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Abstract

In mathematical applications, category theory remains a contentious issue, with enthu-
siastic fans and a skeptical majority. In a muted form this split applies to the authors of
this note. When we learned that the only mathematically sound foundation of topological
quantum computing in the literature is based on category theory, the skeptical author sug-
gested to “decategorize” the foundation. But we discovered, to our surprise, that category
theory (or something like it) is necessary for the purpose, for computational reasons. The
goal of this note is to give a high-level explanation of that necessity, which avoids details
and which suggests that the case of topological quantum computing is far from unique.

1 Introduction

Category theory is indispensable in some parts of mathematics, e.g. in algebraic geometry,
homological algebra, algebraic topology. Yet, even among mathematicians the attitude toward
category theory varies greatly, as witnessed by the following joke of John Baez [1].

I hope most mathematicians continue to fear and despise category theory,
so I can continue to maintain a certain advantage over them.

The chasm between the fans of category theory and the silent majority is even more pro-
nounced in computer science where the fans tend to be super-enthusiastic while the majority is
indifferent.

In a muted form this split applies to the authors of this note. As we mentioned in [2, §1],
“The first author of this paper has long been a fan of category theory; even as a graduate
student, he was described by one of his professors as ‘functorized’. The second author has been
far more skeptical about the value of category theory in computer science.”

It turns out, however, that the only mathematically sound foundation of topological quan-
tum computing in the literature is based on category theory; see [2, 16, 17] for example. Why?

L. Kovacs, K. Korovin and G. Reger (eds.), ANDREI-60 (EPiC Series in Computing, vol. 68), pp. 26–36



Who needs category theory Blass & Gurevich

Is this just an accident of history or there is more to it? We have been debating this question
for a while, and now we agree that something like category theory is necessary for the purpose.

Categories were introduced by Samuel Eilenberg and Saunders Mac Lane as an auxiliary
notion in their theory of natural equivalences [5], and category theory is famous for its high
abstraction level. Here we posit that there is a more basic need for something like categories.
Ironically, the basic need is related to the problem of over-abstraction rather than under-
abstraction.

It is common in mathematics and its applications to deal with algebraic operations on
structures; think for example about direct sums and tensor products of vector spaces. Various
properties of these algebraic operations come into play: associativity, commutativity, distribu-
tivity, etc. But traditional algebra may be insufficient. For various reasons, in particular for
computational reasons, knowing that two structures are isomorphic (or equivalent in some sense
or another) may not be good enough. We need to have a particular isomorphism (or appropri-
ate equivalence) to witness the isomorphism. And we may have to coherently manipulate such
witnesses. Hence the coherent witness-manipulation problem.

We came across the coherent witness-manipulation problem in topological quantum com-
puting. But the problem seems to be much more general. We believe that pure and applied
mathematicians, computer scientists, and theoretical physicists are well advised to know that
category theory or something like it provides an appropriate framework to address the coherent
witness-manipulation problem.

2 What’s category theory?

For those who have only a vague idea of category theory, let us say a few words about it. The
experts can safely skip this section.

Categories were introduced by Samuel Eilenberg and Saunders Mac Lane as an auxiliary
notion in their general theory of natural equivalences [5]. “It is not too misleading, at least
historically, to say that categories are what one must define in order to define functors, and
that functors are what one must define in order to define natural transformations,” writes Peter
Freyd in the introduction to his book [7].

In the rest of this section, we quickly explain the notion of natural equivalence.

2.1 Categories and functors

Definition 2.1. A category comprises

1. a collection of objects,

2. for any objects x, y, a collection of arrows α : x→ y
including, if x = y, an arrow 1x : x→ x called identity,

3. a composition βα : x → z of arrows x
α−→ y

β−→ z which is associative and treats the
identity arrows as expected.
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An arrow with a two-sided inverse is an isomorphism. /

Examples 2.2.

1. Sets, total functions, and function composition.

2. Groups, group homomorphisms, and function composition.

We will be using below a restricted version of the first of the two examples where objects
are finite sets and arrows are isomorphisms, that is, one-to-one correspondences. For brevity,
this category of finite sets with isomorphisms will be denoted FinSet+Iso.

Definition 2.3. Let C,D be categories. A functor F : C → D is a mapping from C-objects
and C-arrows to D-objects and D-arrows respectively such that

• if α : x→ y then Fα : Fx→ Fy,

• F1x = 1Fx,

• F (βα) = (Fβ)(Fα).

Examples 2.4. We describe two functors F and G from FinSet+Iso to FinSet+Iso. Let S
and S′ be arbitrary finite sets.

1. F (S) is the set of all permutations of S, that is, bijections from S to S. For any isomor-
phism α : S → S′, Fα transforms every permutation π of S into a permutation απα−1

of S′. That is, if π maps x to y then (Fα)(π) maps αx to αy. It is easy to check that
F (βα) = (Fβ)(Fα).

2. G(S) is the set of linear orderings of S. For any isomorphism α : S → S′, Gα transforms
every linear ordering < of S into the ordering

s <′ t ⇐⇒ α−1s < α−1t

of S′. It is easy to check that G(βα) = (Gβ)(Gα).

2.2 Natural equivalences

We start with a motivating example. For any finite set S, there are as many permutations
of S as linear orderings. If n is the cardinality of S then there are n! permutations and n! linear
orderings. It follows that there is a bijection between the permutations and linear orderings of
S.

If n ≥ 2, there are multiple such bijections. Yet, on the level of abstraction where you don’t
distinguish between elements of S, you cannot single out any such bijection. The reason is
that linear orderings are all automorphic while permutations are not. For example, the identity
permutation is preserved by all automorphisms.
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On the other hand, suppose that S comes furnished with a particular linear order

s1, s2, . . . , sn

where n is the cardinality of S. Then we have a standard bijection, let us call it τ0, between
the permutations and the linear orders: τ0(π) is the linear order

π(s1), π(s2), . . . , π(sn).

This bijection is natural in that it works uniformly for any finite set S furnished with a linear
order.

Definition 2.5. Given two functors F,G : C → D, a natural transformation τ of F to G
assigns to each object x of C an arrow τx : Fx → Gx of D in such a way that every arrow
α : x→ y in C yields a commutative diagram

Fx
τx //

Fα

��

Gx

Gα

��

Fy
τy

// Gy

Further, τ is a natural equivalence if every τx is an isomorphism. /

Coming back to the motivating example, let C and D be the category FinSet+Iso. The
functors F,G of Examples 2.4 are not naturally equivalent, for the reason mentioned above.
Indeed, suppose toward contradiction that τ is a natural equivalence from F to G. Let x and
y be the same set S = {a, b}, so that there are two permutations of S, π1 =

(
a b
a b

)
π2 =

(
a b
b a

)
,

and two linear orderings, a <1 b and b <2 a. Let α transpose a and b, so that α−1 = α,
(Fα)(πi) = απα = πi and (Gα)(<i) =<3−i. If τπi =<i then

(Gα)(τx)(π1) = (Gα)(<1) =<2

(τy)(Fα)(π1) = (τy)(π1) =<1

If τπi =<3−i then

(Gα)(τx)(π1) = (Gα)(<2) =<1

(τy)(Fα)(π1) = (τy)(π1) =<2

In either case, the diagram above does not commute.

On the other hand, suppose that the domains of F and G are modified so that, for any
object x, the finite set x is furnished with a fixed linear order and, for any two objects, x and y,
the arrows from x to y respect the fixed orders, so that, in fact, there is a unique arrow from x
to y. Then the functors F,G become naturally equivalent. The standard bijection τ0, described
above, makes the diagram commute. (In the case where x and y are the set {a, b} with the
same linear order, the transposition is not a legitimate arrow; the only legitimate arrow is the
identity.)
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3 A dialog on category theory and its applications

Q1: The formalization of the intuitive notion of natural equivalence is impressive. Can you
explain other advantages of category theory to me? Unfortunately I don’t know more category
theory than you have just taught me here.

A2: Let us illustrate one advantage of category theory. It is related to the notion of isomor-
phism. You worked with isomorphisms.

Q: Sure. I know the notion from universal algebra in general and group theory in particular. To
me, an isomorphism is a homomorphism that happens to be bijective. Judging by Examples 2.2,
the notion of isomorphism of Definition 2.1 is rather similar. I am thinking of arrows as
homomorphisms. The two notions of isomorphism may be equivalent.

A: Actually, the categorical notion of isomorphism is more general. Consider the category of
partially ordered sets (in short, posets) with monotone maps. Let A,B be two-element posets
where the two elements are incomparable in A but ordered in B. Any bijection from A to B is
a monotone map but categorically — and intuitively! — the two posets are not isomorphic.

Another category where not all bijective arrows are isomorphisms is the category of topo-
logical spaces with continuous functions. Here, isomorphisms are exactly homeomorphisms,
but continuous bijections form a larger class. For example, let A,B be two-element topological
spaces where every subset of A is open but, in B, only ∅ and B itself are open. Any bijection
from A to B is continuous but not a homeomorphism. For a more interesting example, let A
be the half-open interval [0, 1) of the real line and B be the unit circle in the complex plane.
The bijection r 7→ e2πir is continuous but its inverse is discontinuous at 1.

Q: Fascinating. Anything else?

A: What do these mathematical constructions

• free groups,

• tensor algebra,

• universal enveloping algebras,

• abelianizations of groups, and

• Stone-Čech compactifications

have in common?

Q: I don’t know. They come from different parts of mathematics and look disparate to me.
Certainly, the free group construction and group abelianization are quite different. There is
something universal about each of the constructions, but I don’t see more than that. Oh, wait.
I guess that every one of these constructions is a functor.

1Quisani, a former student of the second author
2The authors, speaking one at a time
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A: You are right, all these constructions can be viewed as functors. But the amazing part is
that these are examples of a single categorical construction. All these functors are left adjoints
of forgetful functors. Unfortunately, we haven’t covered forgetful functors or adjoints here.

Q: The unifying power of category theory seems awesome. That’s got to be useful in many
areas of mathematics, I guess. What about computing?

A: The usefulness of category theory in computing is less obvious. Until recently when we
started to work on topological quantum computing (TQC for short), one of us had been skep-
tical.

Q: Why?

A: Because of the distance of this very abstract theory from computing and because of the peril
of potential (and in some cases actual) over-abstraction. There is also the hammer-and-nail
phenomenon: “For a person with a hammer, everything looks like a nail.”

Q: You don’t mean that category theory itself is an over-abstraction.

A: No, we don’t. As Seneca the Younger said in the first century, “gladius neminem occidit:
occidentis telum est,” that is “a sword kills nobody; it is a tool of the killer.”

Q: Give me a relevant example of that hammer-and-nail phenomenon.

A: Here is a true life example, but allow us to omit the reference. A computation can be seen
as a category where objects are states and morphisms are state transitions. If you take this
point of view, then you might want computation transformers to be functorial, which narrows
unreasonably your library of computation transformers. For example, you lose compilers.

Q: Why isn’t a compiler functorial?

A: Typically, the target language is at a lower abstraction level and uses different data struc-
tures. Some higher-level steps may have no meaning at the lower level. Besides, think of
compiler optimization.

Q: How did topological quantum computing influence the skepticism? And what is topological
quantum computing?

A: Topological quantum computation employs two-dimensional quasiparticles called anyons
[6, 11]. What is relevant for our purposes here is that the generally accepted mathematical
basis for the theory of anyons is the framework of modular tensor categories. That framework,
as presented in [17] or [16] or [2] involves a substantial amount of category theory and is, as a
result, considered rather difficult to understand.

Why is the only mathematically sound theory of anyons in the literature based on category
theory? The skeptic among us suspected that this is just an accident of history, another nail
for the categorical hammer. Hence the idea to “decategorize” the theory of anyons.
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As we worked on the decategorization project, we realized that, surprisingly, category theory
— or something like category theory — is necessary for the theory of anyon computations.

Q: Can you explain to me, who knows nothing about anyons, why category theory is necessary
for the purpose? Is the reason specific to the anyon theory?

A: The reason seems to us more generic and not at all specific to the anyon theory, but at this
point we do not have other natural examples where category theory is necessary for the same
reason.

In the next section, we will try to illustrate the reason behind the necessity of category
theory (or something like it) for the theory of anyons.

4 Coherent witness manipulation

We illustrate why (something like) category theory is needed in topological quantum computing.

4.1 Algebra of structures

Consider an algebra A of structures (that is, elements of A are structures) together with
operations of addition + and multiplication ∗ where, up to isomorphism,

• both operations are commutative and associative,

• both operations have their respective neutral elements 0 and 1, and

• multiplication distributes over addition.

The following example is a simplified version of the algebra used in topological quantum
computing.

• The structures in A are finite-dimensional vector spaces, over the field of complex num-
bers, each furnished with a fixed basis.

• The vector space A + B is the direct sum, also known as the direct product, of vector
spaces A and B furnished with the disjoint union (of a particular form3) of the fixed bases
of A and B.

• The product A ∗B is the tensor product of the vector spaces A and B furnished with the
cartesian product of the fixed bases of A and B.

3In the standard construction of A+B, the base set is the set of ordered pairs (a, b) where a ∈ A and b ∈ B.
With that convention, the standard basis for A + B consists of vectors (a, 0) for a in the standard basis of A
and (0, b) for b in the standard basis of B.
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In the case of topological quantum computing, the structures are more sophisticated —
involving e.g. tuples of Hilbert spaces, duality, ribbon structures — but this is not important.
For the purposes of this note, we may and will pretend that the example above is the one used
in topological quantum computing.

So far, we are within the realm of universal algebra. But we need to go beyond universal
algebra.

4.2 Witness isomorphisms

Suppose that algebra A is equipped with standard isomorphisms

associative + α+
A,B,C : (A+B) + C → A+ (B + C)

commutative + γ+A,B : A+B → B +A

associative ∗ α∗A,B,C : (A ∗B) ∗ C → A ∗ (B ∗ C)

commutative ∗ γ∗A,B : A ∗B → B ∗A
distributive δA,B,C : A ∗ (B + C) → (A ∗B) + (A ∗ C)

working properly with 0 and 1.

It is convenient to think of an isomorphism ξ : A→ B as a witness that A,B are isomorphic.
Accordingly, the standard isomorphisms above are standard witnesses.

There are numerous requirements that we have to impose on the standard isomorphisms.
In particular, it is required that γ+A,B = (γ+B,A)−1. This property is called symmetry. Thus the
additive structure of A is symmetric.

A relevant peculiarity of topological quantum computing is that the multiplicative structure
is not symmetric. It is not required that γ∗A,B coincides with (γ∗B,A)−1. It is convenient to think
about this topologically: as A ∗ B is transformed into B ∗ A, it matters whether A passes in
front of or behind B. The isomorphisms γ∗A,B are (γ∗B,A)−1, known as braiding isomorphisms,
are in general different. The multiplicative structure of A is braided.

The most important aspect is related to computing. It is not enough for us to know that
there are two braiding isomorphisms from A ∗ B to B ∗ A or that there is an associativity
isomorphism from (A∗B)∗C to A∗ (B ∗C). We need these isomorphisms, in matrix form with
respect to the fixed bases, for computational purposes.

4.3 Witness requirements

This subsection is more specialized. We mentioned above that the standard witnesses are
subject to various requirements. One may wonder what are those requirements. We give the
appropriate references.

For the additive structure, the appropriate requirements were found by Mac Lane [13] and
subsequently simplified by Kelly [10]. For the braided multiplicative structure, the requirements
were supplied by Joyal and Street [8, 9].
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Multiplication interacts with addition via the distributivity laws. For the case where both
the additive and multiplicative structures ofA are symmetric, the requirements for distributivity
have been identified by Miguel Laplaza [14, 15] who was a postdoc of Mac Lane. In [3], we
identified appropriate requirements for distributivity in the case where the additive structure
is symmetric but the multiplicative structure is braided.

4.4 The additive structure

This subsection is devoted to a technical issue of independent interest.

We hoped that the addition operation + on A can be taken to be literally (not only up
to isomorphism) commutative and associative, that is, that we can get by with the identity
witnesses for the commutativity and associativity of addition. Unfortunately this is impossible.

For illustration of what goes wrong with the identity witnesses, we simplify the example
described above. Let’s abstract from vector spaces and concentrate on their fixed bases: finite
sets with disjoint union as addition. We recall the standard definition of disjoint union of sets.

Definition 1. The disjoint union of sets A,B is the set

A+B = {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}. /

Q: Definition 1 does not look standard to me. If fact, it looks rather arbitrary. Instead of 0
and 1, I can use different tags, say, 1 and 2.

A: It takes a bit of category theory to explain the standard character of the definition. For
any choice of the two tags, there is a natural enhancement of the definition with canonical
embeddings of A and B into A + B; the resulting operation has the universal property of the
coproduct. That is what makes the definition, in any of these variations, standard.

This disjoint union of Definition 1 is neither commutative nor associative. One may think
that there is no definition that is better in the sense that it makes disjoint union literally, not
just up to isomorphism, commutative and associative. But such a “better” definition does exist.
Let N be the set of natural numbers, i.e., nonnegative integers.

Definition 2. The disjoint union of finite sets A,B is the set

A+̇B = {n ∈ N : n < |A|+ |B|}. /

Let’s adopt the set-theoretic convention that a natural number is the set of smaller natural
numbers. Then Definition 2 says that the disjoint union A+̇B is the number |A|+ |B|.

It is easy to see that A+̇B is indeed commutative and associative, so that the standard
witnesses for the commutativity and associativity can be taken to be identities. Unfortunately,
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we cannot push our luck too far. For example, if a finite set A is not a number then the equality
A = A+̇∅ cannot be witnessed by the identity. For, if A is identical to A+̇∅, then A is a number.
Furthermore, there is no canonical embedding of A into A+̇B.

Q: How about generalizing sets to multisets? There is, I think, a natural disjoint union of
multisets which is commutative and associative.

A: Recall that our finite sets are fixed bases of vector spaces.

Q: I see the problem. A multiset basis of a vector space does not make much sense.

5 Summary

As we mentioned above, categories were introduced by Samuel Eilenberg and Saunders Mac
Lane as an auxiliary notion in their general theory of natural equivalences [5]. Here we argue
that something like categories is needed on a more basic level.

As you work with operations on structures, it may be necessary to coherently manipulate
witnesses for various properties of these operations. We mentioned associativity, commutativity
and distributivity, but many additional properties are in play in topological quantum computing
and elsewhere. The coherent witness-manipulation problem may be hard.

This necessity of coherent witness-manipulation cannot be proven mathematically, and in
some cases one can get around the coherent witness-manipulation problem. For example, for
limited purposes, the narrow problem of a reasonable definition of commutative and associative
disjoint union of sets can be solved by generalizing sets to multisets. Unfortunately this solution
is of little help if the sets in question are vector-space bases.

In general, a working mathematician, to use Mac Lane’s term [12], is well advised to be aware
of the coherent witness-manipulation problem and to know that category theory or something
similar provides an appropriate framework to address the problem. Of course, the working
mathematician in question may be a computer scientist or physicist.

Q: What do you mean by something similar to category theory?

A: We didn’t want to rule out possible alternatives. In some situations, it suffices to consider
groupoids, i.e., to restrict attention to isomorphisms. This setting can be presented in a way
closer to traditional algebra [4].

Q: Is there an objective need to deal with more general homomorphisms?

A: Yes, isomorphisms are sometimes insufficient. Consider, for example, Definition 2 of disjoint
union. Why does it feel so lousy? One reason is that it does not say where A and B are in the
disjoint union. To have a useful disjoint union, one needs even more, namely where individual
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elements of A and B lie in the disjoint union. That information amounts to embeddings of A
and B into the disjoint union, and those are not isomorphisms.
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