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Abstract

We propose a benchmark for the verification of autonomous vehicles. By considering
different traffic scenarios from the CommonRoad database, we obtain several thousands
of different verification tasks, where the verification problem is to prove that the con-
sidered tracking controller safely follows a given reference trajectory despite disturbances
and measurement errors. The dynamic of the car is described by a nonlinear kinematic
single-track model. Since the feedback matrix for the tracking controller is time-varying,
the dynamic of the controlled system changes constantly. Because of this, the proposed
benchmark is well-suited to evaluate how robustly reachability tools can handle changing
system dynamics.

1 Introduction

Currently, the performance of verification approaches and tools in research articles or in the
ARCH competition [9] is evaluated rather sparsely using a few specific benchmarks only. Be-
cause of the small number of existing benchmarks, experts and tool developers currently tune
their algorithms individually for each benchmark. However, this sometimes obscures the ability
of certain approaches since users cannot tune the algorithms to the same extent. Motivated
by these shortcomings, we propose a benchmark that automatically generates thousands of
verification tasks, and is therefore well-suited for a more exhaustive analysis of verification
approaches and tools.

The main idea of the proposed benchmark is to make use of the CommonRoad framework [3],
which contains a large database of traffic scenarios for motion planning of autonomous vehicles.
A visualization of an exemplary traffic scenario is shown in Fig. 1. For many of these scenarios,
solutions in the form of collision-free trajectories are already available in CommonRoad. How-
ever, these solutions consider a nominal vehicle model only and are therefore potentially unsafe
in a real-world scenario, where model uncertainties, disturbances, and measurement errors have
to be considered. To counteract such disturbances, we control the car with a controller which

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 184-194



Verification of CommonRoad Traffic Scenarios Kochdumper, Gassert, and Althoff

Figure 1: Exemplary traffic scenario, where the planned reference trajectory is shown as a black
line, the potential positions of the vehicle’s reference point are shown in light gray around the
line, and the corresponding space occupied by the car is shown in dark gray.

aims to track the given reference trajectory and consequently keeps the vehicle’s reference point
in a small tube around the trajectory. The verification task is to prove that this tracking con-
troller is robustly safe by showing that the space occupied by the car does not intersect with
the road boundary or other vehicles present in the scenario.

As mentioned above, CommonRoad contains thousands of different traffic scenarios, from which
we could generate thousands of verification tasks. Initially, we consider 100 different traffic
scenarios, which are provided in the software package for this benchmark proposal. Moreover,
to make the use of the benchmark as easy as possible, we provide software for the collision
checks. Details about this are provided later in Sec. 5. In addition to performance evaluation of
reachability tools, the proposed benchmark also has high practical relevance since the possibility
to verify robust safety of planned trajectories in real-time would be a major leap forward in the
field of autonomous driving.

2 Related Work

Besides CommonRoad, there also exist several other tools and frameworks for the performance
evaluation and testing of autonomous driving approaches. Similar to CommonRoad, GeoSce-
nario [20] defines a domain specific language for representing motion planning tasks for au-
tonomous vehicles and provides a database of traffic scenarios. Moreover, the scenario architect
in [23] presents a graphical user interface for designing multi-vehicle traffic scenarios. Some
frameworks for the simulation and testing of autonomous vehicles are BARK [6], CoInCar-
Sim [17], FITENTH [18], and VeriCAV [13], where BARK and ColnCar-SIM focus on inter-
active behavior in multi-agent scenarios. For evaluating the performance of motion planners it
is advantageous to especially consider critical scenarios for which the solution space is small.
The automated generation of critical traffic scenarios is therefore a research topic of special
interest [4,11,12].

Many different strategies exist for solving motion planning tasks for autonomous vehicles:
discretization-based planners, which include rapidly exploring random trees [8] and state lat-
tices [27], discretize the search space by considering a finite set of possible motions only. Other
approaches formulate motion planning as a continuous optimization problem [16,26], or precom-
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xT

Figure 2: Visualization of the vehicle dimensions and the vehicle reference point [s, s,]T on
the rear axis.

pute possible driving corridors to simplify the motion planning task [10,15]. Machine learning
has also been successfully applied to motion planning of autonomous vehicles [21,25]. While the
approaches listed above consider nominal vehicle models only, there also exist some techniques
that explicitly consider disturbances and measurement errors to guarantee robust safety [22,24].

3 Benchmark Description

After introducing the general setup in Sec. 1, the benchmark is described here in detail. The
car considered is a BMW 320i, which has a length of | = 4.508m, a width of d = 1.61m , and
a wheelbase length of [, = 2.578m (see Fig. 2). Its dynamic behavior is represented by a
kinematic single-track model [3, Sec. ITIL.B]:

0(t) = ua(t) + wa(t
$2(t) = v(t) cos(¢(t))
$y(t) = v(t) sin(4(?)),

where t € R is the time and the system states are the steering angle §(t), the vehicle head-
ing (t), the vehicle velocity v(t), and the x and y positions of the vehicle’s reference point
sz(t), sy(t) on the rear axis (see Fig. 2). The control inputs for the car are the velocity of the
steering angle u (t) and the acceleration us(t). We use the shorthands @(t) = f(z(t), u(t), w(t))
to denote the open-loop system in (1), where z(t) = [6(¢) ¥(t) v(t) sz (t) s, (t)]T is the state vec-
tor, u(t) = [uy(t) ua(t)] is the vector of control inputs, and w(t) = [wy (t) we(t)]T is the vector
of uncertain inputs. The uncertain inputs, which capture model uncertainties and disturbances
acting on the vehicle, are bounded by the set w(t) € W = [-0.02,0.02]rad s~ x [-0.3,0.3]m s 2,
which we estimated from measurements of the real car. In addition, owing to actuator limits,
the control inputs are restricted to the set u(t) € U = [—0.7,0.7jrads™* x [—11,11jms™2.
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There exist many different tracking controllers for autonomous driving, a comparison of which
is provided in [7]. Motivated by the combination of simplicity and good tracking performance,
we use the controller

U’fb (Zf(t)’ t) = u’fef (t) + K(t) (/f(t) - xref (t))7 (2)

where K (t) € R?*® is a time-varying feedback matrix and u,.f(t) € R? are the control inputs
corresponding to the reference trajectory z,.s(t) € R®. Both, K (t) and u,.f(t) are piecewise
constant over time, where we denote a time interval with constant values by 7; = [t;—1, %],
i = 1,...,N. The variable Z(t) := x(t) + v(¢t) in (2) denotes the measured system state,
which is the actual system state disturbed by the measurement error v(t) € R®. The mea-
surement error is bounded by the set v(¢) € V = [—0.0004, 0.0004]rad x [—0.0004, 0.0004]rad x
[—0.006, 0.006)m s~ ! x [—0.002, 0.002]m x [—0.002,0.002]m, which we estimated from measure-
ments of the real car. Inserting the control law in (2) into (1) yields the dynamics of the
closed-loop system:

[ (1) } _ [f(ﬂ?(t)vuref(t)+K(t)(ﬂf(t)+v(t) — Zpes (1)), w(t)) (3)

Trey(t) f (xref (t), tref (1), 0) 7
5,—/
()

where we extend the original system state by the reference trajectory state. This is necessary
since only the control inputs u,.(t) for the reference trajectory are available, but not a closed
formula for the reference trajectory x,es(t) itself. An alternative would be to finely sample from
the reference trajectory, and then use these samples to implement the controller. However, this
would significantly restrict the time step size that can be used by verification tools, so we prefer
the variant with the extended system state in (3).

The considered time horizon ¢ € [to,tn] for verification is defined by the time horizon for the
reference trajectory z,.y(t). Moreover, the initial conditions for the differential equation in
(3) are given as Z(tg) € Xy = (w0 ® V) X xg, where xg = Z,ef(tg) € R® is the initial state
of the reference trajectory. Furthermore, both w(t) and v(¢) can change arbitrarily over time:
YVt € [to,tn] : w(t) € W Av(t) € V. Finally, the verification goal is to check if the following
specifications are satisfied:

e Collision avoidance: The car should not collide with the static obstacles including the
road boundary or the dynamic obstacles (e.g. other traffic participants).

e Input constraint: The tracking control law in (2) should satisfy the input constraint
vVt € [toﬂfN] : Ufb(/x\(t),t) cEU.

A possible future extension to the proposed benchmark would be to consider traffic rules, which
would result in additional temporal logic specifications [14].

4 Verification using Reachability Analysis
We now describe how the benchmark can be verified using reachability analysis. An overview
for the verification process using reachability analysis is shown in Fig. 3. We first compute a
tight enclosure of the reachable set R(t) for the closed-loop system in (3) defined as

R(t) = {g(t,f(to),w(.),v(.)) ‘ F(to) € Xo, V" € [to, 1] : w(t*) € WAw(t*) € v},
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Figure 3: Overview of the verification process using reachability analysis.

where £(t,Z(tg), w(+),v(+)) denotes the solution to (3) at time ¢ starting from the initial state
Z(tg) € R1Y for an input signal u(-) and an measurement error signal v(-). The reachable set
contains all possible positions of the vehicle’s reference point. However, we additionally have to
consider the dimensions of the car for collision checking. From the reachable set, we therefore
compute a tight enclosure of the occupancy set O(t) defined as [2, Sec. V]

00 = { |1 Lot ooy | B0 sl € R0,

S B ) cl_dd
“ 2T Ty P @ 29[

which is the space occupied by the vehicle. Our provided collision checker can then be used
to check if the occupancy set intersects with static or dynamic obstacles. This requires the
exportation of the computed occupancy set as a .csv-file with a specific format. Details about
this file format and on how to use the collision checker are provided later in Sec. 5. What
remains is to check if the input constraints are satisfied. For this, we first compute a tight
enclosure of the set of applied control inputs Uy, (t) defined as

Upp(t) := {uref(t) + K (t) ((t) + v(t) — zpes(t)) ‘ [ x(t)t)] € R(t), v(t) € v}. (5)

Tref(

To check the input constraints, we have to test if the set of applied control inputs in (5) is
contained in the set of admissible control inputs for all times: V¢ € [to,tn]: Upp(t) C U.
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code code
Lcheck,collision.py Lcheck,collision.py
data data
scenarios scenarios
<scenario_name>.xml ESP_Inca-7_1_T-1.xml
<scenario_name>.xml FRA_Sete-1_1_T-1.xml
1nputs 1nputs
<scenario_name>_controls.csv ESP_Inca-7_1_T-1_controls.csv
<scenario_name>_controls.csv FRA_Sete-1_1_T-1_controls.csv
results results
solutlons solutlons

<scenario_name>_occupancies.csv ESP_Inca-7_1_T-1_occupancies.csv
<scenario_name>_occupancies.csv FRA_Sete-1_1_T-1_occupancies.csv

Figure 4: Directory structure of the provided software package, where the general format is
shown on the left and a concrete example is shown on the right.

5 Implementation Details

For ease of use, we provide the data for 100 different traffic scenarios as well as a collision
checker in a software package, which we published as a CodeOcean compute capsule'. The
reference trajectories for all provided traffic scenarios are robustly safe, so that all problems
can be verified as safe. In this section, we give a detailed description of the involved data
formats and explain how the collision checker can be used. The directory structure for the
provided software package is shown in Fig. 4.

Input File

For each traffic scenario, the initial state x, the control inputs for the planned reference trajec-
tory ures(t), and the feedback matrix for the control law K (¢) are provided in a .csv-file with the
name <scenario_name>_controls.csv (see Fig. 4). The format of the file is shown in Tab. 1, where
the first line of the file stores the initial state xo = z(to) = [§(t0) ¥ (to) v(to) sz (to) sy(to)]”. The
remaining lines contain the time-varying reference inputs u,.s(t) and the time-varying feedback
matrix K (t), where each line corresponds to a time interval 7; = [t;_1,%;], ¢ = 1,... N in which
the values for u,e;(t) and K(t) are constant:

(i)
W, i=1...,N.
K25

)

Ky K|
Kt

= [Yrefl|  K(r) =
Uref(Ti) = i ) Ti) = i
7(7i) [u() ] () Ky

Ihttps://codeocean.com/capsule/0922183/tree/vl
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Table 1: Format of the input .csv-file storing the initial state, the control inputs for the planned
reference trajectory, and the feedback matrix for one scenario.

to 5(t0) ’L/)(t()) U(to) Sy (to) Sy(to)

1 1 1 1 1 1 1 1 1 1 1 1
T R N I I I P R D e B P R
2 2 2 2 2 2 2 2 2 2 2 2
2 o | K| RS | RS | | | k| e | e |

uref,l urcf,Q s

N N N N N N N N N N N N
tn u(ref),l uv(”ef),2 Kil) KiQ) K{,3) K£,4) K£,5) Ké,l) Ké,z) Ké,s) K§,4) Ké.r)

’ ;

CommonRoad File

The CommonRoad framework stores each traffic scenario in an .xml file with the name <sce-
nario_name>.xml (see Fig. 4), using the specific CommonRoad XML format? as defined in [3,
Sec. V]. This file stores a formal representation of the road network, static and dynamic obsta-
cles, and the corresponding planning problem defined by the initial state and goal set. For the
proposed benchmark, we only require the static and dynamic obstacles. If reachability analysis
is used for verification, the data required from the CommonRoad file is automatically extracted
by the provided collision checker, so that the user does not need to be concerned with the
CommonRoad file. For other verification approaches, we recommend to use the CommonRoad
input-output package? to efficiently read and manipulate the data stored in CommonRoad files.

Output File

If reachability analysis is used for verification, the computed occupancy set O(t) C R?
for each scenario has to be stored in a corresponding output .csv-file with the name <sce-
nario_name>_occupancies.csv (see Fig. 4), to use the provided collision checker. Since all com-
mon reachability tools compute the reachable set for consecutive time intervals 7; = [ts ;, te.i],
i=1,..., M, one occupancy set O(7;) is stored for each time interval 7;. Note that the time
intervals for reachability analysis 7; are in general not identical to the time intervals 7; in which
the values for u,.s(t) and K (t) are constant. We require that the occupancy set O(7;) for each

time interval 7; is represented as a polygon defined by a tuple of polygon vertices pgi) € R%:
()
g;} L j=1,...,Q; i=1,...,M.

J:2

O(ﬁ) = (Pgi), e ,pg:% with pji) =

The format for the output .csv-file is shown in Tab. 2. Two consecutive lines always store the
occupancy set O(7;) for one time interval 7;, where the first column stores the start and end
time of the time interval and the remaining columns store the vertices of the polygon.

2https://gitlab.lrz.de/tum-cps/commonroad-scenarios/-/blob/master/documentation/XML_
commonRoad_2020a.pdf
3https://commonroad.in.tum.de/commonroad-io
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Table 2: Format for the output .csv-file storing the occupancy set for one scenario demonstrated
by an exemplary occupancy set.

ter | UL PSD | PSR | PEY

ter | pis | pS% | PSS | Y

teo | P | o8 | 8

tea | 25 | 09} | )

ts,3 pf’i péﬁ? pg’i pfi p83,1
tes | oo | P52 | B3 | 08 | | P,
ts, M p%) Pg\f) Pz(),J,V{) Pflj,\f) pg\if),l
tear | pis | PSS | B8 | o8 | | pgY,

Collision Checker

To make the use of the proposed benchmark as easy as possible, we provide a Python script
check_collision.py, which checks if the occupancy sets stored in the output files collide with
the road boundary or the other vehicles of the considered traffic scenarios. This script is based
on the CommonRoad drivability checker in [19]. Before running the script, one therefore first
has to install the CommonRoad drivability checker using the detailed installation instructions
provided on the CommonRoad website?. Another requirement for the collision checker to run
properly is that the directory structure shown in Fig. 4 is used. Finally, the collision checker
can be executed from the console as follows:

python3 check_collision.py

python3 check_collision.py <scenario_name>

If the collision checker is executed without inputs, it considers all scenarios for which an output
file exists that stores the occupancy sets, and displays a list to the console with scenarios where
collisions occurred. Otherwise, if the name of one scenario is passed as an additional input
argument, the collision checker only considers the specified scenario. In this case, if a collision
occurs for the specified scenario, an animation visualizing the collision is shown.

6 Numerical Experiments

We now provide some numerical results for the proposed benchmark obtained by the reach-
ability toolbox CORA [1], which is implemented in MATLAB. All computations are carried
out on a 2.9GHz quad-core i7 processor with 32GB of memory. In particular, we consider the
conservative linearization algorithm [5], which computes a tight enclosure of the reachable set
by linearizing the nonlinear system dynamics on the fly. Moreover, to compute a tight enclosure
of the occupancy set, we first compute a Taylor series expansion of the nonlinear function in

4https://commonroad.in.tum.de/docs/commonroad-drivability-checker/sphinx/index.html
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Figure 5: Number of successfully verified traffic scenarios (left) and average computation time
for the verification of a planned trajectory with a time horizon of 1 second (right) for different
reachability timestep sizes.

(4), which we then evaluate in a set-based manner. The results for different sizes of the reacha-
bility analysis time intervals 7; are shown in Fig. 5. If the chosen timestep size is small enough,
CORA is able to successfully verify that the planned trajectories for all 100 of the considered
traffic scenarios are robustly safe. Verification accelerates with larger timestep size, but then it
is not possible to verify safety for all traffic scenarios. Finally, the computed occupancy set for
one concrete traffic scenario is visualized in Fig. 6.
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Figure 6: Visualization of the computed occupancy set for the CommonRoad scenario
BEL_Putte-4_2_T-1 at times Os (top, left), 1s (top, right), 2s (bottom, left), and 3s (bottom,
right). The occupancy set for the whole time horizon is depicted in green, the occupancy set
for the current time is depicted in red, and the other vehicles are depicted in blue.
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7 Conclusions

We introduced a novel benchmark with nonlinear continuous dynamics to verify planned tra-
jectories for autonomous cars. Using the traffic scenarios from the CommonRoad database, it
is possible to generate many thousands of different verification tasks, resulting in a benchmark
that is well-suited for an exhaustive analysis of verification algorithms and tools. The fact
that the dynamic of the system changes constantly through the use of time-varying feedback
matrices provides an additional challenge, so that the proposed benchmark is a good fit for
performance comparisons. Finally, numerical experiments with the reachability toolbox CORA
demonstrate that it is possible to successfully verify all scenarios.
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