate and update the node representations in such a way
that at the end of several iterations of this neighbourhood-based updating procedure (usually
called message passing), the node representations contain useful information to predict some
relevant quantity. In our setting, these relevant quantities are: (i) scores for each quantified
expression that represent whether this expression should be instantiated and (ii) scores for each
pair of variables and terms that represent whether this particular variable should be instantiated
with a particular term.

We implement a custom GNN using the C++ frontend of PyTorch [35]. ML-guided ATPs
often use a separate GPU server [9, 21], to which multiple prover processes send their requests
for advice. Here, we are however interested in a tight integration within cvcd, allowing the ML
component to use only one CPU thread. This also means that no time is lost communicating
and encoding/decoding between different processes and different programming languages.

GNN Proof State Representation: Each cvch state is represented as a graph. Its nodes
represent cveh expressions. They have a kind, such as BOUND VARIABLE, APPLY, etc. Each
of the kinds that cvch recognizes internally is given a separately trainable embedding (vector
in R™) that serves as the initial embedding of each node before the message passing phase
(see below). The edges between nodes are collected by modifying the DAG that cvch uses to
represent the state. The GNN uses a bidirectional (cyclic) version of the DAG. For example,
if we have a term f(c), we have not only an edge from f to ¢, but also an edge going the other
way. We also use edge types to encode the argument ordering. For example, in f(c,d) the
edge from f to c¢ has a different type than the edge from f to d. We recognize up to 5 different
argument positions, with the fifth used to represent all remaining positions. Each edge type has
a numerical vector associated with it that is used to make it possible to distinguish argument
order during the message passing procedure.

GNN Message Passing: For the message passing part of the GNN, a concatenation of the
mean and mazx aggregation of neighbourhood messages is used. We have also implemented
and tested the simpler mean and the more complicated attention-based aggregation methods.
However, the mean-max version had the best balance of complexity and performance.® Sim-
ilarly, we tested the GNN with 2, 4, 10, 20 and 30 message passing layers, all with separate
parameters. We found that 10 layers was a reasonable trade-off between the extra capability
to fit the data and the execution speed within cvcb.

The different edge types are handled by adding a trainable vector e (which differs for each
of the recognized edge types) to each source node in an edge, before doing the neighbourhood
accumulations. This method avoids having separate weight matrices and thus message passing
rounds for each edge type [44], which could complicate and possibly slow down the computa-

3Here we consider both the complexity of the implementation and the computational complexity of the
quadratic attention mechanism.
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tions. In addition, these edge vectors can be seen as analogous to the positional encodings often
used in transformer architectures. The embedding update rules (for embedding size K) are as
follows for a single node j with N neighbours labeled by i:

St =Tt + etypeij
N
j 1 i j
x{,, = RELUW - CONCAT(N Z sy, max(st))) + x,
i=0

where we compute a “source” vector s for each neighbour i depending on the type of the edge
from i to j. The MAX function returns a vector that is the elementwise maximum over all the
neighbourhood vectors. The matrix s, has the shape N x K and z7,, is a vector of size K.
W is a linear transformation from dimensions 2K to K. CONCAT is a concatenation function
that takes two vectors of size K and returns a vector of size 2K. RELU is the Rectified Linear
Unit function, max(0, x), computed elementwise. The above is performed for each node and its
neighbourhood, in each message passing step. Each message passing step uses its own weight
matrix W. At the end of each message passing step, we add to each node the associated x;
vector, which serves as residual connection, a way to easily propagate information unchanged
through the layers, if it is useful. In our experiments, the embedding size K was set to 64.

GNN Output: To decide what the solver should do, we use two different outputs of the GNN
(see also Figure 2): (i) probability distributions for each of the the top-level asserted quantified
expressions, and (ii) for each variable a probability distribution over the terms of the right type,
which we interpret as a probability that substituting this term in the variable leads to a useful
instantiation. For output (i), note that we output a separate prediction for each quantified
expression, which we can interpret as the probability that this quantified expression will be
useful for the proof.

After the message passing steps, we have embeddings corresponding to each node in the
graph. For the quantified expression selection task, we take all the nodes corresponding to the
currently asserted top-level quantified expressions and apply a matrix transformation (a Linear
layer) of size K x 1 to each one, and use a sigmoid transformation to obtain a score between 0
and 1 for each one. Binary cross-entropy loss is used train the network to optimize the scores
according to the data.

For the term ranking task, we take the embedding representing variables, and then for each
variable the embeddings representing terms of the correct type. We apply separate trainable
linear transformations (of size K to K) the term and variable embeddings and then compute
dot products to obtain a distribution of term scores for each variable. We use a softmax
transformation and cross-entropy loss to train the network to give high scores to variable-term
substitutions occurring in the data.

Training Data Extraction: We have modified cvch to export the current proof state as a
graph. For a particular problem, we extract for each solver round (Section 2 and Figure 1)
the graph representation corresponding to the current proof state. To each such graph we also
assign labels that indicate which quantified expressions and their instantiations were useful for
the proof. In particular, our exporter labels instantiations as the correct answer as soon as the
right ground terms become available. We also keep track of which instantiations were already
done at a certain point in the run, so the GNN is not instructed to repeat instantiations.
When there are multiple useful instantiations for the same quantified expression in a given
proof state, we pick one at random. This is motivated by the enumerative instantiation mode’s
default behavior, where we only instantiate each expression once in every round.
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Training Details: For a given set of training problems, we might have many transitions for a
single problem and few for another one. To balance this out, in each iteration over the dataset,
we randomly sample one of the transitions associated with the known proof for each training
problem. The Adam optimizer implemented in PyTorch was used with default parameters,
except for the learning rate, which was set to 0.0001.

4 Experiments

All our experiments were run on a machine with Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
CPU, 512GB RAM and NVIDIA Tesla V100 GPUs. The GPUs were used only for training the
GNN. The trained neural models were always run on a single CPU when used for prediction
inside cve5. Our code and the trained GNN weights are available from our public repository.*

4.1 Small Dataset

We first experimented with a small set of related problems extracted from the Mizar library.
In particular, the MPTP2078 benchmark® [1] has been used for several earlier AI/TP exper-
iments [33, 27, 29]. To make this smaller benchmark compatible with the larger benchmark
we ultimately use (see below), we update the problems there to their version corresponding
to the MML version 1147. This yields 2172 problems. These problems were split into three
different sets, the training set (80%), the development set (10%) and the holdout set (10%).
The training set consists of problems where we are allowed to learn from solutions that we have,
the development set consists of problems that we may tune the performance of our algorithm
on and the holdout set is a set that is not used to tune parameters.

To collect training data for our approach, we ran our modified (Section 3) version of cvc5 in
only e-matching mode.® The states, as well as the instantiations done were logged. These were
converted into training data using the procedure described in Section 3. We end up with 814
solved problems, from which we extract 1934 training transitions. The model was then trained
for 2000 iterations over the dataset.

In Table 1, we show the results of running various versions of cvceb for 10s on the development
and holdout sets.” The top 3 rows in the table correspond to a binary release of cve5. The
enumeration mode is observed to be a lot weaker on this dataset than e-matching. We also
show a dry run, which is a run where we call the GNN to compute all the scores for quantified
expressions (QEs) and term-variable combinations, but where we ignore those scores and simply
use the default enumeration strategy’s suggestions. This allows us to gauge the slowdown caused
by calling the GNN and its message passing and scoring procedures. While the 10s timeout
can be seen as relatively short compared to the multi-minute timeouts used in competitions like
SMTCOMP, it is indicative of the performance in a hammer-type setting.

We can use the scores (which are between 0 and 1 for each QE) predicted by the GNN
in different ways. Here, we experimented with two procedures for the quantified expression
scores: (1) QSampling, where we take the scores associated with each QE and interpret this as
the probability of using this QE in this round. A sampling procedure decides, by drawing a
random number between 0 and 1 and comparing with the score given, whether to instantiate
this QE in this round. If the random number is higher than the score, we do not use the

4nttps://github.com/JellePiepenbrock/mlcvc5-LPAR

Shttps://github.com/JUrban/MPTP2078

6This means that we use the —-no-cbqi and --no-cegqi parameters.

"In the evaluations, we always use 15 parallel processes, however each problem always uses a single CPU.
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Development Holdout

Beveb — default strategies 148 134
Beveb — only e-matching 129 115
Bcved — only enumeration 48 49
MLcveh — dry run 33 22
MLcve5 — model (QSampling) 49 29
MLcve5 — model (Threshold — 1 x 10-5) 54 35

Table 1: Number of problems solved by 10s runs on the devel and holdout parts of the small
dataset. Beveb is an unchanged binary release of cve5. MLcve) is our modified version. Some
of the changes cause a slowdown.

QE in this round. (ii) Threshold, where we compare the score to a threshold number and
only instantiate the QEs with scores above the threshold. In our tuning phase (done on the
development set), we found that a very low threshold® value (0.00001) was the best setting for
the Threshold variant. In general, false negatives (preventing a QE to be instantiated) seem to
be a bigger problem for the solver than false positives. As in premise selection, having some
extra QEs instantiated does not seem to be as problematic as omitting some necessary ones.
Comparing the ‘Beved — only enumeration’ and ‘MLcveb — dry run’ in Table 1 we see that
the performance hit caused by calling the GNN is quite significant. However, we see that both
on the development and holdout sets we do improve on the performance of the dry run. This
means the predictions of the GNN are useful. Unfortunately, we are not able to improve on the
binary version of enumeration on the holdout set. On the development set, we can improve on
it by a few problems. The split between training, development and holdout was done randomly
to prevent a bias in the different sets. However, several of the methods seem to have worse
performance on the holdout set here. A larger selection of problems could help alleviate this.
While these results indicate that the GNN can be useful for guidance of cvch in the enumeration
mode, this training dataset might be too small to learn sufficiently strong GNN guidance.

4.2 Large Dataset (MPTP1147)

In the final evaluation we use the full MPTP 1147 benchmark, used previously in the
Mizar40 [28] and Mizar60 [25] experiments. This dataset is more than 25x as large as the
MPTP2078-induced subset (57917 problems in total). We use the train/devel/holdout split as
defined in the previous work [25, 9]. Running on the training problems with the data collection
mode of cveh with only e-matching active gives us 10945 solved problems, which we use to
generate the training data. The model was trained for 150 iterations on this training dataset.
After 150 epochs, the model has 82.9% accuracy on predicting the right terms for each variable
on the training problems. For the quantified expression task, which scores the QEs between
0 and 1, 70.7% of useful quantified expressions are given a score above 0.5, while 88.3% of
the non-useful quantified expressions are given a score below 0.5. While the model did not
perfectly fit the training data, it has some capacity to learn the data. In Table 2, we show the
development and holdout set performance of the ML-guided cvch, along with various control
experiments. We observe that the performance of the enumeration mode was improved by up
to 72% (336/195 = 1.723) when we use the Threshold (1 inst) variant of our network. As a
sanity check, we also ran a randomized dry run experiment on the development set, where we

8We tested the following thresholds: 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001 and 0.00001.
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Development Holdout

Beveb — only e-matching 1096 1107
Beveb — only enumeration 183 195
MLcveb — dry run 119 120
MLcves — model (QSampling) 288 300
MLcve5 — model (Threshold - 1x10-5, 1 inst) 324 336
MLcve5 — model (Threshold - 1x10-5, 10 inst) 410 407

Table 2: MML1147: Number of problems solved by 10s runs. On both the development and
the holdout sets the GNN-guided enumeration mode outperforms the unguided enumeration
mode. Both the development and holdout set contain 2896 problems.

computed all the model scores, but used a randomly shuffled term ordering (instead of the age-
based ordering for the usual dry run). This mode only solved 10 problems from the development
set. These results taken together indicate that the network has learned a useful strategy from
the e-matching generated training data, which it can apply in the ML enumeration mode.

Comparison of number of instantiations: While the runtime of all solvers was limited to
10s on 1 CPU, the various versions and settings of cvch can vary in terms of the absolute number
of instantiations done within the same real time. The enumeration mode strives to perform at
least 1 instantiation for each QE per round (Figures 1 and 2), and will not generally instantiate
more than once for each QE in each round. E-matching, however, is not bound by this and will
instantiate based on the number of pattern matches (which can be high). In Figure 3, we show
the number of instantiations done in successful runs for five strategies. The median number for
e-matching is an order of magnitude higher than in the ML strategy. E-matching is much more

It

T T T T T
E-matching Enumeration Dry run ML (Thr) ML (Thr,10x)

N w »

=

Instantiations (Log-scale, base 10)

Figure 3: Violin plots of the number of instantiations performed in successful runs for Beveb
e-matching, Bcveb enumeration, dry run, the ML strategy with threshold le-5, and the ML
strategy with 10x as many instantiations per quantifier per round. The white dots indicate the
medians. The respective medians are 2235, 1026, 373.5, 250 and 1620.
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Beveb - e-matching  Beveb - enum ML - (Thr-1x10-5, 10 inst)

Beveb — e-matching 0 922 717
Beved — enum 10 0 34
ML — (Thr-1x10-5, 10 inst) 17 246 0

Table 3: Set differences in terms of number of solved problems on holdout set, row minus
column. Example: the ML solves 246 problems that the enumeration mode does not.

prolific than enumeration, and the ML strategy is less prolific in 10s than enumeration due to a
combination of QEs that are not used and the GNN slowdown. The number of instantiations is
of course also mediated by the time spent in computing the neural network’s predictions. This
time varies heavily per problem and potentially per run, depending on the size of the initial
problem and how much the graph grows each round (for example due to a lot of new lemmas
and terms). In the successful runs on the MPTP1147 development set, there are neural network
predictions that take below 40ms and ones that take more than 2400ms.

GNN run with multiple instantiations: The above analysis indicates that some difference
in performance is due to the difference in the raw number of instantiations done. As we are
already incurring the cost of computing the GNN advice, it might be the case that instantiation
with multiple high-scoring tuples per round, instead of only 1 per QE as the original enumer-
ation does, is a better use of the GNN advice. To test this, we ran a version of the ML mode
that performs up to 10 instantiations per QE per round (see Table 2). This led to 407 solved
holdout problems (again in 10s real time). This is a 109% increase compared to the unmodified
enumeration mode (407/195 = 2.09).

Overlaps of sets: In Table 3, we show the set differences between the sets of solved prob-
lems for e-matching, enumeration and the best-performing ML setting on the holdout set. We
observe that we can solve many problems that were not solved by the unguided enumeration
mode, but that the e-matching mode is stronger than our method on this dataset.

5 Conclusion

In this work, we have shown that it is possible to improve cvch’s enumerative instantiation by
using an efficient graph neural network trained on many related problems. Our best result is
109% improvement in (realistically low) real time and with exactly the same hardware resources
(i.e., a single CPU). This is done here so far in a first-order clausal setting without theories,
however extensions to non-clausal SMT with theories should be mostly straightforward.

While e-matching largely dominates on first-order logic problems extracted from the Mizar
Mathematical Library, on problems from the SMTLIB database, the enumeration procedure is
much more competitive [26], and can even outperform e-matching on certain types of bench-
marks. In principle, we can extend the current method to SMT problems, aside from the fact
that the logging procedure that extracts training data from cvcb runs needs to be modified.
This could lead to some difficulties with tracing of instantiations, as it is not always clear how
a term came to be (as the mechanism may be ‘hidden’ inside a theory component).

Future work will also investigate whether a better balance between the computation of the
advice itself and the number of instantiation done based on this advice can be found. We may
be under-utilizing the expensive advice of the GNN. Another direction of investigation will be
the optimization of the speed of the neural network: it may be possible to use a much smaller
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neural network and still get reasonable predictions, but much faster. We will also investigate the
generalization performance of the method. For example, testing the performance on problems
extracted from other systems, such as Isabelle or Coq could be insightful. In general, our work
shows for the first time that efficient real-time neural guidance for SMT solvers is possible.
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