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1 Introduction
The description logic EL belongs to the family of logic-based knowledge representation for-
malisms. It allows a user to define concepts with the help of concept names (Nc), role names
(Nr) and constructors: conjunction (u), existential restriction (∃r.C for r ∈ Nr and a concept
C) and top constructor (>).

Unification in Description Logics has been introduced in [6]. A unification problem in such
logic is defined as a set of subsumptions between concepts which contain occurrences of a
distinct set of concept names (called variables) and asks for definitions of these concept names,
which would make the subsumptions valid.

Unification in EL corresponds to unification modulo semilattices with monotone operators
[5]. In [4], we were able to show that unification in EL is NP-complete. The problem is how to
extend the unification in EL to such unification with a background ontology in the form of a set
of definitions of some concept names occuring in the unification problem, or more generally in
the form of additional statements about concept inclusions. If the background ontology is just
a set of non-cyclic definitions, unification in EL is NP-complete [5]. If the background ontology
satisfies some cycle restriction, it is still NP-complete [2]. At the moment it is not known what
is the status of the unification problem in EL with a background ontology in the general case.

In this paper, instead of restricting the background ontology, we allow cyclic definitions to
be used as unifiers. Moreover, we interpret these definitions in a greatest fixpoint semantics,
while the background ontology is still interpreted in the usual descriptive semantics. We show
that if the concept of unification in EL is modified in this way, such unification is NP-complete.
Detailed proofs and examples can be found in [3].

2 The Description Logic EL
Concept descriptions written in the language of EL are interpreted over an interpretation I =
(∆I , ·I) which consists of a non-empty domain ∆I and an interpretation function ·I that maps
concept names to subsets of ∆I and role names to binary relations over ∆I . This function is
inductively extended to concept descriptions as follows:
>I := ∆I , (C uD)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept definition is an expression of the form X ≡ C where X is a concept name and
C is a concept description, and a general concept inclusion (GCI) is an expression of the form
C v D, where C,D are concept descriptions. An interpretation I is a model of this concept
definition (this GCI) if it satisfies XI = CI (CI ⊆ DI). This semantics for GCIs and concept
definitions is usually called descriptive semantics.

A TBox is a finite set T of concept definitions that does not contain multiple definitions of
the same concept name. Note that we do not prohibit cyclic dependencies among the concept
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definitions in a TBox. An acyclic TBox is a TBox without cyclic dependencies. An ontology is
a finite set of GCIs. The interpretation I is a model of a TBox (ontology) iff it is a model of
all concept definitions (GCIs) contained in it.

A concept description C is subsumed by a concept description D w.r.t. an ontology O
(written C vO D) if every model of O is also a model of the GCI C v D. We say that C is
equivalent to D w.r.t. O (C ≡O D) if C vO D and D vO C. As shown in [7], subsumption
w.r.t. EL-ontologies is decidable in polynomial time.

3 Hybrid Ontologies

We assume that the set of concept names NC is partitioned into the set of primitive concepts
Nprim and the set of defined concepts Ndef .

Definition 1 (Hybrid EL-ontologies). A hybrid EL-ontology is a pair (O, T ), where O is an
EL-ontology containing only concept names from Nprim , and T is a (possibly cyclic) EL-TBox
such that X ≡ C ∈ T if and only if X ∈ Ndef .

A primitive interpretation J is defined like an interpretation, with the only difference that
it does not provide an interpretation for the defined concepts.

Given a primitive interpretation J , we say that the (full) interpretation I is based on J if
it has the same domain as J and its interpretation function coincides with J on Nprim and
Nr.

Given two interpretations I1 and I2 based on the same primitive interpretation J , we define
I1 �J I2 iff XI1 ⊆ XI2 for all X ∈ Ndef .

It is easy to see that the relation �J is a partial order on the set of interpretations based
on J . In [1] the following was shown: given an EL-TBox T and a primitive interpretation J ,
there exists a unique model I of T such that

• I is based on J ;

• I ′ �J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-ontologies). The interpretation I is a hybrid model of
the hybrid EL-ontology (O, T ) iff I is a gfp-model of T and the primitive interpretation J it
is based on is a model of O.

It is well-known that gfp-semantics coincides with descriptive semantics for acyclic TBoxes.
Let (O, T ) be a hybrid EL-ontology and C,D EL-concept descriptions. Then C is subsumed

by D w.r.t. (O, T ) (written C vgfp,O,T D) iff every hybrid model of (O, T ) is also a model of
the GCI C v D. As shown in [8, 10], subsumption w.r.t. hybrid EL-ontologies is decidable in
polynomial time.

Our algorithms for hybrid unification in EL are based on the Gentzen style calculus
HC(O, T ,∆) from [10]. HC(O, T ,∆) is parametrized by a hybrid ontology (O, T ) and a set
of subsumptions ∆. It decides if C vgfp,O,T D holds where C,D are concept descriptions
occurring in ∆.
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4 Hybrid unification in EL
Definition 3. Let O be an EL-ontology containing only concept names from Nprim . An EL-
unification problem w.r.t. O is a finite set of GCIs Γ = {C1 v D1, . . . , Cn v Dn} (which may
also contain concept names from Ndef ). The TBox T is a hybrid unifier of Γ w.r.t. O if (O, T ) is
a hybrid EL-ontology that entails all the GCIs in Γ, i.e. , C1 vgfp,O,T D1, . . . , Cn vgfp,O,T Dn.
We call such a TBox T a classical unifier of Γ w.r.t. O if T is acyclic.

Notice that Nprim and Ndef respectively correspond to the sets of concept constants and
concept variables in previous papers on unification in DLs. A substitution σ can be expressed
as concept definitions X ≡ E in a corresponding acyclic TBox. In contrast, hybrid unifiers
cannot be translated into substitutions since the unfolding process would not terminate for a
cyclic TBox.

Our hybrid unification algorithm works on a flat unification problem and assumes a flattened
ontology. In order to define this form we need the following notions.

An atom is a concept name or an existential restriction. An atom is called flat if it is a
concept name or an existential restriction of the form ∃r.A for a concept name A or ∃r.>.

The GCI C v D is called flat if C is a conjunction of n ≥ 0 flat atoms and D is a flat atom.
The unification problem Γ w.r.t. the ontology O is called flat if both Γ and O consist of flat
GCIs.

Given a unification problem Γ w.r.t. an ontology O, we can compute in polynomial time (see
[3]) a flat ontology O′ and a flat unification problem Γ′ such that Γ has a (hybrid or classical)
unifier w.r.t. O iff Γ′ has a (hybrid or classical) unifier w.r.t. O′. For this reason, we will assume
in the following that all unification problems are flat.

The main reason why hybrid unification in EL is in NP is that any unification problem that
has a unifier also has a local unifier. For classical unification w.r.t. background ontologies this
is only true if the background ontology is cycle-restricted [2].

Given a flat unification problem Γ w.r.t. an ontology O, we denote by At the set of atoms
occurring as sub-descriptions in GCIs in Γ or O. The set of non-variable atoms is defined as
by Atnv := At \Ndef .

In order to define local unifiers, we consider assignments ζ of subsets ζX of Atnv to defined
concepts X ∈ Ndef . Such an assignment induces a TBox

Tζ := {X ≡
l

D∈ζX

D | X ∈ Ndef }.

We call such a TBox local. The (hybrid or classical) unifier T of Γ w.r.t. O is called local unifier
if T is local, i.e., there is an assignment ζ such that T = Tζ .

5 Hybrid EL-unification is NP-complete

The fact that hybrid EL-unification w.r.t. arbitrary EL-ontologies is in NP is an easy consequence
of the following proposition.

Proposition 4. Consider a flat EL-unification problem Γ w.r.t. an EL-ontology O. If Γ has a
hybrid unifier w.r.t. O then it has a local hybrid unifier w.r.t. O.

In fact, the NP-algorithm simply guesses a local TBox and then checks (using the polynomial-
time algorithm for hybrid subsumption) whether it is a hybrid unifier.
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To prove the proposition, we assume that T is a hybrid unifier of Γ w.r.t. O. We use this
unifier to define an assignment ζT as follows:

ζTX := {D ∈ Atnv | X vgfp,O,T D}.

Let T ′ be the TBox induced by this assignment. To show that T ′ is indeed a hybrid unifier of
Γ w.r.t. O, we consider the set of GCIs

∆ := {C1 u . . . u Cm v D | C1, . . . , Cm, D ∈ At},

and show that, for any GCI C1u. . .uCm v D ∈ ∆, a proof of C1u. . .uCm v D by HC(O, T ,∆)
implies a proof of C1 u . . . u Cm v D also in HC(O, T ′,∆).

NP-hardness does not follow directly from NP-hardness of classical EL-unification. In fact
an EL-unification problem that does not have a classical unifier may well have a hybrid unifier.
Instead, we reduce EL-matching modulo equivalence to hybrid EL-unification.

An EL-matching problem modulo equivalence is an EL-unification problem of the form {C v
D,D v C} such that D does not contain elements of Ndef . A matcher of such a problem is a
classical unifier of it. As shown in [9], testing whether a matching problem modulo equivalence
has a matcher or not is an NP-complete problem. Thus, NP-hardness of hybrid EL-unification
w.r.t. EL-ontologies is an immediate consequence of the following lemma, whose (non-trivial)
proof can be found in [3].

Lemma 5. If an EL-matching problem modulo equivalence has a hybrid unifier w.r.t. the empty
ontology, then it also has a matcher.

To sum up, we have thus determined the exact worst-case complexity of hybrid EL-unification.

Theorem 6. The problem of testing whether an EL-unification problem w.r.t. an arbitrary
EL-ontology has a hybrid unifier or not is NP-complete.

6 Conclusions
In this paper, we have proved that hybrid EL-unification w.r.t. arbitrary EL-ontologies is NP-
complete. In [3] we have developed also a goal-oriented NP-algorithm for hybrid EL-unification
that is better than the brute-force “guess and then test” algorithm used to show the “in NP”
result. The decidability and complexity of classical EL-unification w.r.t. arbitrary EL-ontologies
is an important topic for future research. We hope that hybrid unification may also be helpful
in this context.
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