
EPiC Series in Computing

Volume 52, 2018, Pages 289–300

ICT4S2018. 5th International Conference on Informa-
tion and Communication Technology for Sustainability

Data Storage and Maintenance Challenges:

The Case of Advanced Metering Infrastructure Systems

Lucas Pereira1, Rodolfo Gonçalves2, Filipe Quintal13, and Nuno Nunes14

1 M-ITI/LARSYS, Funchal, Portugal
lucas.pereira@m-iti.org

2 Exictos, Funchal, Portugal
orencio.goncalves@exictos.com

3 University of Madeira, Funchal, Portugal
filipe.quintal@m-iti.org

4 Técnico, University of Lisbon, Lisbon, Portugal
nunojnunes@tecnico.ulisboa.pt

Abstract

In today’s digital age, massive amounts of data are steadily being generated from various
sources, such as smart-phones and social media. Smart-Grids are among the fields that
are currently experiencing a burst in the data being generated, in part due to the recent
investments in Advanced Metering Infrastructure Systems. In this paper, we present a
benchmark between MySQL and MongoDB, when used to store and maintain the data
that results from Advanced Metering Infrastructure Systems deployments. Our results
show that MongoDB clearly outperforms MySQL for reading operations but at a cost of
a much larger database size. As such, when deploying such systems, developers should be
aware of this important trade-off that may greatly affect the overall experience.

1 Introduction

In today’s digital age, massive amounts of data are steadily being generated from various
sources, such as smart-phones, and social media. This large amount of data is known as Big
Data, one of the most discussed topics in digital information. It can be described as massive
volumes of both structured and unstructured data that is so large that it is difficult to process
with traditional database and software techniques [20].

Smart electric energy grids (Smart-Grids), are among the fields that are currently experi-
encing a burst in the data being generated, in part due to the recent investments towards the
deployment of Advanced Metering Infrastructure Systems (AMIS) worldwide [17, 10].

Due to the high volume and the non-homogeneous data structures, scalability and query
performance are the two main topics to be aware of. For example, in the case of AMIS, it is
important to enable that consumers interact seamlessly with their consumption data, while also
allowing advanced data analysis on the utility side [2]. Consequently, in recent years there has
been an urge to develop scalable and high performing database technologies [7].

B. Penzenstadler, S. Easterbrook, C. Venters and S.I. Ahmed (eds.), ICT4S2018 (EPiC Series in Computing,
vol. 52), pp. 289–300



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

1.1 SQL, NoSQL and different Database Models

A database is an organized collection of interrelated (persistent) data, organized to model
aspects of the real world in a way that supports processes requiring information. Databases can
be managed through software applications known as Database Management System (DBMS),
computer software applications that interact with the end-user, and the database itself to
capture and analyze data [8].

Database models are data models that define the logical structure of a database, and how
data shall be stored and manipulated. It is a collection of concepts and rules that describe the
database structure, such as data types, constraints and relationships among different pieces of
information.

Every database application adopts a database model, defining the logical structure of the
data. The data model is the biggest determiner of how a database application will work and
handle the information it deals with. There are several different database models offering
different logical data structures, from which the relational model (RM), commonly known by
SQL, clearly stands out as the most used data model in the last few decades.

Relational model and SQL databases, despite being powerful, flexible and the most known
and used solutions, have several issues or features that have never been over-crossed or pro-
vided. Consequently, a series of new and different systems called NoSQL (Not only SQL) have
emerged with the purpose of overcoming some of the barriers imposed by SQL databases, and
immediately gained popularity.

NoSQL aims to offer a much more freely shaped way of working with information, providing
more flexibility and ease data management. NoSQL systems are known for the schema-less
data approach that, unlike the relational model, can handle data with not very well defined
structures, supporting structures that are or can become heterogeneous. It has its pros and
cons, considering the important and indispensable nature of data.

Due the scale and agility challenges that modern applications face, NoSQL databases have
become the first alternative to relational databases, being scalability, availability, and fault tol-
erance the key deciding factors in satisfying the user needs. Likewise, another important factor
in favour of NoSQL databases is the cheap storage and processing power available today [6, 14].
As such, several NoSQL database technologies were developed in recent years in response to
the rising need for large data storage, access frequency and greater performance and processing
needs.

1.2 Related Work

SQL and NoSQL database technologies, have been the subject of several discussion in the
past few years regarding which is the best technology for data storage (e.g., [4, 13]). Yet, the
overall conclusion is that the selection of the appropriate technology should be made taking
into account the application specifications, and that there is no ”one-size-fits-all” approach.

Ultimately, the general conclusion is that choosing the right technology depends of the use-
case. If data is continuously changing or growing fast and you need to be able to scale it quickly
and efficiently, maybe NoSQL is the right choice. On the other hand, if a data structure is well
defined, and it will not change much frequently and data does not grow that much, then SQL
is the best answer.

In order to get empirical evidence for such statements, several benchmarks between SQL and
NoSQL databases have been conducted (e.g., [19, 5, 11]). Among others, there works suggest
that not all NoSQL databases perform better than SQL databases, and that even within NoSQL
databases there is a wide variation in the performance of these operations.

290



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

Regarding smart-grid data management, a number of benchmarks have been proposed (e.g.,
[1, 9, 12]), but none addressing the differences between SQL and NoSQL databases.

In this work, we aim to go beyond the theoretical guarantees about data storage technologies,
and traditional benchmarks. To do so, we perform an extensive benchmark between SQL and
NoSQL databases with a big focus on the particular case of AMIS data.

This benchmark was performed using the SustData public dataset [16], and the different
tests were created taking into consideration not only the database technologies, but also the
actual purpose of the data. More specifically, we benchmark MySQL and MongoDB, two of
the most well-known technologies on the data storage world, using energy consumption data
aggregated at 1-minute intervals.

1.3 Contribution

The main contribution of this paper is an in-depth benchmark of these two database technologies
according to the following four dimensions: 1) read and write operations; 2) database size; 3)
scalability; and 4) data pre-presentation (i.e., fetching the results before presenting them to the
users). We selected these dimensions since they provide a accurate combination of what might
support a developer when deciding on which database technologies to use with AMIS data.

Read and write performance will affect the usability of a platform and the end-use perfor-
mance, since it will make any given task faster or slower.

The database size will affect the setup and subsequent maintenance and upgrades on the the
hosting machine(s). This dimension will also have a significant impact on the cost of hosting,
on the account of the strong correlation between disk capacity and cost.

The scalability dimension relates with the previous ones, since both the read/write perfor-
mance and database size will evolve as the database grows, and this is an important factor
when designing any cloud platform. Finally, the data pre-presentation dimension directly af-
fects the work of the developer, and how the results from a query can be quickly presented to
the end-user.

1.4 Paper Outline

This paper is organized as follows: First, we describe the methodology used in this benchmark.
When then present and discuss the obtained results. Finally, we discuss the limitations of this
work, and outline future work possibilities.

2 Benchmark Methodology

In this section, we thoroughly describe the methodology that was followed in this paper. First
we describe the setup used for the benchmark, then we define the data used in the tests,
the last three subsections explain the practical implementations used for the benchmarks, the
indexing, queries and finally the algorithms used to execute the sequence of queries used in for
the benchmark.

2.1 Benchmark Environment Setup

In order to test both technologies under the same conditions, we created two virtual machines
(VM) on top of an iMac physical machine. The iMac was a 2009 machine, with the specifications
presented in table 1.

291



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

Physical Virtual Machines

Operating System OS X Yosemite Ubuntu 14 (64 bits)

Disk 1 TB Sata HDD 500 GB

RAM 10 GB 1067MHz DDR3 4096 MB

CPU 3.06GHz Core 2 Duo 2 Processors

Table 1: Technical characteristics of the benchmark physical and virtual machines

As for the VM, we used the Oracle VM VirtualBox1 virtualization software.The two virtual
machines were created with the following technical specifications:

We then had to install additional software in each machine, in order to create and execute
the benchmarks algorithms. In the ”MySQL Machine” we installed XAMPP2. This is a very
popular, free and open-source cross-platform web-server stack, consisting mainly of the Apache
HTTP Server, MySQL database, and PHP interpreters. As for the ”MongoDB Machine”, we
resorted to separate installations of the MongoDB database engine, and the Node.JS3 javascript
runtime.

2.2 Testing Data

The SustData [16] dataset contains about five years of electric energy consumption data. This
includes, over 35 million individual records from 50 monitored homes covering electricity con-
sumption logs and demographic information, as well as the energy generation information. The
dataset also contains three years worth of environmental data (e.g., temperature and cloud
coverage).

In this work we used the energy consumption logs, using data from three different houses.
More concretely, we used 15 different sets of data, each containing a different number of records.
Figure 1 shows the different volumes of data in each test set. The size of the different sets of
data were selected such that it was possible to simulate progressive write and read operations
with different amounts of data, until a total of 10 million records is introduced in the database.

2.2.1 Data Representation and Storage

MySQL (and other Relational Database Management Systems) uses a normalized data structure
approach for data storage. Nevertheless, since the main type of operations in AMI systems are
to read data, our major concern was to optimize the read operations. Therefore, we decided
not to normalize the data. Instead we created a schema that supports all the different data
structures in a single table (i.e., a materialized view 4). The structure of the table is shown in
figure 2 (a). The different sets of data were then loaded using the SQL code snippet presented
in figure 3 (a).

We are fully aware that this approach is not the most common and correct for relational
databases since this will result in worst performance for data storage, sizing and scalability.

1VirtualBox, https://www.virtualbox.org/
2XAMPP, https://www.apachefriends.org/index.html
3Node.js, https://nodejs.org/en/
4Materialized Views, http://www.fromdual.com/mysql-materialized-views

292



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

Yet, this approach has the upper hand on read/write performance since its not necessary to
introduce time consuming JOIN statements in the SQL read queries, and all the data is inserted
through a single query. In a normalized fashion, to store this kind of data we would need two
additional tables. One to store all the different variables (i.e., Current -I-, Voltage -V-, Active
Power -P-, Reactive Power -Q- and Power Factor -PF-), and second table holding a many-to-
many relationship between the house identifiers and the variables table, the different values and
the measurement timestamp.

MongoDB is a schema-less JSON-style data storage technology that supports multiple doc-
uments with different structures in a single collection. Therefore, having a single collection
with only non-null values for all the dataset is not a problem. In our scenario, we used the
mongoimport tool with the − − ignoreblanks option set to true (see code snippet in figure 2
(a)) to import all the data, producing documents like the one shown in figure 3 (b).

2.3 Data Queries

We selected five queries that are normally among the most common tasks that need to be
performed in an AMI system for feedback purposes. All the selected queries perform aggregation
operations in order to produce electric energy usage statistics. The five queries are summarized
in table 2.

0.00E+00 

2.00E+06 

4.00E+06 

6.00E+06 

8.00E+06 

1.00E+07 

1.20E+07

0.00E+00 

2.00E+05 

4.00E+05 

6.00E+05 

8.00E+05 

1.00E+06 

1.20E+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ac
cu
m
ul
at
ed

	R
ec
or
ds

Da
ta
se
t	R

ec
or
ds

Dataset	nº

Data	Under	Test

Dataset	Records Accumulated	 Records

Figure 1: Data under test. The column series represents the individual sets of data, and the
line series represents the accumulated data in the database as the different sets are inserted.

Table 2: List of data manipulation queries used in the benchmark

Id Description

1 Calculate the average active power by hour for a specific house across the entire dataset.

2 Calculate average apparent power (i.e., current x voltage) by hour for a specific house across
the entire dataset.

3 Calculate the average power per hour for a specific date and house.

4 Select all the power averages for the three households during a specific week of the year.

5 Sum power averages per hour during a specific month for a specific house.

293



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

(a) MySQL (b) MongoDB

Figure 2: Data representation in the two database engines.

(a) MySQL (b) MongoDB

Figure 3: Code blocks for inserting data in the two database engines.

2.4 Query Implementation

In MySQL we used the default GROUP BY clause for data aggregation. This clause offers
several aggregation functions such as average, sum and count. As for the MongoDB, we used the
aggregation pipeline5, a framework for performing aggregation tasks, modelled on the concept
of data processing pipelines.

2.5 Benchmark Logic

To proceed with the actual benchmark, we implemented the same benchmarking algorithm
using the two database technologies and server-side technologies. More concretely, MySQL
with PHP and MongoDB with Node.JS. The logic of the algorithm is shown in figure 4.

This algorithm is responsible for the two main tasks in our benchmark, namely: i) inserting
the different sets of data, and measuring the insertion times, and ii) executing the different
queries and measuring the respective execution times.

The five data manipulation queries were implemented and executed against data from three
different houses. Each query was executed 10 times in order to minimize the external effects
such as processor or memory overhead. Ultimately, this resulted in a total of 150 log records
for each individual set of data, producing a total of 2250 records per database technology.

5MongoDB Aggregation, https://docs.mongodb.com/manual/core/aggregation-pipeline/

294



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

Figure 4: Flowchart of the benchmarking logic use in this paper.

3 Benchmark Results

Once the all the queries were concluded, the collected data was catalogued according to two
different groups. Group I contains the insertion queries, and is analysed in terms of the database
size and insertion times. Group II contains the data manipulation queries, which are analysed
in terms of the time it takes to execute each query.

3.1 Group 1 - Data Insertion

The results from the inserting records with both database technologies were organized by num-
ber of records in the database (50k, 100k, 150k, 200k, 250k, 500k, 750k, 1M, 2M, 3M, 4M, 5M,
6M, 7M, 8M, 9M and 10M records). The table size was saved using the MegaByte (MB) size
of each database, and the insertion time was recorded in seconds.

Figure 5 (a) presents the insertion times for the different sets of data in MySQL and Mon-
goDB. It is perceptible through the chart that MySQL has faster insertion times than Mon-
goDB. This observation was confirmed through a Mann–Whitney U test where we compared
the insertion time of each technology per number of records in the database.

The Mann–Whitney U test was selected since the data was not normally distributed (con-
firmed through a Shapiro-Wilk test). The statistical test indicated that the insertion time
was in fact significantly higher for MongoDB (median=37.32) than for MySQL (median=9.22),
U=208, p=0.029.

It is also clear from Figure 5 (b), that MySQL can store the same number of records using
considerable less space. Similarly to the previous analysis the table size between technologies
was also compared with Mann–Whitney U test.

When considering the full sample, this test was not significant (p=0.052), however the
low p value suggests that the difference between table sizes is close to significant. We re-
peated the analysis omitting the result for smaller table size (50k records) and, as expected, the
Mann–Whitney U test was significant. This confirms that just after about 50k records, Mon-
goDB will require significantly more space to store the same information (median=1182.56)
than MySQL (median=420.96), U=64, p=0.044.

3.2 Group 2 - Data Manipulation

In figure 6 (a) we present the average performance (measured in seconds) of each query in both
technologies, taking the average of the three different houses. In this chart, MongoDB data is
represented in the series with the light blue colour palate.

It is visible from the chart that from a certain number of records onward, the difference
between both technologies greatly increases. To determine the database size (number of records)
in which the differences between technologies is significant, 17 Mann-Whitney U tests were

295



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

0

10

20

30

40

50

60

0.05 0.1 0.15 0.2 0.25 0.5 0.75 1 2 3 4 5 6 7 6 9 10

Qu
er
y	
Ti
m
e	
(S
ec
on
ds
)

Inserted	 records	 (Millions)

MySQL	vs	MongoDB	- average	insert	time

MySQL MongoDB

(a) Insertion time

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0.05 0.1 0.15 0.2 0.25 0.5 0.75 1 2 3 4 5 6 7 6 9 10

Da
ta
ba
se
	Si
ze
	(M

eg
ab
yt
es
)

Inserted	 records	 (Millions)

MySQL	vs	MongoDB	- database	size

MySQL MongoDB

(b) Database size

Figure 5: Charts showing the read performance as more records are added.

0
20
40
60
80
100
120
140
160
180

0.05 0.1 0.15 0.2 0.25 0.5 0.75 1 2 3 4 5 6 7 6 9 10

Qu
er
y	
Ti
m
e	
(S
ec
on
ds
)

Inserted	 records	 (Millions)

MySQL	vs	MongoDB	- average	query	time

MySQL	Q1 MySQL	Q2 MySQL	Q3 MySQL	Q4 MySQL	Q5

MongoDB	Q1 MongoDB	Q2 MongoDB	Q3 MongoDB	Q4 MongoDB	Q5

(a) Individual Queries

0
20
40
60
80
100
120
140
160
180

0.05 0.1 0.15 0.2 0.25 0.5 0.75 1 2 3 4 5 6 7 6 9 10

Qu
er
y	
Ti
m
e	
(S
ec
on
ds
)

Inserted	 records	 (Millions)

MySQL	vs	MongoDB	- average	query	time

MySQL MongoDB

(b) Average

Figure 6: Charts showing how the insertion time and database size changes as more records are
added.

performed (one for each database size), considering each of the 5 queries (see table 2). This
test returned significant differences for all the database sizes above 50k.

Finally, figure 6 (b) shows the average performance for all the different queries in both
technologies. As it can be observed, it is clear that in all the cases, MongoDB is able to query
the datasets much faster than MySQL.

4 Discussion and Conclusions

With the benchmark results in place, we are able to make our evaluation over write and read
operations in MySQL and MongoDB.

4.1 Write Performance

With regard to data insertion, MySQL consumed 1964 MB to store the total of 10 million
records and had an average insertion time of 6.15 seconds for all the different sets of data. On
the other hand, MongoDB consumed 4730 MB to store all the 10 million records and took in
average 25.26 seconds to insert all of the records. This means that MongoDB takes 240% more
disk space and is 410% slower when compared to MySQL.

We should however note that the obtained results for storage size and time could be en-
hanced if we deleted all the data indexes. In fact, indexing data improves read operations, but
compromise writes because every time a record is inserted all the associated indexes must be

296



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

updated. Likewise, the decision of not normalizing the data in MySQL costs a non-scalable
solution, but it definitely helped achieve better results both for write and read operations.

MongoDB stores data in a key : value format in order to enable the storage of multiple
documents with different structures while ignoring empty (i.e., null) fields. This produces more
scalable data structures, but consumes more disk space and increases the amount of data to
write since every key must be inserted along with its values.

It is also important to refer that the mongoimport tool is known for having worse perfor-
mance than the MySQL LOAD DATA INFILE operation. This happens because MongoDB
data is stored in BSON format, as such, most of the effort is devoted to data serialization, since
neither JSON or CSV are native MongoDB formats.

This said, we can conclude that MySQL has the best performance for data insertion, since
MongoDB consumed about 2.5 times more disk space, and took about 4.1 times longer to
conclude the write operations. Yet, it is important to remember that the non-normalized data
approach in MySQL is not an optimal solution, since it leads to a lot of effort every time a
change in the database is required. A situation that is likely to happen, depending on the type
of application.

Our statistical tests revealed significant differences for insert times between technologies,
independently of the number of records, as well as statistically significant differences in the
size of the database size between both technologies for all the databases expect the smaller
one (with 50k records). 50k data-points is not an exaggerated amount of records, especially if
we consider studies with high frequency data, or studies with a more distributed sample, for
example 10 houses sending one energy consumption point per minute produces more than 50k
records in less than 4 days. Therefore we argue that even small studies/interventions should
take into account the database technology, or the database size and insert time can become
unmanageable.

4.2 Read Performance

With respect to read operations, MySQL produced a global average of about 53 seconds to
query the different sets of data. On the other hand, MongoDB presented an overall average of
about 10 seconds for the same operations, which is about five times faster than MySQL.

Looking at the databases with different number of records, the statistical analysis confirmed
the overall observation of MongoDB being generally faster than MySQL. More concretely, pair-
wise comparisons revealed significant differences for all the databases sizes except the smaller
50 thousand records size.

The main reason that justifies this difference in performance is the fact that MongoDB
stores embedded data into the same document/collection. This way, the data is written in
sequential disk positions, which accelerates and reduces the number of round trips to one, since
the information can be read all at once. Consequently, because the first disk access is the one
that consumes more time (1ms essentially), this detail is important to consider.

4.3 Scalability

Another concern is data scalability, since there is a high chance of having to handle more non-
homogeneous data structures in the future. The non-normalized approach for MySQL helped
achieved best performance for read/write operations, however this does not offer scalability
due to the MySQL relational model. For this specific requirement, MongoDB offers the best
options, due to its schema-less feature; any kind of documents can be stored along the same
collection without the need for any change in the database structure.

297



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

4.4 Fetching

An important task that we did not consider in this benchmark was the time necessary to
fetch the query results. At the beginning of the benchmark this task was performed, but
the PHP maximum allowed memory size was easily exceeded when fetching MySQL results.
Consequently, it was not possible to produce a fair benchmark on this type of operation.

In Node.JS + MongoDB algorithm we did not have this problem. When a MongoDB query
is performed through the Node.JS driver, a cursor is returned. Afterwards we can loop the
cursor, iterating all the query results. This operation has a singular particularity: the results
are loaded in batches until all the results are fetched. This not only reduces the amount of
data to be loaded (avoiding the memory exhaustion), but also turns the data access faster since
there are smaller chunks of data to return at each time.

One possible alternative to solve this kind of problems in MySQL is to use OFFSET and
LIMIT operators or, for instance, the mysql unbuffered query function. This function enables
the query execution without automatically fetching and buffering the resulting rows, in contrast
to what mysql query() does. But, besides being deprecated since PHP 5.5.0, it has some
drawbacks since we cannot use the mysql num rows() and mysql data seek() functions on a
result-set until all the rows are fetched. Furthermore, we also have to fetch all the resulting
rows from an unbuffered SQL query before we can perform a new SQL query within the same
database connection.

4.5 Summary

We can summarize our work by looking at the four dimensions we presented in section 3, and
how they come together when developing systems for the smart grid. Yet, it is important to
state that the best system will very likely combine SQL and NoSQL technologies.

Our analysis disclosed that MongoDB in average outperformed MySQL in read queries,
which means that MongoDB could be use to store data that needs to be accessed repeatedly
and quickly, for example data to be used by client applications as it will improve the system
usability.

On the other hand, data with a fixed structure and to accessed for offline analysis could
be stored in SQL which will consume less space and also provide the structure that could be
needed that analysis. On the other hand, if dealing with data with heterogeneous structures,
MongoDB is possibly the best option, since its heterogeneous nature allows the integration of
data from different sources. In this scenario, MongoDB can also be used as a data broker,
which could then feed data into relational databases to enable situations where having fixed
data structures is important.

Regarding the scalability of the developed platform, it is clear that both technologies have
their strengths and weaknesses. For example, MongoDB allows data structure scalability since
it does not rely on a fixed structure. On the other hand, MySQL makes a more efficient use
of space, which reduces the need for scaling up the physical infrastructure. Hence, a hybrid
approach also appears to be the most promising approach regarding a system scalability. For
example, the use MongoDB for a datastore and quick reads from the underlying APIs, and
MySQL for data staging.

298



Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

5 Limitations and Future Work

Despite we have achieved our original objectives, there are a number of limitations that should
be addressed in future work.

Although we have created symmetric environments for both technologies in order to test
them in the exact same conditions using virtual machines, there was no guarantee that the
test execution of one technology would not have impact on the other’s performance. This
happens because both virtual machines are sharing the same physical resources. Furthermore,
the Virtual Machines were created on a 8 year world iMac, which inevitably leads to lower
performance values. Still, we should stress that our goal was not to quantify the time required
by each technology, but instead provide a comprehensive benchmark of both technologies.

As we can see from the results, some of them present some disturbance and consequently,
not very linear results. Such disturbance can be justified with the execution of the tests on both
technologies in simultaneous. Yet, we cannot claim this with 100% confidence. An alternative
would be to create identical Virtual Machines in a cloud-server, or perform the tests on two
physical machines with the exact same characteristics. Unfortunately, at the time this work
was being conducted, none of these two alternatives was possible.

Furthermore, despite the observed disturbances, given the significant differences in the ob-
tained results we are confident that the final conclusions would be very similar to the ones
presented here.

In future work we should consider the possibility of replicating this study with different
database models such as object oriented or graph based database, and different database engines
within the same technologies. Likewise, in future work it would be important to quantify the
amount of energy that is required by the different database technologies, as this is a major
concern among the research community [18, 15, 3].

Downloads The source-code and the data that resulted from this benchmark is freely and
publicly available at http://aveiro.m-iti.org/feel/.

References

[1] M. Arenas-Martinez, S. Herrero-Lopez, A. Sanchez, J. R. Williams, P. Roth, P. Hofmann, and
A. Zeier. A comparative study of data storage and processing architectures for the smart grid. In
2010 First IEEE International Conference on Smart Grid Communications, pages 285–290, 2010.

[2] Zeyar Aung. Database Systems for the Smart Grid. In Smart Grids, Green Energy and Technology,
pages 151–168. Springer, London, 2013.

[3] Béchir Bani, Foutse Khomh, and Yann-Gaël Guéhéneuc. A study of the energy consumption of
databases and cloud patterns. In Service-Oriented Computing, Lecture Notes in Computer Science,
pages 606–614. Springer, Cham, 2016.

[4] Daniel Bartholomew. SQL vs. NoSQL. Linux J., 2010(195), July 2010.

[5] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. MongoDB vs Oracle – Database
Comparison. In 2012 Third International Conference on Emerging Intelligent Data and Web
Technologies, pages 330–335, Bucharest, Romania, 2012. IEEE.

[6] Planet Cassandra. NoSQL Databases Defined and Explained | DataStax Academy: Free Cassandra
Tutorials and Training.

[7] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27, May 2011.

[8] Digital Ocean. Understanding SQL And NoSQL Databases And Different Database Models, Febru-
ary 2014.

299

http://aveiro.m-iti.org/feel/


Data Storage and Maintenance Challenges: The Case of AMIS Pereira, Gonçalves, Quintal and Nunes

[9] D. Ilić, S. Karnouskos, and M. Wilhelm. A comparative analysis of smart metering data aggregation
performance. In 2013 11th IEEE International Conference on Industrial Informatics (INDIN),
pages 434–439, July 2013.

[10] Javier Leiva, Alfonso Palacios, and José A. Aguado. Smart metering trends, implications and
necessities: A policy review. Renewable and Sustainable Energy Reviews, 55:227–233, March 2016.

[11] Y. Li and S. Manoharan. A performance comparison of SQL and NoSQL databases. In 2013 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), pages
15–19, August 2013.

[12] Xiufeng Liu, Lukasz Golab, Wojciech Golab, Ihab F. Ilyas, and Shichao Jin. Smart Meter Data
Analytics: Systems, Algorithms, and Benchmarking. ACM Trans. Database Syst., 42(1):2:1–2:39,
November 2016.

[13] Eileen McNulty. SQL vs. NoSQL- What You Need to Know, July 2014.

[14] MongoDB. NoSQL Databases Explained.

[15] Raik Niemann, Nikolaos Korfiatis, Roberto Zicari, and Richard Göbel. Does query performance
optimization lead to energy efficiency? A comparative analysis of energy efficiency of database op-
erations under different workload scenarios. arXiv:1303.4869 [cs], March 2013. arXiv: 1303.4869.

[16] Lucas Pereira, Filipe Quintal, Rodolfo Gonçalves, and Nuno J. Nunes. SustData: A Public Dataset
for ICT4s Electric Energy Research. In Proceedings of ICT for Sustainability 2014, Stockholm,
Sweeden, August 2014. Atlantis Press.

[17] James Sprinz. Global Trends in Smart Metering. Metering and Smart Energy International,
1(5):16–17, 2016.

[18] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the energy efficiency
of a database server. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 231–242. ACM, 2010.

[19] J. S. van der Veen, B. van der Waaij, and R. J. Meijer. Sensor Data Storage Performance: SQL or
NoSQL, Physical or Virtual. In 2012 IEEE Fifth International Conference on Cloud Computing,
pages 431–438, June 2012.

[20] Pete Warden. Big Data Glossary. O’Reilly, 2011.

300


	Introduction
	SQL, NoSQL and different Database Models
	Related Work
	Contribution
	Paper Outline

	Benchmark Methodology
	Benchmark Environment Setup
	Testing Data
	Data Representation and Storage

	Data Queries
	Query Implementation
	Benchmark Logic

	Benchmark Results
	Group 1 - Data Insertion
	Group 2 - Data Manipulation

	Discussion and Conclusions
	Write Performance
	Read Performance
	Scalability
	Fetching
	Summary

	Limitations and Future Work

