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Abstract 

A realistic and informative 3D digital model of historical buildings holds significant 

value for heritage preservation, public education, and cultural dissemination. 

Traditional digital representations, such as Heritage Building Information Modeling, 

panoramic images, LiDAR point clouds, photogrammetric mesh models, face 

limitations in user interaction and engagement. The automatic generation of a 

semantically enriched 3D model requires advanced scene-understanding capabilities. 

Pre-trained zero-shot methods struggle with domain-specific knowledge in heritage 

component semantics, while CNN-based approaches demand extensive manual effort 

for dataset preparation and model training. Therefore, this study proposes an optimized 

language-embedded 3DGS framework for the digitalization of historical buildings. It 

involves three steps: (1) data preparation of on-site images and relevant text; (2) 

component segmentation by the integration of SAM and MLLM; (3) scene 

reconstruction using the language-embedded 3DGS. The combination of SAM's 

localization ability and MLLM's in-context learning achieves 95.6% accuracy in the 

semantic segmentation of historical building components, requiring only a single 

annotated sample for each component category. Compared with previous methods, our 

language-embedded 3DGS model accurately captures complex semantics while 

providing realistic appearance and convenient navigation. The generated 3D model can 

be further integrated with an LLM-based chatbot assistant to achieve open-vocabulary 

and vague searches. This framework was validated on the Shishi Sacred Heart 
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Cathedral in Guangzhou, China, offering a novel digital solution for the protection and 

sustainment of historical buildings. 

1 Introduction 

Historical buildings record the history and social transformations of a region. Those with religious 

significance, such as cathedrals, often serve as spiritual homes for communities. Effective 

documentation, preservation, and dissemination of these heritages are essential for cultural protection 

and sustainability. To capture and record the current conditions of historical buildings, advanced 

techniques are employed to create digital models that reflect geometric shapes, textures, and attribute 

information, including component semantics and defects. A 3D heritage model with precise geometry 

and comprehensive information is valuable for various applications such as archiving, maintenance, 

navigation, and education (Yang, 2020). 

Several types of digital models are employed for the preservation and dissemination of historical 

buildings. Heritage Building Information Modeling (HBIM) is widely used due to its superior 

capability to manage and document historic structures with parametric objects (Cheng, 2024). HBIM 

can be further transformed into mechanical models, such as Finite Element Analysis models, to 

comprehensively analyze structural performance and proactively prevent defect development (Ursini, 

2022). However, HBIM struggles to accurately reflect the realistic appearance and aesthetics of 

historical buildings, which limits its applications in areas involving public interaction, such as remote 

viewing and on-site navigation. Besides, panoramic images with informative labeling are popular for 

effectively displaying scene textures while storing a certain amount of information. Nevertheless, 

users cannot move continuously within these panoramic scenes, and texture distortion may occur, 

diminishing the user experience. Additionally, reality-capturing techniques, such as LiDAR point 

cloud scanning and photogrammetric mesh 3D reconstruction, can accurately capture geometrical 

shapes and textures (Croce, 2021; Pritchard, 2017). However, they do not provide a first-person 

perspective for user visualization and interaction, which is inconvenient for navigation and education 

in VR environments or on mobile devices. To enhance user interaction and broaden public 

engagement with digital models of historical buildings for effective cultural dissemination, it is 

crucial to propose a novel digital representation that overcomes these existing limitations. 

3D Gaussian Splatting (3DGS) is a recently developed 3D reconstruction technique based on 

generative artificial intelligence (Kerbl, 2023). This method takes images or videos as input and 

employs an iterative learning process to train an explicit model composed of 3D Gaussian ellipsoids 

for displaying the scenes. This technology can render realistic first-person view images, supporting 

fast training and rendering speeds, allowing users to navigate within the scene. It is an ideal 3D digital 

representation for user interaction with historical buildings. 

However, the basic 3DGS model is primarily used for rendering colorful scenes, lacking object-

based information. Consequently, several studies have focused on the semantic enrichment of the 

3DGS model (Qin, 2024; Shi, 2024). Rather than merely adding semantic labels to the scene, 

language features are preferred, as they enable users to interact with the 3DGS model through natural 

language. The automatic generation of the semantically enriched 3DGS model directly from the input 

images or videos is the chasing of the previous studies, as well as this paper. This necessitates an 

accurate semantic understanding of the input images, followed by the segmentation of target objects. 

Previous studies, such as LangSplat (Qin, 2024), employ pre-trained zero-shot models like 

Contrastive Language-Image Pre-training (CLIP) for automatic scene understanding. Although these 

zero-shot models enhance the implementation convenience, their capabilities are constrained by the 

pre-training dataset. In the context of historical buildings, the target objects for segmentation include 

components such as flying buttresses, arched windows, and spires. These semantics require strongly 
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domain-specific knowledge and may not be presented in the pre-training dataset. Consequently, 

directly applying pre-trained zero-shot models to historical buildings may result in incorrect semantic 

segmentation of input images, leading to erroneous information storage in the 3DGS model. 

Conversely, the CNN-based models can effectively address domain-specific segmentation problems, 

but they demand significant manual effort for label annotations and involve a time-consuming 

training process. To ensure accurate information storage of historical buildings in the 3DGS model 

while balancing manual effort, it is crucial to develop a component semantic segmentation method 

using a few-shot dataset. 

Multimodal Large Language Models (MLLMs) are renowned for their reasoning and in-context 

learning abilities (Zhang, 2024). These models can learn from a few input samples, then achieve 

impressive recognition performance for similar objects. However, they face challenges with weak 

localization ability (Yin, 2023), which can result in inferior segmentation results. 

To fulfill the aforementioned requirements and address the existing problems, this paper proposes 

an optimized language-embedded 3DGS framework for realistic modeling and accurate information 

storage of historical buildings. The framework consists of three steps: (1) data preparation of on-site 

images and relevant text; (2) component segmentation by the integration of SAM and MLLM; (3) 

scene reconstruction using the language-embedded 3DGS. Our method was validated on the Shishi 

Sacred Heart Cathedral in Guangzhou, China. Results show that our method can achieve 95.6% 

accuracy of component segmentation using few manual-annotated samples. The generated 3DGS 

model accurately represents a realistic and informative scene, which can be further integrated with 

LLM assistants for open-vocabulary and vague searches. This innovative digital model of historical 

buildings enhances user interaction and is valuable for cultural protection. 

2 3D Gaussian Splatting Technique 

3DGS can be conceptualized as a point cloud, where each point is associated with a Gaussian 

ellipsoid. From user-specified viewpoints, it renders and displays the information encoded in the 

Gaussians onto images. The basic RGB-based 3DGS model includes the following parameters for 

each 3D Gaussian: position 𝑥 , covariance matrix Σ  (defining its shape), opacity 𝛼 , and spherical 

harmonics (SH) coefficients 𝑐  (defining its color). The expression of 3D Gaussian characterized by a 

mean 𝜇 is shown in Equation 1. 

𝐺(𝑥) = 𝑒−
1

2
(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇) (1) 

3D Gaussians are the ellipsoids in 3D space. They are then projected into the 2D image space as 

ellipses for rasterization-based rendering, which is called splatting. Given the viewing transformation 

𝑊 and Jacobian of the affine approximation of the projective transformation 𝐽, the splatting is to 

project the 3D covariance matrix Σ  into 2D covariance matrix Σ′ using Equation 2. 

Σ′ = 𝐽𝑊Σ𝑊𝑇𝐽𝑇 (2) 
The 2D ellipses are then sorted by depths of Gaussians and cumulated to render images. Given the 

position of a pixel 𝑣 ∈ {1, … , 𝐻} × {1, … ,𝑊} and a sorted list of Gaussians 𝑁 , the final color 𝑐(𝑣) of 

this pixel is calculated by the 𝛼-blending as shown in Equation 3.  

𝑐(𝑣) =∑ 𝑐𝑖𝑎𝑖
′

𝑖∈𝑁
∏ (1 − 𝑎𝑗

′)
𝑖−1

𝑗=1
(3) 

where 𝑐𝑖 is learned color in 3D Gaussian ellipsoids, and final opacity 𝛼𝑖
′ is the multiplication result of 

learned opacity 𝛼𝑖 in 3D Gaussian ellipsoids and 2D covariance. 

In the training process of the 3DGS, input images are used to optimize parameters within each 3D 

Gaussian and to adjust the number of Gaussians. These input images act as ground truth, compared 

with rendered images in each iteration to calculate the loss for optimization. For further details, refer 

to (Kerbl, 2023). 
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3 Methodology 

Our proposed framework is illustrated in Figure 1. Initially, on-site images and relevant textual 

materials are collected as the overall input. Then, the SAM and MLLM are integrated for the semantic 

segmentation of target components in the images, requiring only one annotation per component. 

Subsequently, the semantic segmentation masks are utilized to generate 3DGS scenes, embedding 

language features to facilitate open-vocabulary and vague searches. Two datasets, front view and side 

view, are collected for Shishi Sacred Heart Cathedral, as different perspectives may contain different 

components. The operational environment is the computer equipped with an NVIDIA A40 GPU and 

an Intel Xeon Platinum 8358P CPU. 

 
Figure 1. Overall framework of the optimized language-embedded 3DGS 

3.1 Data Preparation of On-site Images and Relevant Text 

In the first step, on-site images are captured for 3DGS generation, and textual materials related to 

component characteristics are prepared for subsequent MLLM-assisted semantic segmentation. 

To ensure high-quality 3DGS reconstruction, multi-angle images must be captured to fully cover 

the target scene, providing a faithful viewing experience from various perspectives of the 3DGS 

model. As illustrated in Figure 2, images of the Cathedral's front façade were taken from multiple 

angles and distances. A total of 1,371 images at a resolution of 2K pixels were captured for the Shishi 

Sacred Heart Cathedral using UAV and handheld cameras. 

    
Figure 2. Multi-angle images captured for the frontier façade 

 

Optimised Language-embedded 3DGS Liang et al.

603



The exploration of textual materials related to the Cathedral was conducted through internet 

sources and historical documents. The relevant texts primarily include descriptions of the Cathedral's 

most distinctive components, which serve as a part of input for the MLLM to enhance component 

understanding and segmentation. Examples of these textual descriptions include: 

⚫ Rose window: A large, circular window with intricate stone tracery radiating from the 

center, resembling the petals of a rose. 

⚫  Flying buttress: A semi-circular or arched exterior support that projects from the upper 

portion of a church wall over the roof of the church's aisle or chapel below. 

⚫  Spire: A tall, slender, and pointed structure rising from the top of a tower or the roof of a 

cathedral, typically made of stone or wood, adding height and verticality to the overall design. 

3.3 Scene Reconstruction using the Language-embedded 3DGS 

Once accurate semantic segmentation masks of the components are generated, they are employed 

in developing the language-embedded 3DGS model. Compared with the original 3DGS, this model 

extends a semantic attribute to store language features as a vector. These features enable natural 

language search through cosine similarity calculations. 

The CLIP text encoding module (Radford, 2021) 𝐸𝑡𝑒𝑥𝑡  is utilized to generate the language feature 

𝐿 of pixel 𝑣 with the semantic label 𝑆, as shown in Equation 4. 

𝐿(𝑣) = 𝐸𝑡𝑒𝑥𝑡(𝑆(𝑣)) (4) 

However, these language features are 512-dimensional vectors, which can easily cause "out of 

memory" issues if directly added to Gaussians. Inspired by (Qin, 2024), a scene-wise autoencoder is 

developed to reduce the dimensionality by mapping the 512-dimensional vector to a 3-dimensional 

scene-specific vector. These 3-dimensional latent features are then used to supervise the learning of 

the 3D language field and facilitate rendering to visualize semantic embedding conditions in 3D 

scenes. The rendering of the latent features 𝑓 on pixel 𝑣 also employs the 𝛼-blending, similar to color 

rendering, as shown in Equation 5.  

𝑓(𝑣) =∑ 𝑓𝑖𝑎𝑖
′

𝑖∈𝑁
∏ (1 − 𝑎𝑗

′)
𝑖−1

𝑗=1
(5) 

where 𝑓𝑖 is learned latent feature in 3D Gaussian ellipsoids. 

The training process of the language-embedded 3DGS involves two steps. First, a colorful 3DGS 

model is developed based on the original 3DGS pipeline. Following this, the number and learned 

attributes of Gaussians are fixed in the colorful 3DGS model, and latent feature maps are input to 

enable the model to learn component semantics through the same rasterization process. In this 

experiment, the first step involves 100,000 training epochs, and the second step involves 30,000 

epochs. 

Figure 6 demonstrates the realistic scene rendering capabilities of 3DGS technology. Notably, the 

scenes in 3DGS closely resemble real-life environments. Additionally, users can freely navigate 

within 3DGS, making it highly suitable for applications with significant user interaction. 

Figure 7 illustrates the rendered semantic masks, also known as the 3-dimensional latent features. 

The edges of different objects are clear and distinct, indicating that the semantic information has been 

accurately learned and stored in the 3DGS model. However, the lower roof in the side view appears 

somewhat blurred, likely due to occlusion by the flying buttress, preventing complete segmentation. 

Additional views from different angles are needed to clearly capture the roof and enhance the scene 

information through improved segmentation. 
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(a) On-site captured images 

    
(b) Colorful images rendered by 3DGS 

Figure 6. Comparison of on-site captured images and 3DGS-rendered images 

   
                           (a) front view                                                  (b) side view 

Figure 7. 3DGS-rendered semantic masks 

4 Validation 

The validation analyses focus on two aspects to demonstrate the superiority of the proposed 

pipeline. First, our optimized language-embedding 3DGS is compared with the language-embedding 

3DGS using the pre-trained model for scene understanding (LangSplat). Second, a quantitative 

analysis is conducted on the accuracy of MLLM-assisted semantic segmentation of components. 

The comparison between our method and LangSplat focuses on the ability to effectively handle 

domain-specific knowledge and accurately store complex component semantics. Since both methods 

store language features in the 3DGS models, a cosine similarity search is conducted on every pixel 

using the target component name. As shown in Figure 8, the search for the specific terms "Arched 

window" and "Spire" was conducted on two 3DGS models. Our method successfully highlights the 

appropriate locations on the images, indicating that the semantics stored in the 3DGS are both 

accurate and meet the specialized requirements of historical buildings. In contrast, LangSplat is 

unable to identify these terms because it relies on CLIP for scene understanding, which is constrained 

by pre-trained data and struggles to expand its knowledge domain. Consequently, it cannot accurately 

identify complex objects or concepts in specific fields. This result demonstrates that our proposed 

optimized language-embedding 3DGS effectively addresses automatic 3D scene reconstruction with 

semantic complexity. 
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(a) Arched window 

    
(b) Spire 

Figure 8. Comparison of our method (left) with LangSplat (right) 

 

Our semantic segmentation method employs MLLM to recognize SAM-segmented objects, 

ensuring that every object in the images is labeled. The accuracy of these predicted labels is crucial. 

Therefore, validation is performed to check the correctness of semantic labels for each component. 

Both front and side view images were validated. In the front view sample shown in Figure 9(a), 41 

out of 42 components were accurately recognized. In the side view sample shown in Figure 9(b), 60 

out of 66 components were accurately identified. The overall recognition accuracy for all components 

is 95.6%, demonstrating that our SAM-MLLM integrated method achieves high-quality semantic 

segmentation with only a few annotated samples as input. The highly accurate semantic segmentation 

with less manual effort is also valuable for other scenes understanding tasks. 
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(a) Front view, (accuracy = 41/42 = 97.6%) 

 

    
(b) Side view (accuracy = 60/66 =90.9%) 

Figure 9. Quantitative analysis of the accuracy of MLLM-assisted semantic segmentation. The left 

shows the generated segmented masks, and the right shows the ground truth. 

5 Discussion 

The generated language-embedding 3DGS model can be further integrated with an LLM-based 

chatbot interface to facilitate user-friendly searching, as shown in Figure 10 and 11. This interface, 

developed via Autogen Studio, utilizes the LLM heritage assistant powered by GPT-4o, configured 

with a specific system message for instruction. With component semantics embedded as language 

features, searching operations are performed using cosine similarity calculations, which are 

implemented as a backend function in the LLM heritage assistant. 

In Figure 10, open-vocabulary searches were initially conducted for testing. User input prompts 

included specific terms like "spire" and "pinnacle". Following the search, the corresponding 

components were successfully selected and highlighted. However, these terms represent specialized 

knowledge, which may be challenging for non-expert users to articulate accurately. Therefore, in 

Figure 11, a vague search is performed to test the generalizability of our method. Users employed 

descriptive phrases like "big round window" instead of standard terms like "rose window." The results 

demonstrate that the correct components can still be identified and highlighted, indicating that our 

method is highly user-friendly. Additionally, the LLM heritage assistant, capable of accessing 

historical and contextual information from the web, allows for the effective integration of online 
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knowledge with reconstructed 3D models. This integration holds significant value for the education 

and cultural dissemination of historical buildings. 

 
Figure 10. Results of open-vocabulary searches 

 

  
Figure 11. Results of vague search 

6 Conclusion 

This paper proposes an optimized language-embedded 3DGS framework for the automatic and 

accurate modeling of realistic and informative 3D scenes of historical buildings. The framework 

includes: (1) preparation of on-site images and relevant textual material; (2) semantic segmentation of 

historical building components using SAM-MLLM integrated method; (3) development of a 

language-embedded 3DGS model for scene representation. Our semantic segmentation method 

achieves 95.6% accuracy for component segmentation using only one annotated sample per 

component category. The optimized language-embedded 3DGS method outperforms the previous 
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model in accurate domain-specific semantics recognition and storage. The 3DGS-based digital 

representation of historical buildings also facilitates user interaction through an LLM-based chatbot 

assistant for open-vocabulary and vague searches. This scene-realistic, semantic-enriching, 

convenient-navigating and easy-interacting 3DGS model brings significant value for the heritage 

preservation, public education and cultural dissemination. 

Future work will extend our study to include the reconstruction of indoor scenes of historical 

buildings, aiming to better document and disseminate the intricate interior decorations. Currently, the 

MLLM used is GPT-4o, which requires the API. Future efforts will also focus on developing the 

open-source MLLM-assisted method, which will be beneficial for private deployment. 
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