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Abstract 

In order to accurately simulate physical phenomena, appropriate boundary conditions 

must be implemented. Where some information propagate along the characteristic curves 

as in the hyperbolic system such as shallow water equations (SWEs), open boundary 

conditions (OBCs) must be designed so that such an event should also be maintained 

even at the boundaries. In other words, OBCs of SWEs must pass information out of the 

domain and receive the incoming information without any numerical distortion. If OBCs 

do not reflect the characteristics of SWE, errors will occur and contaminate the 

information in the internal domain. This study compares several OBCs based on the 

hyperbolic characteristics of SWE and shows that OBCs derived using hyperbolic 

characteristic performs better in the several OBCs. 

1 Introduction 

In order to solve the large-scale problems as in an infinite-domain or multi scale problems, it is 

necessary to truncate the domains of interest and use some artificial boundaries due to limitations of 

computational resources. Such boundary conditions have been studied in the various fields such as 

acoustics, electrodynamics, solid mechanics, fluid dynamics, civil engineering, geophysics, 

meteorology, environmental science, and plasma physics [3, 16]. These boundary conditions are named 

differently in the various fields; one-way, radiating, absorbing, transmitting, transparent, non-reflecting, 

artificial, and open boundary conditions [3]. Hereafter, the “open boundary condition (OBC)” will be 

used in this work, which is a terminology commonly used in fluid dynamics. The ultimate roles of the 

OBC are to allow the outgoing information to pass through the boundary and simultaneously minimize 

the numerical reflections due to incoming information at the boundary [4]. Errors by such reflections 

contaminate the internal domain reducing the accuracy of the simulation.  

The Various OBCs have been developed over the past several decades. Among them, the OBCs 

showing the better performance have concurrence, which is the characteristic of the hyperbolic system 

                                                           
* Corresponding author: jinhwang@snu.ac.kr 

Engineering
EPiC Series in Engineering

Volume 3, 2018, Pages 1013–1021

HIC 2018. 13th International
Conference on Hydroinformatics

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3),
pp. 1013–1021



[4]. Even the Navier-Stokes equation, which is non-hyperbolic, showed good numerical results with the 

OBC considering only the hyperbolic part in [18]. 

In general, the performance tests of the OBCs are evaluated by the rate of convergence to a steady 

analytical solution, the magnitude of the reflection and etc [16]. In particular, testing the reflection at 

the boundaries in the unsteady flow condition may be important in the inundation phenomenon by 

tsunami or floods. Therefore, this study investigates the reflections of the several OBCs for solving a 

one-dimensional shallow water equation (SWE) and discusses with the theoretical derivation and the 

numerical experiments on the OBCs. 

2  Theoretical Background 

2.1 Governing Equaion 

Liang and Borthwick [14] proposed a well-balanced form of SWE (1) to remove the unwanted 

numerical flux due to topographic change. The proposed equations follow as;  
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where u is the vector of conserved variables, f is the flux vector and s is the source vector. And t 

represents time, x is a Cartesian coordinate, h is the water depth, and u is depth-averaged x-directional 

velocity, g is the gravity acceleration,   is the water density, 
b

z  is the bed elevation above the datum, 

  is the surface water elevation level above the datum, 
b

  and  is bed friction stress. 

2.2 Open Boundary Conditions 

This study compares the seven OBCs listed in Table 1. The OBC formulas are based on the eastern 

boundary.  

 

 

First, CLP and GRD are historically most popular in the ocean models [13]. CLP keeps a constant 

value of the water level or the flow rate as like as;  
0 = ,           (2) 

where   is a primitive variable such as a velocity or water level  . GRD uses the gradients of the 

primitive variables and usually sets the gradients of the surface elevation to zero as like as; 

0
x


=


.           (3) 

SMF is a basic radiation boundary condition generally at the eastern boundary as follows,   

Open boundary conditions Abbreviation 

Clamped condition CLP 

Gradient condition GRD 

Sommerfeld condition SMF 

Olranski radiation condition ORC 

Flather condition FLT 

Absorbing boundary condition ABC 
Table 1: Open boundary conditions 
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Usually, the phase speed C  is treated as an appropriate constant (
0

C gh=  where 
0

h  is constant 

water depth). It is only suitable for a singular wave propagation with a constant phase speed, but not for 

the cases varying phase speeds.  

ORE adaptively evaluates the phase speed to overcome the limitations of SMF with solving the 

following equation as 
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Note that one assumption is necessary to get C of the above equation. Orlanski assumes the 

following equation to obtain C from the previous grid point of the boundary and the previous time step 

as shown in equation [4, 9] following. 

0
C x C
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Note that this assumption is not rigorous. ORE has a drawback that it is only accurate for the case 

of a single incident wave normal to the surface of boundaries [4]. In other words, this boundary 

condition will perform poorly when two or more waves come simultaneously. 

FLT proposed by Flather in 1976 can be obtained by combining the continuity equation (7) and the 

Sommerfled condition for surface elevation (8) [4]. 
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Once integrating the boundary with external data [4], then 

0 0

ext extg g
u u

h h
 − = − ,         (10) 

where the superscript ext indicates external data.  

Engquist and Majda proposed ABC for linearized SWE. After they used the Fourier transform and 

the pseudo-differential operator, they approximated the equations with the Taylor or Padé 

approximation. The ABC with the first order accuracy follows as 

0

0
g

u
h
− = ,         (11) 

which is consistent with the shape of the FLT.  

One-dimensional linearized inviscid SWE is a typical hyperbolic equation. If we set the incoming 

Riemann invariance to zero, the equation (11) is obtained, which corresponds to FLT, ABC. Therefore, 

FLT and ABC can be regarded as characteristic based derived OBC. Note that, since these OBCs come 

from a linearly approximated form of SWE, not from (1) directly, reflections may occur in a non-linear 

wave. However, the degree of its reflection is smaller than other OBCs which are not based on 

characteristics. 
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2.3 Well-Posed OBC for SWE (1) 

Mathematical studies on OBC's well-posedness have usually been [e.g., 2, 4, 10, 11, 17]. Oliger and 

Sundström [10] formulated well-posed boundary conditions of the various PDEs using the energy 

method. Meanwhile, Gustafsson defined a maximally semi-bounded concept for the initial boundary 

value problem (definition 9.5.2 in [2]). The energy method and maximally semi-bounded operators lead 

directly to well-posed problems [11]. In [17], Ghader and Nordström derived well-posed conditions for 

the linearized inviscid SWE and its OBC. They symmetrized the two-dimensional linearized inviscid 

SWE using similarity transformation and derived a well-posed boundary condition using the same 

method with [10] and definition 9.5.2 of [2] (See [17] for more details). The well-posed condition for 

OBC of 2D [17] can be reduced for one-dimensional as follows (12), 
2 2

1 2( ) ( ) 0
T
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u   are perturbations of water depth and velocity, respectively, and which can be consider as wave 

induced  variation of surface elevation   and velocity u . For subcritical flow where 0 u C  , the 

inequalities 0u C−  , 0u C+   are self-evident, and (12) must be satisfied, the relationship between 

1
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2
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Substituting (13) into (12), inequality regarding   is obtained as,  

2
0
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Thus, (14) satisfying (15) is a well-posed OBC. Setting   to 0 and substituting 
0

gh  into C , then 

general OBC will have an exactly same form with FLT and ABC. 

The OBCs discussed in this study were derived from the linearized SWE. However, the linearization 

and localization principles which are introduced by [17] can extend the well-posedness of the 

boundaries to the nonlinear SWEs. Those principles introduce that if an initial boundary values problem 

(IBVPs) has the linearized and constant coefficient form which is well-posed, then the associated 

original nonlinear problem is also well posed [17]. Thus, the OBCs derived from the linearized 

equations maintain well-posedness for the nonlinear equations. However, it should be noted that well-

posedness does not guarantee the accuracy and the relevance, but the uniqueness and the stability of 

IBVPs [4]. 

3 Numerical Experiments 

3.1 Model Description 

Using three different wave-makers, numerical experiments were performed for several cases. 
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3.2 Model Description 

For discretising equation (1), the finite volume method was used after applying the unsplit type 

treatment of source terms as following; 

1
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where superscript n  represents the time step and subscript i  is the cell index. Finite volume method 

is implemented by using cell-averaged value in n

iu . 

In order to solve the governing equations (1) with the second order accuracy using (16), MUSCL-

Hancock [6] was used for extrapolation to the cell interface of the cell-centred value. 
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Where 
E

f  and 
W

f  are the interface fluxes which are linearly extrapolated using the cell centred 

values. And minmod type slope limiter [6] is used for preventing the oscillations of the second-order 

scheme at the discontinuity.  

In this study, HLL Riemann solver [5], abbreviated from Harten, Lax and van Leer, is used for 

solving equation (1), which is a scheme of solving Riemann problem by calculating the numerical flux 

1 2i+f  approximately using characteristic decomposition. This HLL solver is selected for reducing the 

computational cost and simplicity rather than exact Riemann solver.  

In order to numerically experiment with the OBCs for various situations, it is necessary to generate 

various types of information passing through the boundary of interest. For this, a piston type paddle of 

the type proposed in [12] was used. In the wave-maker domain, 4th order Runge-Kutta scheme and 4th 

order centred finite difference method are implemented for time and space, respectively, after mapping 

the movable domain that contracts and expands with time to the fixed domain. (See [12] for more 

details).  

 
Figure 1: Schematic diagram of numerical experiments 

Test cases Amplitude frequency Water depth 

Singular wave on shallow region 0.01 1.2566 5 

Singular wave on deep region 1 3.7699 5 

Long wave 4 0.1257 5 

Discontinuity wave - - 0.3 
Table 2: Test cases 
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3.3 Results 

3.3.1 Validation of Numerical Model 

Figure 2 shows the result of validation of the numerical solver. Both a moving discontinuity and a 

steady-state discontinuity are well captured (Figures 2.a. and b., respectively). In the case of still water 

(Figure 2.c), unwanted fluxes due to the topography are not observed since the equations are well 

balanced. Such an error occurs when solving with the form of equation (1).  

 
Figure 2: Model validation with Toro’s cases [7] 

 

3.3.2 Results of Numerical Tests 

Figure 3 shows the results of the cases mentioned previously in Table 2. The thick black lines to the 

right of each domain in Figure3 indicate the OBC. In this experiment, all waves propagate from the left 

to the right.  

CLP shows the largest error in all cases. The CLP produces the results very differently from the 

exact solution and generates even the phase shifts. It is very evident that information at the boundary is 

not radiated well but reflected back into the internal domain. Other boundary conditions work well 

when the solution is smooth. However, when the solutions have the discontinuities (case 4),  the 

performances of each OBC are remarkablely different from each other. In this case, the FLT with the 

external data (FLText) shows more accurate results than ORE, SMF, and ABC. This implies that the 

OBC designed by the characteristic based method is superior in treating the discontinuities. In addition, 

as it can be seen through a comparison of FLT and FLText, using external data can yield much more 

accurate values.  

Table 3 shows the errors of each case. The values were measured after the simulation reached the 

steady state of the error. In the order of FLText , ABC/FLT, SMF/ORE, GRD, and CLP, Errors become 
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larger In general, ORE and SMF show the similar results since the simulations have been performed 

when the slope of water level is not large. In general, errors tend to be less as the amplitude and 

frequency of the waves are smaller. In particular, if there is a discontinuity at the boundary, relatively 

larger errors occur. 

 
Figure 3: Test results 

4 Summary and Conclusions 

The characteristics exist as many as the number of independent hyperbolic terms in the partial 

differential equations (PDEs). In the case of governing equation (1), there are two independent 

characteristics. Each characteristic information propagates through a unique path, which is called as the 

characteristic curve. When such characteristic information meets boundaries and passes through the 

 Error CLP GRD SMF ORE ABC, FLT FLT ext  

Case1 
1

L  0.015898 0.000977 0.000527 0.000523 0.003057 0.000146 

L


 0.862211 0.512136 0.332841 0.341598 0.205191 0.036444 

Case2 
1

L  0.000749 8.18E-05 4.53E-05 4.53E-05 2.05E-06 2.10E-07 

L


 0.022098 0.00231 0.001423 0.001423 6.37E-05 1.25E-05 

Case3 
1

L  0.039303 0.007003 0.003603 0.003611 0.003889 0.000202 

L


 0.326136 0.033457 0.019509 0.019649 0.013161 0.000595 

Case4 
1

L  0.00375 0.001543 0.000477 0.000496 0.00139 6.29E-05 

L


 0.081988 0.058645 0.027025 0.02952 0.040518 0.008307 

Table 3: Error analysis 
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boundaries to the out of the domain, those characteristics at boundaries should be consistent with that 

of the governing equation. In other words, when a system is hyperbolic, boundary conditions must be 

consistent with those characteristics of the governing equations. In this respect, FLT and ABS show 

relatively better results because those solutions are the characteristics based OBCs, which were derived 

with the Riemann invariants preserving along the characteristic curve. Except for those two OBCs, the 

others are not based on the characteristic method, and the information passing through the boundary to 

the out of domain is primitively conserved. In [4], FLT is classified into the same group with SMF and 

ORE in that these OBCs show the hyperbolic phenomenon radiating information. Unlike FLT, however, 

SMF and ORE propagate the primitive variables rather than Riemann invariants. Therefore, errors occur 

due to the characteristic difference between the governing equations and the formulation of the 

boundary condition contaminating the inner domain. Meanwhile, when receiving information or 

external data from the outside of domain through the OBC, the characteristics are required to be defined 

according to the form of Riemann invariants, which is consistent and generates less error. Therefore, 

when some information propagates with the highly hyperbolic nature of the governing equations, such 

as the shallow water equation, it is strongly recommended to use a characteristic based OBC according 

to the results of this study. 
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