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Abstract 

Protein functions are strongly related to their 3D structure. Therefore, it is crucial to 

identify their structure to understand how they function. Studies have shown that 

numerous numbers of proteins cross a biological membrane, called transmembrane (TM) 

proteins, and many of them adopt alpha helices shape. How these helices contact one 

another inside the membrane plays a major role in their tilt angle and relative position 

and hence the overall structure of the protein. To tackle the sparsity issue of labelled data, 

which is usually the case in amino acids residues contacts prediction, we adopt a 

transductive learning approach, which involves the unlabeled test data during training in 

order to obtain a better model. Using features extracted from protein structures, we 

compare transductive support vector machine (SVM) and inductive SVM in predicting 

helix-helix residues contacts to identify conditions and limitations where TSVMs gain 

performance and investigate the performance degradation of the TSVM and the best 

remedial solutions in the literature. In particular, we develop an early stop technique 

𝑇𝑆𝑉𝑀𝐸𝑆 that generates a more accurate model and outperforms the state of art TSVM by 

5%, as tested on a benchmark set of transmembrane proteins. 

1 Introduction 

Proteins are known to be the workhorse of life and one of the main focuses of bioinformatics 

research. They are responsible for many cell activities such as catalyzing various biochemical reactions, 

fighting infections by forming antibodies, providing cell and tissue structure, and transporting nutrients 

throughout the body [1]. A specific type of Membrane protein, called Transmembrane protein (TM), 

spans the entire cell membrane [2] and represents around a third of all living cell proteins. Even though 

its abundance and importance, only a limited number of TM protein structures have been determined 

experimentally [3]. In general, determining protein structure experimentally is known to be an 

expensive and time-consuming task [1]. Therefore, computational methods play an integral role in 
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solving this dilemma [4]. Studies have shown that more than 36% of these TM proteins adopt alpha 

helix shape and can cross the membrane in a single-span (bitopic) or multi-span (polytopic) [5]. These 

helices consist of small amino acid residues that can be in contact with each other to determine the 

overall structure of the TM protein. The accurate prediction of these contact points is a significant 

intermediate step to building the overall 3D structure of the protein [6]. Success in predicting the 

ultimate 3D structure of a protein can reveal invaluable information about its functions and help to 

predict its behavior. Computational methods based on machine learning rely on labeled data to train 

models so that they can be used for predicting unlabeled test data and eventually for de novo prediction. 

Due to the aforementioned cost and other technical limitations, there is a sparsity issue of labeled data 

for helix-helix contact in transmembrane proteins. In this paper, unlike the current contacts prediction 

computational methods that use inductive learning approaches to predict TM protein inter-helical 

residues contact, we adopt a transductive learning approach. The idea of transductive learning is to 

allow the unlabeled test examples to participate in model training. This can be particularly useful when 

the test set is much bigger than the training set, which is usually the case in amino acids residues contacts 

prediction. Using features extracted from transmembrane protein structures to train classifier to predict 

helix-helix residues contact, we compare transductive SVM and inductive SVM to identify conditions 

and limitations where TSVM outperforms inductive methods. In particular, we investigate the 

performance degradation of TSVM and the currently best remedial solutions in the literature and 

develop an early stop technique 𝑇𝑆𝑉𝑀𝐸𝑆 that can generate a model to avoid performance degradation. 

Tested on a benchmark dataset of transmembrane proteins, our method significantly outperforms the 

state of art TSVM. 

2 Methodology 

For In the interest of clarity, we first provide a brief review of the used learning approaches, 

including the transductive learning models, and then discuss our proposed method and compare it with 

current TSVM models.  

 

2.1 Inductive Learning vs Transductive Learning 

 

  Inductive learning refers to a process where the learner discovers rules by observing a set of 

examples Ν [7]. Then, the learner utilizes the training examples (and their labels), 

 

(�⃗�1, 𝑦1), (�⃗�2, 𝑦2), … . , (�⃗�𝑛, 𝑦𝑛) 

 
to build a model that fits the data. Then uses the model to predict the labels of unknown test examples 

(deduction). Examples of inductive learning in machine learning include traditional machine learning 

models, such as linear regression and support vector machines. The main disadvantage of inductive 

learning is the inability to generalize well when not seeing enough training examples. In contrast to 

inductive learning, a transductive learner has observed all the data beforehand, both the training set and 

testing set (without label) [8]. Therefore, the learner takes.  

 

(�⃗�1, 𝑦1), (�⃗�2, 𝑦2), … , (�⃗�𝑛, 𝑦𝑛) 𝑎𝑛𝑑 �⃗�1
∗, �⃗�2

∗, … . , �⃗�𝑘
∗  

 
as input. Then, a function 𝑓(𝑥) is selected such that the expected prediction errors on the test examples 

are minimized [8]. Transductive learning can be very useful when the training set is very small, much 
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smaller than the test data. Therefore, the transductive learner can utilize the test examples during 

training. However, the main assumption of transductive learning is that the data would form clusters in 

the features space which might not be always the case [8]. 

2.2 Transductive Support Vector Machines (TSVM) and 

Limitations 

 

The support Vector Machines (SVM) algorithm was proposed in 1995 [9]. The main goal of SVM 

is to find a hyperplane that can distinctly separate data points of different classes. If the data can be 

linearly separable, SVM chooses a hyperplane that has the maximum margin 
2

||𝑤||
 , where 𝑤 is a vector 

normal to the hyperplane. However, since the data usually can’t be linearly separable, the so-called soft 

margin SVM allows for misclassification, and the optimization function becomes, 

min(
||𝑤||

2
+ 𝑐 ∑ 𝜉𝑖

𝑛

𝑖=1

) 

 

where 𝑐  is the misclassification penalty and 𝜉  , called slack variable,  measures how far the 

misclassified point is from its corresponding margin.  

 

Transductive Support Vector Machines (TSVM) algorithm was introduced later to allow for 

the unlabeled test data to participate in training [10]. The algorithm tries to minimize misclassifications 

by utilizing test examples during training [Figure 1]. Then, the goal of transductive learner 𝐿 is to find 

a hypothesis from the hypothesis space 𝐻, using training examples and test examples (without their 

labels) such that the misclassification is reduced. 

 

𝑅(𝐿) = ∫
1

𝑘
 ∑ 𝜃(ℎ𝐿(�⃗�𝑖

∗), 𝑦𝑖
∗)𝑑𝑃 (�⃗�1, 𝑦1) … 𝑑𝑃(�⃗�𝑘

∗ , 𝑦𝑘
∗)

𝑘

𝑖=1

 

Where 𝑘 is the number of test examples and ℎ𝐿 is the Hinge Loss. Then, the TSVM objective function 

is to minimize the following function.  

 

 

1

2
‖�⃗⃗⃗�‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

+ 𝐶−
∗ ∑ 𝜉𝑗

∗

𝑗:𝑦𝑗
∗=−1

+  𝐶+
∗ ∑ 𝜉𝑗

∗

𝑗:𝑦𝑗
∗=1

 

 

Where 𝐶, 𝐶+
∗ ,  𝑎𝑛𝑑 𝐶−

∗  are hyperparameters for misclassification penalty of labeled examples, predicted 

positive unlabeled, and predicted negative unlabeled examples respectively.  

 

 
Figure 1 Inductive SVM (dotted line) VS Transductive SVM (solid line) margin 
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An early and popular implementation of TSVM, 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡 , has been shown to improve the 

performance over inductive SVM in some cases [10]. However, it has been criticized for its unstable 

performance. For example, TSVM performs well on text classification but can perform substantially 

worse than SVM in other applications [11]. It has also been argued that there is a lack of evidence that 

the notion of separation leads to correct classification [12]. In addition, there have been suggestions that 

while the cost function of TSVM is appropriate, the implementation of TSVM may be inadequate [13]. 

 

It’s worth noting that the TSVM optimization function is non-convex and there might be more than 

one local optimum. Therefore, many efforts have been made to solve this problem. In [14] an algorithm 

(TSVM-SA) is proposed to combine TSVM with simulated annealing (SA), which is an optimization 

technique to avoid being stuck in the local optimum, helping to find the global optimum. TSVM-SA 

overcomes the shortages of the original TSVM approach of having to estimate the ratio of 

positive/negative samples and achieved better generalization performance. However, it suffers from 

some major drawbacks, including the difficulty of fine-tuning to specific problems and long execution 

time, which might become unacceptable when the data size becomes large. 

 

One of the major critiques of 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡 [10] is its performance degradation which sometimes can be 

worse than the inductive SVM. Therefore, a safe Transductive Support Vector Machines, S4VM, is 

proposed [15], here “Safe” means that TSVM is never significantly worse than the inductive SVM. It 

is shown that 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡  finds only one low-density separator with the maximum margin while there 

might be more than one. Hence, choosing the wrong separator might cause performance degradation. 

Therefore, S4VM finds all candidate separators using global simulated annealing and then chooses the 

best candidate using a local search mechanism [15]. The major drawback of S4VM is that it is extremely 

slow compared to 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡. As a result, S4VM is not recommended to be used with large datasets [15].  

2.3 TSVM with early stop (𝑇𝑆𝑉𝑀𝐸𝑆) 

For the reasons mentioned above, we set to investigate how the different variants of TSVM will 

perform in predicting the helix-helix residue contacts, in comparison to the inductive SVM, under 

various settings as the test size increases. The results, as shown in the next section, confirms the “safe” 

property of S4VM, whereas reveals the performance degradation of the original TSVM implementation 

𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡. However, as we examine the data clustering property and model uncertainty, which are the 

possible reasons of performance degradation as suggested in the literature [17], no clear indication is 

found, as shown in the results section. Instead, by monitoring the accuracy and margin size of TSVM 

over each training iteration, we notice that the performance starts to drop when the margin size begins 

to decrease [Figure 3,4]. It turns out that, in 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡, the algorithm [Algorithm 1] loop 2 checks only 

for three conditions before applying label switching. 

• Condition 1: the two points must have different labels (one positive and the other negative, 

or vice versa) 

• Condition 2: the two points must be misclassified. Otherwise, there is no label switching.  

• Condition 3: the distance from each point to the margin must be larger than 2.  

What is missing, however, is that the greedy algorithm does not check whether the label-switching 

process would decrease the optimization function or not, possibly as a way to explore broader 

configurations, in the spirit of simulated annealing that those later algorithms such as S4VM have 

adopted.  
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Therefore, we propose 𝑇𝑆𝑉𝑀𝐸𝑆 a simple yet effective fix [Algorithm2] that can not only run faster 

than the current methods but also outperform the state of art TSVM (S4VM). This is done by monitoring 

the margin size in each training iteration using a separate validation set, after the label switching phase 

(loop 2), and enforcing an early stop technique to inhibit over-training. The modified algorithm does 

not use simulated annealing techniques which are expensive and can be sensitive to the annealing 

schemes. In the result section, we show that the new algorithm actually outperforms S4VM, the state-

of-the-art TSVM. 

3 Data and Results 

3.1 Data 

 

The dataset is adopted from [16] and consists of 222 α-helical TM proteins with a resolution 

better than 3.5 Å and with number of TM helices ranging from 2 to 17. The original dataset is 

divided into two sets, 

I. training dataset, containing 165 chains (TRAIN), and 

Algorithm 2: 

𝑤ℎ𝑖𝑙𝑒 (( 𝐶−
∗  < 𝐶∗) ∥ ( 𝐶+

∗ <  𝐶∗)) {   // Loop1 

 (�⃗⃗⃗�, 𝑏, 𝜉, 𝜉∗) ∶= 𝑠𝑜𝑙𝑣𝑒_𝑠𝑣𝑚_𝑞𝑝 ([(�⃗�1, 𝑦1) … . (�⃗�𝑛 , 𝑦𝑛)], [(�⃗�1
∗, 𝑦1

∗) … . (�⃗�𝑘
∗ , 𝑦𝑘

∗) ] , 𝐶, 𝐶−
∗ , 𝐶+

∗ ) ;   

      𝑤𝑖ℎ𝑙𝑒 (∃𝑚, 𝑙 ∶ (𝑦𝑚
∗ ∗ 𝑦𝑖

∗ < 0) & (𝜉𝑚
∗ > 0)& (𝜉𝑖

∗ > 0) & (𝜉𝑚
∗ + 𝜉𝑖

∗ > 2)) {             // 𝐿𝑜𝑜𝑝 2  

                             𝑦𝑚
∗ ∶=  − 𝑦𝑚

∗  ;    // 𝑡𝑎𝑘𝑒 + 𝑣𝑒 𝑎𝑛𝑑 − 𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑛𝑑 𝑠𝑤𝑖𝑡𝑐ℎ 𝑡ℎ𝑒𝑖𝑟 𝑙𝑎𝑏𝑒𝑙𝑠 
                             𝑦𝑖

∗ ∶=  − 𝑦𝑖
∗ ;  

                               (�⃗⃗⃗�, 𝑏, 𝜉, 𝜉∗) ∶= 𝑠𝑜𝑙𝑣𝑒_𝑠𝑣𝑚_𝑞𝑝 ([(�⃗�1, 𝑦1) … . (�⃗�𝑛 , 𝑦𝑛)], [(�⃗�1
∗, 𝑦1

∗) … . (�⃗�𝑘
∗ , 𝑦𝑘

∗) ] , 𝐶, 𝐶−
∗ , 𝐶+

∗ ) ;  

             Γ = [ ]               // 𝑎 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑚𝑎𝑟𝑔𝑖𝑛′𝑠 𝑠𝑖𝑧𝑒 𝑎𝑡 𝑒𝑎𝑡𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛        

             Γ. append ( ɱ ∶=
2

||𝑤||
)            //margin size 

       𝑖𝑓 Γ [−1] < Γ[−2] { 
     𝑏𝑟𝑒𝑎𝑘                  // break Loop 2 
                              } 

} 
                      } 

 
 

Algorithm 1: 

𝑤ℎ𝑖𝑙𝑒 (( 𝐶−
∗  < 𝐶∗) ∥ ( 𝐶+

∗ <  𝐶∗)) {   // Loop1 

 (�⃗⃗⃗�, 𝑏, 𝜉, 𝜉∗) ∶= 𝑠𝑜𝑙𝑣𝑒_𝑠𝑣𝑚_𝑞𝑝 ([(�⃗�1, 𝑦1) … . (�⃗�𝑛 , 𝑦𝑛)], [(�⃗�1
∗, 𝑦1

∗) … . (�⃗�𝑘
∗ , 𝑦𝑘

∗) ] , 𝐶, 𝐶−
∗ , 𝐶+

∗ ) ;   

      𝑤𝑖ℎ𝑙𝑒 (∃𝑚, 𝑙 ∶ (𝑦𝑚
∗ ∗ 𝑦𝑖

∗ < 0) & (𝜉𝑚
∗ > 0)& (𝜉𝑖

∗ > 0) & (𝜉𝑚
∗ + 𝜉𝑖

∗ > 2)) {             // 𝐿𝑜𝑜𝑝 2  

                             𝑦𝑚
∗ ∶=  − 𝑦𝑚

∗  ;      // 𝑡𝑎𝑘𝑒 + 𝑣𝑒 𝑎𝑛𝑑 − 𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑛𝑑 𝑠𝑤𝑖𝑡𝑐ℎ 𝑡ℎ𝑒𝑖𝑟 𝑙𝑎𝑏𝑒𝑙𝑠 
                             𝑦𝑖

∗ ∶=  − 𝑦𝑖
∗ ;  

                               (�⃗⃗⃗�, 𝑏, 𝜉, 𝜉∗) ∶= 𝑠𝑜𝑙𝑣𝑒_𝑠𝑣𝑚_𝑞𝑝 ([(�⃗�1, 𝑦1) … . (�⃗�𝑛 , 𝑦𝑛)], [(�⃗�1
∗, 𝑦1

∗) … . (�⃗�𝑘
∗ , 𝑦𝑘

∗) ] , 𝐶, 𝐶−
∗ , 𝐶+

∗ ) ;  

                             } 

} 
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II. Testing dataset (TEST), containing 57 chains. 

In this work, to reduce the running time, we use the TRAIN set only. When two helices are 

considered for inter-helical contact, they are often visualized as a two-dimension matrix (or map), 

with column corresponding to one helix and row corresponding to the other. So, for a residue pair 

at the position (𝑖, 𝑗) in the contact matrix, we like to predict if it is a contact or non-contact by 

learning from features extracted from its neighboring residue pairs. The following neighboring 

positions are used: (𝑖, 𝑗)(𝑖 +  𝑥, 𝑗 +  𝑦)𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) =
{(1,1), (−1, −1), (1, −1), (−1,1), (0,1), (0, −1), (1,0), (−1,0)}. We have 40 features representing 

residue pair structural features including mean distance, standard distance, alpha-carbon distance, 

relative-residue angle, and inter-helical angle. For each feature set, the label 1 is given if there is a 

contact and zero otherwise. For simplicity, we balanced the dataset by down-sampling the number 

of contacts and non-contact examples to be equal. 

3.2  Implementation and Results 

 

As explained in the Introduction section, we tackle the sparsity issue of labeled data in predicting 

transmembrane protein inter-helical residue contact by adopting a transductive learning approach to 

incorporate the unlabeled test data into training. Specifically,  we (1)  apply a transductive SVM on a 

set of features extracted from transmembrane proteins structure as shown above to predict helix-helix 

residues contacts,  and compare to the performance of the  inductive SVM, (2) examine conditions and 

limitations where TSVM outperforms inductive SVM, (3) investigate the performance degradation of 

traditional TSVM (𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡). Moreover, (4) test our new method of an early stop technique 𝑇𝑆𝑉𝑀𝐸𝑆 

to fix the performance degradation issue. The results show that it can outperform the state of art TSVM 

(𝑆4𝑉𝑀) and produce a more accurate prediction with less computational time. 

(1) Predicting TM Proteins inter-helical residue Contacts using TSVM, and comparing transductive and 

inductive approaches [Table 1] 

Training 

examples 

Testing 

examples 

Inductive 

SVM 

Accuracy 

Inductive 

SVM F1 

TSVM 

(𝑺𝑽𝑴𝒍𝒊𝒈𝒉𝒕) 

Accuracy 

TSVM 

(𝑺𝑽𝑴𝒍𝒊𝒈𝒉𝒕) 

 F1 

Regularization 

1000 2000 0.8155 0.8442  0.835 0.8582 
kernel=linear 

C=1, Cu=0.5 

1000 4000 0.81025  0.84051  0.8595  0.8767  
kernel=linear 

C=1, Cu=0.5 

1000 4000 0.809 0.83963 0.8575 0.874945 

shuffled 

kernel=linear 

C=1, Cu=0.5 

1000  

6000 

4000+2000(1∗) 

 

4000+2000(2∗) 

0.8106 

 

 

0.8118 

0.8408 

 

 

0.8416 

0.802 

 

 

0.7896 

0.8139 

 

 

0.800 

  

kernel=linear 

C=1, Cu=0.5  

1000 10000 0.8136 

 

0.8407 

 

0.8025 0.8097 

kernel=line

ar C=1, 

Cu=0.5 

 

Table 1 Inductive SVM VS Transductive SVM (𝑺𝑽𝑴𝒍𝒊𝒈𝒉𝒕) performance. C and Cu are the labeled 

and unlabeled examples' penalties respectively.  
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(2) Identifying situations where TSVM outperforms inductive SVM. Table 1 shows that 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡 

outperforms inductive SVM, in the first three cases, in terms of accuracy and F1. Even though the 

learning performance of 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡  is expected to be better than inductive SVM by exploiting more 

unlabeled test examples, surprisingly, the performance starts to degenerate as the number of test 

examples exceeds 4000.  Here, the 6000-test set is the previous 4000-test set plus 2000 newly added 

examples. To exclude the possibility that the performance decrease is due to the peculiarity of these 

newly added 2000 examples, we randomly select two different 2000 example sets (a) and (b).  Results 

suggest that it is the increase of test data size, instead of any specific examples, that causes the 

performance drop.  

 

(3) Investigating the performance degradation of the traditional TSVM (𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡). To this end, we 

follow what are suggested in the literation as reasons linked to the TSVM performance drop [17]. These 

reasons are: (a) Data quality, where it assumes that data have inherent cluster structure and instances 

falling into the same cluster have the same class label. (b) Model uncertainty, in terms of TSVM, [15] 

claims that the model uncertainty is a result of the existence of multiple low-density separators, and 

choosing the incorrect one might cause performance degradation. (c) Measurements diversity, which 

claims that different tasks use different performance measurements and choosing the wrong metric can 

cause unstable performance. Failing to meet these three conditions can cause a significant drop in 

TSVM performance. In our situation, since our data set is balanced, accuracy and F1 metrics are used. 

Therefore, we can ignore (c) as a cause of the performance drop and focus on (a) and (b).  

 

(a) To measure data quality and examine the clustering behavior of the 4000 and 6000 test sets, 

we conduct three experiments. First, we use the top two Principal Component Analyses (PCA) 

based on variance to reduce the data dimensionality to two dimensions to be able to visualize 

the two clusters using the K-means clustering algorithm. Figure 2 shows that 4000 and 6000 

examples make very similar clusters. Second, we randomly sample different examples from 

the data set to exclude that the performance decrease is a result of the newly added 2000 

examples. Table 1 shows that random sampling of the 4000-test set and the added 2000 

examples in the 6000 set (1∗) and (2∗) does not affect the performance. Third, we use Inertia 

and Davis Bouldin score (DBS) metrics to measure the clustering quality [Table 2]. Inertia 

(Equation 1) is a metric used to calculate the sum of squared distances of samples to their 

closest cluster center while DBS (Equation 2) calculates the ratio of within-cluster distances 

to between-cluster distances. Results show that both 4000 and 6000 test sets have very similar 

clustering scores. Therefore, data quality can be excluded as a reason for TSVM performance 

degradation.     

 
Figure 2 4000 test examples VS 6000 test examples clusters 
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4000 examples 

inertia/# of 

points 

6000 examples 

inertia/# of 

points 

4000 examples 

Davies Bouldin 

score 

6000 examples 

Davies Bouldin 

score 

K-means 

k=2 
8.849 8.774 2.77 2.78 

Table 2 4000 test examples VS 6000 test examples inertia and Davies Bouldin score. k is the number of 

clusters. 

 

(b) To measure model uncertainty, we use S4VM model [15] on the same dataset above. S4VM 

claims to find all candidate SVM separators using global simulated annealing and then chooses 

the best candidate using a local search mechanism. Table 3 shows the S4VM performance, in 

terms of accuracy and F1, compared to the inductive SVM. It can be seen that S4VM 

outperforms inductive SVM in all settings and never degenerates significantly when increasing 

the size of the test set. Therefore, S4VM can be a solution for the problem 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡 

performance decrease. However, S4VM suffers from major issues which makes it unfavorable. 

For example, S4VM uses Simulated Annealing which can be a very time-consuming task to 

find an optimal solution. Therefore, the running time might become unacceptable when the 

data size is large. 

 

Training 

set size 

Testing 

set size 

SVM 

Accuracy 

S4VM 

Accuracy 

SVM 

F1 

S4VM 

F1 

1000 2000 0.8155 0.842 0.8442 0.863 

1000 4000 0.81025 0.862 0.84051 0.8778 

1000 6000 0.8106 0.8625 0.8408 0.8784 

1000 10000 0.8136 0.8548 0.8407 0.8721 
Table 3 Inductive SVM Vs Transductive SVM (S4VM) 

3.3 Results of running the proposed method 𝑇𝑆𝑉𝑀𝐸𝑆 

 

We propose 𝑇𝑆𝑉𝑀𝐸𝑆 that can solve the problem of TSVM performance degradation and reduce 

the running time significantly.  This is done by monitoring the margin size in each training iteration, 

after the label switching phase (loop 2), and enforcing an early stop technique to inhibit over-training. 

𝐷𝐵 =
1

𝑘
 . ∑ 𝑅𝑖

𝑘

𝑖=1

  𝑤ℎ𝑒𝑟𝑒 

 𝑅𝑖 = max 𝑅𝑖𝑗
𝑗=1,…𝑘,𝑖≠𝑗

𝑎𝑛𝑑 Rij
𝑖≠𝑗

= 
𝑣𝑎𝑟(𝐶𝑖) + 𝑣𝑎𝑟(𝐶𝑗)

‖𝑐𝑖 − 𝑐𝑗‖
 

 

 
 

 

 

Equation 2 Davies Bouldin score where 

𝑪𝒊 and 𝒄𝒊 refers to the 𝒊𝒕𝒉cluster, and its 

centroid respectively. 

 

𝐽 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=𝑖

𝑘

𝑗=1

 

 

 

 

Equation 1 Inertia Metric where k is the 

number of clusters, n the number of 

examples, c the center of the cluster. 
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Therefore, the training stops when the margin size starts to decrease [Figure 5,6]. The performance of 

our proposed method compared to the current TSVM models is shown in table 4 while the running time 

compared to the S4VM is shown in figure 7. 

 

 
Figure 3 Transductive SVM (𝑺𝑽𝑴𝒍𝒊𝒈𝒉𝒕) accuracy over training 

iterations 

 

 
Figure 4 Transductive SVM (𝑺𝑽𝑴𝒍𝒊𝒈𝒉𝒕) margin size over training 

iterations 

 
Figure 5 𝑻𝑺𝑽𝑴𝑬𝑺 (Early stop) accuracy over training iteration 

 

 
Figure 6 𝑻𝑺𝑽𝑴𝑬𝑺 (Early stop) margin size over iteration 

 

 

Training 

set 

Test 

set 

𝑺𝑽𝑴𝑳𝒊𝒈𝒉𝒕 

accuracy 

S4VM 

accuracy 

𝑻𝑺𝑽𝑴𝑬𝑺 

accuracy 

𝑺𝑽𝑴𝑳𝒊𝒈𝒉𝒕 

F1 

S4VM 

F1 

𝑻𝑺𝑽𝑴𝑬𝑺 

F1 

1000 2000 0.835 0.842 0.8615 0.858 0.863 0.878 

1000 4000 0.859 0.862 0.8875 0.876 0.8778 0.897 

1000 6000 0.802 0.8625 0.8976 0.813 0.8784 0.905 

1000 10000 0.802 0.8548 0.902 0.809 0.8721 0.907 

Table 4 TSVM (𝑺𝑽𝑴𝑳𝒊𝒈𝒉𝒕), TSVM (S4VM), and 𝑻𝑺𝑽𝑴𝑬𝑺 (Our method) performance 
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Figure 7 𝑻𝑺𝑽𝑴𝑬𝑺 VS S4VM Running Time on two different test sets. 

 

4 Conclusion 

In this paper, to tackle the sparsity issue of labeled data in predicting transmembrane protein helix-

helix residues contact, we adopted a transductive learning approach, which allows for the unlabeled test 

data to be used during training. We showed that Transductive Support Vector Machines can improve 

the classifier prediction performance, especially when the test set is bigger than the training set, which 

is usually the case in amino acids residues contacts prediction. We proposed a new method that uses an 

early stop technique by monitoring the TSVM margin to prevent over-training and solve the problem 

of the performance degradation of the traditional TSVM ( 𝑆𝑉𝑀𝑙𝑖𝑔ℎ𝑡 ), and demonstrated that the 

proposed method is very effective and can outperform the state of art TSVM (S4VM) in achieving 

significantly better performance and reduce the running time significantly. While this method is 

proposed for the helix-helix residue contact prediction, it is reasonable to believe the technique can be 

applicable to other applications where TSVM is used to tackle the sparsity issue of labeled data. 
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