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Abstract 
Estimation of expected failure in an oil and gas pipeline system is challenging due to 

large uncertainties in the parameters associated with burst failure predictive models. The 
development of machine learning (ML) algorithms for reliability and risk assessment 
applications has attracted considerable attention from the scientific and research 
community in recent years. Working on the automation, efficiency, and optimization of 
underground oil and gas pipeline networks demands open access to extensive databases, 
which may not be possible. Oil and gas databases are confidential assets of specific 
countries, and no one can access these databases easily. As a result, training ML models 
is a big challenge, since it needs large data. To address this data shortage, in this paper, 
we have generated synthetic training datasets using a tabular generative adversarial neural 
network (TGAN). The generated synthetic data and real data (when available) were 
combined to train an artificial neural network (ANN). To further enhance the 
performance of the proposed system, the application of a genetic algorithm (GA) has 
been introduced to optimize the weights and biases of the ANN automatically. The results 
show superior performance results when compared with the previously reported 
algorithms in the literature. The proposed methodology succeeds to predict Oil and Gas 
pipeline defects with robust results and low error rates.  

1 Introduction 
Transportation of gas and oil through a proper pipeline system is considered the safest, reliable, and 

economical method. That is why it is indispensable to maintain the integrity of pipelines to avoid any 
catastrophic incident. However, aging is the crucial factor for high-frequency pipeline failures in recent 
years [1]. This is because the corrosion deterioration reduces the strength of pipelines. Thus, corrosion 
has been categorized as the fundamental threat to the safety and performance of oil and gas pipelines 
[2]. Reduction in material strength due to excessive corrosion growth may result in burst system failure 
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causing substantial social, environmental, and economic consequences. Burst failure can be referred to 
as the ultimate pressure of loss that a pipe can tolerate before it collapses. In other words, it is the 
maximum load-bearing capacity of a line under internal pressure. In the various past, systems have been 
constructed to detect burst failures due to corrosion. These systems mostly use the concept of semi-
empirical fracture mechanics in which losses are dependent upon the flow stress. Thus, failures can be 
detected by comparing the maximum fluid pressure and actual failure pressure inside the pipe [3]. 

Various uncertainties are involved in the estimation of pipeline failure because of the different 
associated parameters with burst failure predictive models [4]. Oil and gas pipelines are composed of 
hundreds of segments, making them typically complex and large in structure, making the physical 
probabilistic approach a computationally intensive process [5]. A detailed reliability analysis is not 
feasible in difficult gas and oil pipeline systems to decide on maintenance. A considerable effort is 
being put by the utilities for developing an efficient, cost-effective, safe, and reliable method for the 
proper maintenance of pipeline networks as the available approaches for risk and failure detection in 
pipelines are not efficient computationally. That is why a robust and efficient technique is needed to 
timely predict the defect and pipeline failure as a replacement for physical analysis [6]. Data-driven 
machine learning (ML) algorithms provide a viable alternative computational approach for risk and 
failure analysis of gas and oil pipeline networks [7,8]. ML can be defined as a system based on a semi-
automated process capable of observing the data for developing an algorithm. Such ML-based 
approaches have been applied for risk analysis purposes in various engineering applications [9-13]. 
Algorithms like K-nearest neighbor, support vector machine, and random forest have emerged as widely 
acceptable algorithms in the last decade [14]. 

Anghel et al. (2012) developed a novel support vector machine to predict the failure probabilities in 
pipeline networks with corrosion defects [15]. He developed a procedure based on classification 
reliability and established a link between reliability methods and artificial intelligence. This procedure 
provided a simple but viable alternative approach to prioritize the maintenance actions. Burton and 
Haung (2020) applied ML techniques to classify the failure modes of concrete-based frames with infill 
walls [16]. Winkler et al. (2008) predicted the failures in water pipes using decision trees [17]. Boosting 
and bootstrap aggregation techniques are applied to enhance the model's accuracy and measure the 
model confusion matrix's performance. Mishra et al. (2020) utilized different ML algorithms for 
identifying the modes of failure in concrete-based bridge columns [18]. The efficacy of 6 different ML 
algorithms was compared by the author using an experimental dataset. ANN proved to be the most 
efficient approach among the six algorithms. Kiani et al. (2019) explored ML models for the derivation 
of fragility curves [19]. Siam et al. (2019) used clustering algorithms with a limited number of datasets 
to classify masonry walls [20]. 

Data-driven techniques were applied by Mangalathhu et al. (2020) for recognizing the mode of 
failure in concrete shear walls [21]. Ten input and output parameters are utilized to capture the material, 
reinforcement, and geometric characteristics to identify failure modes. Global accuracy, recall, and 
precision are some of the standard metrics used to evaluate the efficiency of ML algorithms. The study 
presented in [21] reports promising results for the classification of failure modes that can be applied to 
other infrastructures. Other ML algorithms by Qi and Zhu et al., Jeon et al., and Zhang et al. have the 
potential to solve complex problems without any demand on the mechanical analysis [22-25]. Timely 
prediction of the expected failures in pipeline structures can help the management team and decision-
makers in taking necessary intervention measures to avoid the worst consequences of burst failure. 

In this paper, we employ ML models and the genetic algorithm to solve the problem of predicting 
failures in pipeline systems. There are three main goals of this study: (1) To create a comprehensive 
dataset within a realistic combination and range; (2) To use the generated dataset for assessing the 
feasibility of ANN to evaluate the failure risks of a pipeline; and (3) To optimize the parameters of an 
ANN using the genetic algorithm. 
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2 Methodology 
2.1 Dataset 

Nondestructive Inspection (NDE) methods are frequently used to screen pipelines for potential 
defects. A magnetic sensor attached to a computing unit is one such NDE instrument routinely sent for 
testing oil and gas supply tubing. Magnetic sensors, spaced every 3 mm along the pipeline's 
circumference, are used to calculate Magnetic Flux Leakage (MFL) signals. The study reported in [26] 
used a pre-recorded MFL dataset of noiseless and noisy MFL signals at 3dB, 5dB, and 10dB signal-to-
noise ratios (SNRs). Since the amount of MFL data is too large, feature extraction techniques have been 
used to reduce the data's feature space. Using any of the derived functions, on the other hand, does not 
always result in stronger reliability test outcomes. The most important characteristics are thus selected 
and fed into the identifying and sizing units. 

2.2 Feature Extraction 
Feature extraction aims to reduce the size of the MFL data. The MFL signal is expressed in the axial, 

radial, and tangential dimensions. For each component, statistical and polynomial series are used as 
feature extraction methods. From original MFL signals, statistical characteristics of the integral 
normalized signal (INS), mean average (MA), maximum magnitude (MM), standard deviation (STD), 
and peak-to-peak distance (PPD) are derived, and so are polynomial rank 3, 6, and 6 series 
corresponding to the axial, radial, and tangential components, respectively. Polynomial coefficients 
make up the input characteristics, in addition to the five statistical features. There are a total of 33 
functions because of this. 

2.3 Feature Reduction 
Many researchers have shown that different attributes may have differing degrees of discrimination 

capacity. In some instances, using the whole collection of retained features in the training phase results 
in poor defect prediction accuracy. Some attributes may hurt the prediction accuracy. As a result, 
determining the main qualities that make the ML model perfect is a routine practice. Following that, 
analyses are carried out to assess the suitability of each element for the defect length prediction mission. 
The most appropriate features that yield the most effective defect convergence rate are then found using 
neighborhood component analysis (NCA) as an input function pattern for the ML model. The features 
with a weight close to zero make little difference in calculating defect sizes. 

Furthermore, for assigning weights for the retained functions, a principal component analysis (PCA) 
based weight correlation technique is used. The highest-weighted attributes are then used to train the 
model. From the axial, radial, and tangential elements, we choose nine characteristics based on their 
weights: INS and PPD; INS, PPD, and MM; and INS, PPD, MM, and STD from x, y, and z components, 
respectively. 

2.4 Synthetic Data Generation 
A Generative Adversarial Network (GAN) has two networks: a generator and a discriminator. The 

generator learns to generate instances from a true data generating distribution and the discriminator 
evaluates the instances generated by the generator. They work in a competitive zero-sum game 
framework.  
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Figure 1: GAN model for the prediction of tabular data 

The 'Generator' function is to create the samples that will not be distinguished from the actual 
examples by 'Discriminator.' During the application of GAN training, speed and data quality in the 
specific domains are the main problems. These objectives can be achieved through tabular GAN 
(TGAN) as data background in particular disciplines of ML applications are essential, and GAN fails 
to generate [27]. The generator model summarizes the distribution of the input data and based on the 
summarized distribution new data samples are predicted. While the discriminator model predicts the 
generated data as fake and real and based on the classification the corrections are made.  

• Preprocessing the numerical variables: Neural network models can generate values with 
the central distribution over (-1,1). They cluster the numerical variables through training 
a gaussian mixture model (GMM) with "m" components for each cluster "c." Eventually, 
GMM is utilized for the normalization of "c." The probability of "c" is computed for each 
"m" and gaussian distribution as vector "U." 

• Preprocessing the categorical variables: Because of low cardinality, the probability 
distribution can be generated using SoftMax. But it is essential to convert the categorical 
variables into one-hot encoding with noise-binary variables. After the preprocessing of 
categorical variables, T is converted in required columns to from given vectors. This is an 
output vector of generator and input for discriminator in GAN.  

• Generator: Numerical variables are generated in two steps. In the first step, a scalar value 
V is created, and then the U-cluster vector is formed using the tanh function. Categorical 
features are developed as the probability distribution over all the possible labels. SoftMax 
is used for the generation of desired row and an LSTM with the attention mechanism used.  

• Discriminator: A multi-layer perceptron (MLP) with the Leaky ReLU (LRELU) and 
batch normalization is used. The first layer has the concatenated vectors with the mini-
batch diversity and the feature vector from the LSTM. ADAM is the loss function 
divergence term for the variables with log loss sum ordinal function. 

TGAN is reasonably robust and outperforms Bayesian networks with significantly less average 
performance between the natural and synthetic data. Using the TGAN model, we generated 50,000 
synthetic data samples corresponding to clean, 3dB, 5dB, and 10dB data based on the original dataset. 
The generated data is then used for further processing along with the original data. 

2.5 Optimization by Genetic Algorithm 
A Genetic Algorithm (GA) is an evolutionary algorithm. In this algorithm, random changes are 

applied to the currently available solutions to generate new ones. The concept of GA is based on 
Darwin's theory of biological evolution. Besides this, GA makes slight alterations to its' solutions, 
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automatically optimizing and getting the best possible solution. GA is applied to the population 
consisting of specific possible solutions. Population size is equal to the number of solutions. Every 
solution here is called an individual, and every individual solution contains a chromosome. The 
chromosome is then represented as the set of parameters called the features defining the individual. The 
chromosome has a set of genes, and every gene is then represented as a string of the zeros and ones. 
The genetic optimization approach has been presented to handle the constraints based on the behavioral-
memory paradigm. It starts with a random population and sets a constraint counter, and then evolves 
the population until a feasible flip threshold for the constraint is obtained. Then in the next phase, 
unsatisfactory constraint points are eliminated from the population. This iteration continues until the 
objective function is optimized. This GA algorithm demands a linear order of all the constraints. But 
the effect order of the controls is vague as it has been observed that different declaration of restrictions 
produces different results. 

When the change in the fitness function from one iteration to the next is < 10!"#, the algorithm 
terminates. The objective function of the utilized GA model can be described by the equation (1). Fifty 
generations with a stall generation limit of 100 were used to optimize a feed-forward ANN using GA. 
For a feed-forward network with n hidden neurons, 9n+n+1 quantities are required in the weights and 
biases column vector based on nine features of the dataset.  

𝐸𝑟𝑟𝑜𝑟 = 	((𝑓$%&$'&%()*+𝑥+- − 𝑓,-*)&+𝑥+-)
+./

						(1) 

In this study, GA has been incorporated with a feed-forward artificial neural network (ANN) for 
regression analysis on the combined dataset (original and synthetic data). Each dataset has 50,000 
samples of synthetic data and 1,277 samples from the original dataset. The combined dataset was 
randomly divided so that 70% of the data was used for training the ANN model, 15% was used for 
validation, and the remaining 15% was reserved for testing the trained model. The results of the trained 
model are presented in the results section. The results presented are for the testing sets. For ANN feed-
forward neural network with a single hidden layer and 10 hidden neurons, the levenberg-Marquardt 
training algorithm and log transfer function were used. Python 3.8 was used for GAN training and 
MATLAB 2020 has been used for the rest of the experiments.  

3 Results 
In this section, we present the qualitative and quantitative assessment of TGAN, GA, and ANN 

models. To assess the TGAN, mean absolute error (MAE) between the actual and generated data has 
been measured corresponding to each feature. Similarly, to evaluate the effectiveness of ANN 
incorporated with GA, mean square error (MSE) and root mean square error (RMSE) have been 
measured between actual and predicted data labels.  

3.1 GAN network 
A tabular generative adversarial network was used to generate synthetic data for MFL based oil and 

gas pipeline data. Initially, we had 33 features corresponding to the defect length for each dataset as 
described previously. The original 33 features were further reduced to 9 with the application of PCA, 
and redundant features were removed from the dataset. The noisy and noiseless reduced datasets with 
actual defect length were then fed to the TGAN model to generate similar datasets synthetically. TGAN 
model developed 50,000 samples for each dataset. The MAE between generated and actual samples 
corresponding to each dataset is then calculated and presented in Table 1.  
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Features Mean Absolute Error (MAE) 
Noiseless 3dB 5dB 10dB 

1 2.19776 2.616381 3.662933 5.4944 
2 1.9178 2.283095 3.196333 4.7945 
3 0.76972 0.916333 1.282867 1.9243 
4 0.1036 0.123333 0.172667 0.259 
5 0.096 0.114286 0.16 0.24 
6 0.06264 0.074571 0.1044 0.1566 
7 0.04448 0.052952 0.074133 0.1112 
8 0.00804 0.009571 0.0134 0.0201 
9 0.01212 0.014429 0.0202 0.0303 

Table 1: Mean absolute error (MAE) between original & synthetically generated features using TGAN 

A higher value of MAE represents a poor performance of the TGAN model and a low correlation 
between generated and actual data samples. From the table 1, it can be observed that the utilized TGAN 
model performed significantly well on features 3 to 9 for all datasets by yielding low MAE scores. In 
comparison, the model performed poorly on features 1 and 2 corresponding to all features. It is also 
observed that the MAE value of the synthetic data increases as the noise of the signals increases.  

3.2 Defect Length Prediction  
Defect length was predicted using a feed-forward neural network with a single hidden layer, ten 

hidden neurons, the Levenberg-Marquardt training algorithm, and log transfer function. Figure 2 depicts 
the regression plots of all the datasets corresponding to the training, validation, and testing phase. It can 
be observed that for noiseless and noisy data at 10 dB, the model predicts the defect length perfectly 
with a good correlation whereas, the model has poor performance for the 3 dB and 5 dB datasets.  

The fundamental aim of the study was to optimize the utilized ANN such that the performance of 
the model increases for all the datasets irrespective of the noise embedded in the MFL signals. For the 
said purpose, the application of GA has been utilized. After optimizing the weights and biases of the 
used ANN model, the model's performance increases significantly. Table 2 illustrates the MSE and 
RMSE of the optimized model after introducing GA. 

Lower values of MSE and RMSE indicate better performance of the model on the testing datasets. 
Table 2 shows that for all datasets, irrespective of the level of noise embedded in the MFL signals. The 
GA-based optimized ANN model yields good performance results. 

 

 
Figure 2: Regression plots depicting the correlation between the actual and predicted features corresponding 

to all datasets. 
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 Noiseless 3dB 5dB 10dB 
MSE 0.0563 0.5021 0.3391 0.0637 
RMSE 0.2374 0.7086 0.5823 0.2525 

Table 2:  MSE & RMSE offered by trained ANN model after GA optimization. 

3.3 Comparison With Previous Studies 
To illustrate the significance of utilizing a larger dataset and automated optimization for ANN, the 

study results have been compared with previously published studies on the same dataset [7,12]. Both 
studies used a feed-forward neural network with a single hidden layer and 10 hidden neurons, and a 
levenberg-Marquardt training algorithm. Table 3 summarizes the MSE scores of recently published 
results on the same datasets and illustrates the significance of the proposed method.  

 
Method Noiseless 3dB 5dB 10dB 
ANN 0.0612 2.8132 1.8175 0.1861 
Manual 

ANN 
Optimization 

0.0139 2.1044 1.1569 0.0947 

Proposed 
Method 

0.0563 0.5021 0.3391 0.0637 

Table 3: Comparison with the previous studies for all the used datasets. The table reports the MSE values for 
comparison with other datasets. 

From Table 3, it can be observed that the proposed method outperforms the previous results by a 
significant margin on all the datasets except at noiseless data. The most notable feature of the proposed 
methodology is that it can be used for any kind of MFL data irrespective of the noise level embedded 
in the signal. Previous methods have shown poor performance results for noisy datasets at 3dB and 
5dB, as shown in Table 3. However, the proposed method has low RMSE scores for all the datasets 
indicating the significance of automated optimization of the ANN model. 

4 Conclusions 
In this paper, we have developed ANN and GA-based techniques to predict defect lengths for oil 

and gas pipelines utilizing MFL signals. We have introduced the TGAN model first to increase the 
training dataset to avoid overfitting and make the proposed model robust. The generated synthetic data 
was then fed to an ANN to predict the defect lengths. Further, to increase the performance of the model, 
an application of GA has been incorporated. The proposed methodology yields more stable and robust 
results for MFL signals embedded in different noise levels and outperforms previously reported results 
on the same dataset.  
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