
Kalpa Publications in Computing
Volume 1, 2017, Pages 119–123

LPAR-21S: IWIL Workshop
and LPAR Short Presentations

Towards an Abstraction-Refinement Framework for
Reasoning with Large Theories

Julio Cesar Lopez Hernandez and Konstantin Korovin

The University of Manchester, School of Computer Science
{lopezhej,korovin}@cs.man.ac.uk

Abstract

In this paper we present an approach to reasoning with large theories which is based
on the abstraction-refinement framework. The proposed approach consists of the following
approximations: the over-approximation, the under-approximation, and their combination.

1 Introduction
Efficient reasoning with large theories is one of the main challenges in automated theorem
proving arising in many applications ranging from reasoning with ontologies to proof assistants
for mathematics. Current methods for reasoning with large theories are based on different
axiom selection methods. Some of them are based on the syntactic or semantic structure of
the axioms and conjecture formulas [11, 6]. Other methods for axiom selection use machine
learning to take advantage of previous knowledge about proving conjectures [13, 14]. What
those methods have in common are two phases of the whole process for proving a conjecture:
one is the axiom selection phase, and the other one is reasoning phase. Those phases are
performed in a sequential way. First, the axiom selection takes place, then using the selected
axioms the reasoning process starts.

Our proposed approach based on abstraction-refinement framework [5] has the purpose of
interleaving the axioms selection and reasoning phases, having a more dynamic interaction
between them. This proposed approach encompasses two ways for approximating axioms: one
is called over-approximation and the other one under-approximation. Those approximations
are combined to converge more rapidly to a proof if it exists or to a model otherwise. There
are a number of related works which consider different specific types of under and/or over
approximations in different contexts [9, 3, 12, 7, 10, 4].

2 Preliminaries
We consider a theory A which is a collection of axioms which we call concrete axioms and two
sets of formulas: Âs called stronger abstract axioms and Âw called weaker abstract axioms.

A strengthening abstraction function αs is a mapping αs : A → Âs, which maps concrete
axioms in A to stronger abstract axioms in Âs. A stronger abstract axiom âs is an element

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 119–123

Abstraction-Refinement for Reasoning with Large Theories J. C. Lopez Hernandez and K. Korovin

of Âs such that âs = αs(a) and âs |= a, where a is a concrete axiom; i.e., αs strengthens the
axioms in the sense that they are a more general representation of the concrete axioms. A
concretisation function γs is a mapping γs : Âs → 2A such that a ∈ γs(αs(a)).

A weakening abstraction function αw is a mapping αw : A → Âw, which maps concrete
axioms in A to weaker abstract axioms in Âw. A weaker abstract axiom âw is an element of
Âw such that âw = αw(a) and a |= âw where a is a concrete axiom.

Abstraction refinement is a process to approximate an abstract representation of axioms Â
to their concrete representation A. Weakening abstraction refinement is a process to construct
Âs′, which is a closer representation of A from Âs such that Âs |= Âs′ and Âs′ |= A; i.e., this
refinement weakens the abstract axioms in Âs. However those weak abstract axioms are still
stronger than the concrete axioms. Strengthening abstraction refinement constructs Âw′ which
is an approximation to the set of concrete axioms A, such that A |= Âw′ and Âw′ |= Âw.

We use ATPS to denote an instance of automated theorem prover which is sound and could
be complete or not. On the other hand, we use ATPC to make reference to an automated
theorem prover which is complete but not necessary sound [9, 3]. The purpose of these ATPs
is to prove or disprove conjectures more efficiently than a sound and complete ATP but with a
possible loss of precision.

3 Over-Approximation
This procedure starts by applying the strengthening abstract function αs to A, to obtain an
abstract representation of axioms Âs, Âs = αs(A). Utilising the set Âs, the procedure tries
to prove the conjecture C using an ATPC . If the ATPC disproves the conjecture, the process
finishes and responds that the conjecture has been disproved. If ATPC proves the conjecture
the procedure uses the abstract axioms involved in the proof Âs

p to retrieve their concrete
axioms in A by applying the function γs over Âs

p. The retrieved concrete axioms form a new
subset Ap, where Ap = γs(Â

s
p). With the new set Ap, the procedure tries again to prove the

conjecture using this time an ATPS . If the ATPS proves the conjecture, the process stops
and provides the proof. Otherwise, if the time limit is reached or the conjecture is disproved,
the set of axioms Âs is refined using the weakening abstraction refinement. The procedure is
repeated utilising the refined set of abstract axioms. This loop finishes when the conjecture is
proved or disproved or the time limit of the whole procedure is reached. The diagram of this
approximation is shown in Figure 1.

3.1 Strengthening Abstraction Function
In the over-approximation approach, one candidate for the abstraction function αs is a function
that generalises concrete axioms, for example, by replacing certain non-variable terms with
variables or by removing literals. This transformation will satisfy the required property that
the obtained abstract axioms entail the concrete axioms, âs |= a. We propose to define such
an abstraction function, as follows. First we group concrete axioms based on their syntactic
structure obtaining a partitioning of A = ∪Ai. Then for each group of concrete axioms Ai we
associate an abstract axiom âsi which logically implies all concrete axioms from the group, i.e.,
âsi |= Ai. The resulting abstraction function is defined as αs(a) = âsi for a ∈ Ai. For example,
if A is a set of clauses, then we can group clauses based on their joint literal occurrences and
define âsi to be a single clause that subsumes all clauses in Ai. The abstract axioms can be also
restricted to a decidable fragment. For example, by replacing complex terms with variables
we can over-approximate concrete axioms with abstract axioms in the EPR fragment. The

120

Abstraction-Refinement for Reasoning with Large Theories J. C. Lopez Hernandez and K. Korovin

Concrete
axioms A

αs(A) Abstract
axioms Âs ATPC Disproved

Conjecture C
Get Âs

p

Retrieve con-
crete axioms,
i.e., γs(Âs

p)

Refine ab-
straction Âs ATPS Proved

UNSAT

SAT

UNSATSAT

Figure 1: Over-approximation

EPR fragment consists of formulas which in the clausal form do not contain function symbols
other than constants. Formulas in this fragment can be efficiently solved by instantiation-based
methods like Inst-Gen [7] or Model Evolution [2]. Other over-approximation abstractions can
be based on argument filtering (which is also used for proving termination of term rewriting
systems [1, 8]), and signature grouping where we group signature symbols of the same type and
replace the whole group by a single representative.

3.2 Weakening Abstraction Refinement

Weakening abstraction refinement is applied when a proof is obtained using abstract axioms
(Figure 1). The abstraction refinement weakens the abstract axioms in Âs, involved in the
proof. For example, we can sub-partition groups of concrete axioms which were used to define
αs into smaller subgroups. The refined abstraction function is the abstraction function which
assigns abstract axioms to the new partitioning, as defined in Section 3.1. The refinement
process is goal directed in the sense that only groups corresponding to abstract axioms involved
in the proof are partitioned further. When an axiom group consists of a single axiom then
we can concretise the corresponding abstract axiom to coincide with the concrete axiom. The
refinement process stops if each abstract axiom involved in the proof is concrete and in this
case we obtain a concrete proof of the conjecture. A simple instance of abstraction refinement
would be to concretise all abstract axioms involved in the proof: Âs := (Âs \ Âs

p) ∪ γs(Âs
p).

4 Under-Approximation

The process starts by applying the weakening abstraction function to the set of concrete axioms
A, Âw = αw(A). This set Âw of weaker axioms is used to prove the conjecture, using an ATPS .
If the conjecture is proved the procedure stops and provides the proof. Otherwise, a model I
of Âw and the negated conjecture is obtained. This model is used to refine the set of weaker
axioms Âw. During this refinement (strengthening abstraction refinement), the procedure tries
to find a set of axioms Ă that turns the model into a countermodel but are still implied by
A, i.e., I 6|= Ă and A |= Ă. If the set of axioms Ă is empty, Ă = ∅, the procedure stops and

121

Abstraction-Refinement for Reasoning with Large Theories J. C. Lopez Hernandez and K. Korovin

disproves the conjecture. Otherwise, the obtained set of axioms is added to the set of weaker
axioms, Âw := Âw∪Ă. Using this new set of abstract axioms Âw, another round for proving the
conjecture starts. The process finishes when the conjecture is proved or disproved or the time
limit for the quest of a proof is reached. The diagram of this procedure is shown in Figure 2.

Concrete
axioms A

αw(A) Abstract
axioms Âw ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă

Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Figure 2: Under-approximation

4.1 Weakening Abstraction Function

In the case of under-approximation, we propose two weakening abstractions: instantiation ab-
straction and deletion abstraction. In the case of instantiation abstraction, abstraction function
generates ground instances of the concrete axioms as it is done in the Inst-Gen framework [7].
In the case of deletion abstraction we delete certain concrete axioms from the theory. This ab-
straction can be used to incorporate other axioms selection methods into this framework, which
are based on removing irrelevant axioms. In practice, these abstractions can be recombined.

4.2 Strengthening Abstraction Refinement

In the case of deletion abstraction, refinement can be done by adding concrete axioms Ă that
turn the model I, which is obtained form ATPS , into a countermodel, Ă ⊆ {ă | ă ∈ A, I 6|= ă}.
In the case of instantiation abstraction, refinement can be done by generating a set of ground
instances of axioms Aσ such that I 6|= Aσ, Ă := Aσ.

5 Combined-Approximation

Currently we are working on combining the two approximations discussed above. This com-
bination has the purpose of converging to a proof more rapidly by over and under approxi-
mating. One approach to combine them is using under-approximation in the outer-loop and
over-approximation in the place of ATPS . Let us note that this allows us incorporate other
axiom selection methods [11, 6, 13, 14] as part of the under-approximation abstraction.

122

Abstraction-Refinement for Reasoning with Large Theories J. C. Lopez Hernandez and K. Korovin

References
[1] Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs. Theor.

Comput. Sci., 236(1-2):133–178, 2000.
[2] Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a first-order DPLL method.

Artif. Intell., 172(4-5):591–632, 2008.
[3] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça de Moura. On deciding

satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning, 47(2):161–189,
2011.

[4] Randal E Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A Seshia, Ofer Strichman, and Bryan
Brady. Deciding Bit-Vector Arithmetic with Abstraction. Tools and Algorithms for the Construc-
tion and Analysis of Systems. TACAS 2007. Lecture Notes in Computer Science, 4424:358–372,
2007.

[5] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction. ACM
transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542, 1994.

[6] Krystof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In Nikolaj Bjørner
and Viorica Sofronie-Stokkermans, editors, Automated Deduction - CADE-23 - 23rd International
Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,
volume 6803 of Lecture Notes in Computer Science, pages 299–314. Springer, 2011.

[7] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-Based Automated Rea-
soning. In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in
Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 239–270.
Springer Berlin Heidelberg, 2013.

[8] Keiichirou Kusakari, Masaki Nakamura, and Yoshihito Toyama. Argument filtering transforma-
tion. In Principles and Practice of Declarative Programming, International Conference PPDP’99,
Paris, France, September 29 - October 1, 1999, Proceedings, volume 1702 of Lecture Notes in
Computer Science, pages 47–61. Springer, 1999.

[9] Christopher Lynch. Unsound Theorem Proving. Computer Science Logic. CSL 2004. Lecture Notes
in Computer Science, 3210:473–487, 2004.

[10] David A. Plaisted. Theorem proving with abstraction. Artif. Intell., 16(1):47–108, 1981.
[11] Geoff Sutcliffe and Yury Puzis. SRASS - A Semantic Relevance Axiom Selection System. In

International Conference on Automated Deduction, CADE-21, volume 4603 of LNCS, pages 295–
310, 2007.

[12] Andreas Teucke and Christoph Weidenbach. First-order logic theorem proving and model build-
ing via approximation and instantiation. In Carsten Lutz and Silvio Ranise, editors, Frontiers
of Combining Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland, Septem-
ber 21-24, 2015. Proceedings, volume 9322 of Lecture Notes in Computer Science, pages 85–100.
Springer, 2015.

[13] Josef Urban. MaLARea: A metasystem for automated reasoning in large theories. CEUR Workshop
Proceedings, 257:45–58, 2007.

[14] Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jirí Vyskocil. Malarea SG1- machine learner for
automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner, and
Gilles Dowek, editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer
Science, pages 441–456. Springer, 2008.

123

	Introduction
	Preliminaries
	Over-Approximation
	Strengthening Abstraction Function
	Weakening Abstraction Refinement

	Under-Approximation
	Weakening Abstraction Function
	Strengthening Abstraction Refinement

	Combined-Approximation

