
EPiC Series in Computing
Volume 94, 2023, Pages 36–47

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Refining Unification with Abstraction
Ahmed Bhayat2 , Konstantin Korovin2 , Laura Kovács1 , and Johannes

Schoisswohl1

1 TU Wien, Vienna, Austria
2 University of Manchester, Manchester, UK

Abstract

Automated reasoning with theories and quantifiers is a common demand in formal
methods. A major challenge that arises in this respect comes with rewriting/simplifying
terms that are equal with respect to a background first-order theory T , as equality rea-
soning in this context requires unification modulo T . We introduce a refined algorithm for
unification with abstraction in T , allowing for a fine-grained control of equality constraints
and substitutions introduced by standard unification with abstraction approaches. We ex-
perimentally show the benefit of our approach within first-order linear rational arithmetic.

1 Introduction
The two most prominent approaches supporting automated reasoning with theories and quan-
tifiers are SMT solving [9, 13, 4] and saturation-based first-order proving [27, 19, 12, 25]. While
SMT solvers provide strong theory reasoning, the strength of first-order proving comes with
complete quantifier reasoning. In this paper, we focus on the latter and aim at strengthening
first-order proving with built-in theory reasoning, complementing efficient SMT solving.
State-of-the-art. Most saturation-based provers implement the superposition calculus for first-
order logic with equality [2, 20]. This calculus heavily relies on unification algorithms for
processing quantified formulas. For two terms s, t, unification computes the most general sub-
stitution σ = mgu(s, t) such that sσ = tσ. The mgu(s, t) is used to apply the inference rules
of the superposition calculus to formulas containing s, t. Extending first-order proving with
reasoning modulo a background theory T requires extending the superposition calculus with
unification modulo T ; that is, finding substitutions σ such that T |= sσ ≈ tσ. However, unlike
the uniqueness of mgu(s, t) in standard first-order logic, most common theories T , such as
linear rational arithmetic Q, do not admit a single most general unifier modulo T , but yield
a complete set of unifiers modulo T , in short csuT (s, t). Moreover, csuT (s, t) can be very
large, shown, for example, to be doubly exponential in the case of T with associativity and
commutativity (AC) [11] or even infinite in the case of higher-order unification [17].

In order to bypass such inefficiencies of unification modulo T and effectively handle the large
set of unifiers csuT (s, t), unification with abstraction (UWA) has been introduced in [22]. UWA
applies usual unification up to the point where two terms s, t might have more than one unifier
modulo T ; then, instead of computing the entire csuT (s, t), UWA introduces constraints si 6≈ ti

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 36–47

http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0002-0740-621X
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-5550-196X

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

that capture csuT (s, t). Arguably, UWA is a lazy form of full abstraction, with the latter being
shown to be complete for some calculi in [26]. Recently in [18], we extended UWA to support
refutationally complete reasoning using superposition within linear rational arithmetic.

The two main advantages of UWA over unification modulo T are the following. First,
UWA comes with uniqueness: there is always one single abstracting unifier computed by UWA
instead of large sets csuT (s, t). Second, UWA brings simplicity: we do not need complex checks
of unifiability modulo T , but we can introduce an over-approximating constraints and let the
inference system reason with this constraint.

Example 1. Consider unifying the terms s = f(x+y) and t = f(t1+ · · ·+ tn) modulo a theory
with AC. Unification modulo AC introduces the exponential set of unifiers csuT (s, t) =

{
{x 7→∑

i∈I ti, y 7→
∑

i 6∈I ti} | I ⊆ {1, . . . , n}
}

, whereas UWA returns the single (abstracting unifier)
constraint x+ y 6≈ t1 + . . .+ tn.

UWA Benefits and Limitations. Unlike full abstraction, UWA in [18] controls the application of
abstracting unifiers using a so-called abstraction predicate canAbstract. That is, UWA skips
abstraction in cases where terms can never be equal in the background theory T . For exam-
ple, UWA avoids unifying f(a) and f(a + b), whereas full abstraction introduces a constraint
a 6≈ a + b. Yet, despite an abstraction predicate providing more fine grained control than full
abstraction, UWA still lacks efficiencies, as illustrated next.

Example 2. Consider the application of the factoring rule to clause P (4 + x) ∨ P (3x), for
removing duplicate literals. When computing an abstracting unifier using [18], we introduce a
constraint 3x 6≈ 4+x deriving the clause P (4+x)∨3x 6≈ 4+x. In the ordered resolution setting,
the literal P (4 + x) is still maximal and hence will be prioritized and resolved with all literals
¬P (t), growing the search space with unnecessary consequences, even though there is only one
substitution making 3x and 4 + x equal, namely x 7→ 2.

Our Contributions. To improve UWA, in this paper we refine the approach of [18] in order
to allow immediately computing substitutions in cases where this can be done in a “cheap”
manner. To do so, we replace the abstraction predicate canAbstract used in [18, 22] by a
so-called abstraction oracle abstr that gives more generic information about the unifiability of
two terms (Sect. 3). With such an abstraction oracle within Example 2, our refined UWA does
not introduce the constraint 3x 6≈ 4 + x, but computes the substitution {x 7→ 2}. Our refined
UWA with abstraction oracles also supports, for example, finding the substitution {x 7→ a, y 7→
a, z 7→ b} when unifying 2f(a)+ g(z) and f(y)+ f(x)+ g(b), or failing unification for the terms
g(x+ a, f(x+ 1)) and g(a, f(0)); such and similar cases cannot be handled by the abstraction
predicates of [18, 22].

The first main contribution of this paper is that, given an abstraction oracle fulfilling cer-
tain conditions (Def. 4), we prove that the abstracting unifier computed by our refined UWA
algorithm (Alg. 1) ensures soundness and refutational completeness. As our second main contri-
bution, we complement [18] with a thorough experimental analysis. To this end, we implement
our refined UWA approach in the Vampire prover [19] and showcase that UWA with our ab-
straction oracle brings improvements upon [18] (Sect. 4).

2 Preliminaries
We assume familiarity with multi-sorted first-order logic with equality and saturation-based
theorem proving. For details we refer to [2].

37

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

Syntax. We consider a signature with function symbols F, predicate symbols P, variables V,
and sorts S. For a term t = f(t1, . . . , tn) we write sym(t) for f , and call ti its term arguments.
In the same way we define arguments and sym for literals. By ≈, and 6≈ we denote the
positive, and negative equality predicate. We distinguish a sort τQ, the sort of rationals, with
a binary function symbol +, unary function symbols k for k ∈ Q, and a constant symbol 1. We
call k ∈ Q numeral multiplications, where k(t) has the intended semantics of multiplying t by k.
We omit parenthesis for numeral multiplications, and write − for −1, and k for k(1). Further
we write the symbol + in infix notation and omit parenthesis, and do not distinguish between
terms where the arguments of + are permuted. We call a term t atomic if it is a variable or if
sym(t) 6∈ Q∪ {+}. We call a term Q-normalized if all its subterms are Q-normalized; if it is of
sort τQ, then it is of the form k1t1+ · · · kntn such that all for all i, ki 6= 0, and for j 6= i, we have
that ti 6= tj and all summands ti are atomic and sorted with respect to some arbitrary but fixed
total ordering on terms. For a Q-normalized term k1t1+ · · ·+kntn we call ti its top level terms.
For sets of pairs of terms S, we write S≈ for

∧
〈s,t〉∈S s ≈ t, and S 6≈ for

∨
〈s,t〉∈S s 6≈ t. We use

s, t for terms, f , g for function symbols, x,y,z for variables, P , Q for predicates, L for literals,
j, k for numeral multiplications, and C, D for clauses, all possibly with indices. We write E
for the subterm relation, and / for the strict subterm relation.

Semantics. Let φ be a formula, Φ be a set of formulas, and I an interpretation. We write
I |= φ for I being a model of φ. We write Φ |= φ, if every model of Φ is a model of φ. A theory
T is a set of formulas, which we associate with the class of all models of T . We write s ≡T t for
T |= s ≈ t, and leave away T if it is clear in the context. A f ∈ F ∪P is called uninterpreted
wrt. a theory T if whenever T |= f(s1 . . . sn) ≈ f(t1 . . . tn), then T |= s1 ≈ t1 ∧ . . . ∧ sn ≈ tn.
We call an f interpreted if it is not uninterpreted. We say t occurs as uninterpreted (similarly
interpreted) argument in a term/literal/clause L iff f(t1 . . . tn) E L, and ti = t for some i,
and f is uninterpreted. We say s occurs in an uninterpreted position of t, if s E t, and every
function symbol on the path to s in t is uninterpreted.

Substitutions. We write {x1 7→ t1 . . . xn 7→ tn} for a substitution σ such that ∀i.σ(xi) = ti.
We extend substitutions to be applied to terms, literals, and clauses in the standard way. A
substitution θ is called a grounding of a term/literal/clause t if tθ is ground. We usually use
σ, µ for substitutions, and θ for groundings. For a theory T we write σ ≡T σ′ to denote that
for every x ∈ V we have xσ ≡T xσ′; we call σ a T -unifier of s, t, if T |= sσ ≈ tσ. If T = ∅, we
call σ a syntactic unifier. A complete set of unifiers csuT (s, t) is a set of T -unifiers of s and t
such that for every unifier σ there is a µ and a σ′ ∈ csuT (s, t) such that σ ≡T σ′µ. We say two
terms are T -unifiable if csuT (s, t) 6= ∅. For syntactic unification there is a unique most general
unifier mgu(s, t) for unifiable terms s, t. The terms s, t are trivially unifiable if either of them
is a variable and not subterm of the other one.

Term Orderings. A term ordering ≺ is a relation on terms such that (i) ≺ is stable under
substitutions; that is s ≺ t implies sσ ≺ tσ for any σ; (ii) ≺ is a total, well-founded ordering
on ground terms. A term ordering ≺ is compatible with a theory T , or simply T -compatible,
if for all terms s, s′, t, t′ we have that s ≡T s′, t ≡T t′ and s ≺ t implies s′ ≺ t′. We write s � t
to denote s ≺ t or s = t. Literal and clause orderings are defined in the same manner. We say
a T -compatible literal/clause ordering has the uninterpreted argument property if s 6≈ t ≺ L
whenever s ≡T t and s or t occurs as uninterpreted argument in L.

38

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

3 Refined Unification with Abstraction
3.1 Abstacting Unifiers
In contrast to unification modulo T , UWA does not compute sets of substitutions csuT (s, t)
but derives so-called abstracting unifiers uwa(s, t) as defined below.

Definition 1 (Abstracting Unifier). A function uwa that maps two terms either to ⊥ or to a
pair 〈σ, C〉, where σ is a substitution and C is a clause, is called an abstracting unifier.

Intuitively, abstracting unifiers ensure that, if none of the constraints C is violated, then
sσ ≡T tσ. For the terms g(a + b) and g(y + x + z), potential abstracting unifiers are 〈{x 7→
a, y 7→ b, z 7→ 0}, ∅〉, 〈{z 7→ 0}, {y + x 6≈ a+ b}〉 and 〈∅, {y + x+ z 6≈ a+ b}〉.

Recall that unification modulo T uses a complete sets of T -unifiers. Similarly for UWA,
we impose the following properties over abstracting unifiers for ensuring sound and complete
reasoning with them.

Definition 2. Let uwa be an abstracting unifier and s, t ∈ T. Consider an arbitrary grounding
θ. If uwa(s, t) = 〈σ, C〉, we define uwa to be

• T -sound iff T |= (s ≈ t)σ ∨ C;
• T -general iff T |= sθ ≈ tθ ⇒ ∃θ′.σθ′ ≡T θ;
• T -minimal iff T |= (s ≈ t)σθ ⇒ T � ¬Cθ;
• subterm-founded with respect to the clause ordering ≺ iff whenever sθ ≡T tθ and s, t occur as
uninterpreted argument in some literals Ls, Lt respectively, it holds that Cθ ≺ Lsθ or Cθ ≺ Ltθ.

Further, uwa is T -complete if, for all s, t ∈ T with uwa(s, t) = ⊥, we have csuT (s, t) = ∅.

We remark that T -generality ensures that a substitution σ introduced by uwa(s, t) can
be turned into any ground T -unifier of s, t. T -minimality guarantees that an inference with
uwa(s, t) is equivalent to an inference using unification modulo T . Subterm-foundedness is
necessary to keep the calculus reductive, and T -completeness ensures that uwa returns an
abstracting unifier when s, t are unifiable. As such, an abstracting unifier satisfying the
properties of Def. 2 can be used to replace unification modulo T in compatible calculi [18]. For
example, the resolution factoring rule

C ∨ P ∨ P ′
where σ ∈ csuT (P, P

′) becomes
(C ∨ P)σ

C ∨ P ∨ P ′
where 〈σ, C〉 = uwa(P, P ′)

(C ∨ P)σ ∨ C
.

Note that with unification modulo T , the factoring rule is applied with every unifier σ ∈
csuT (P, P

′). In contrast, when using UWA, we apply factoring for only one unique abstracting
unifier 〈σ, C〉 = uwa(P, P ′) and additionally introduce constraint literals C, which are usually
negative equality literals.

3.2 UWA with Abstraction Oracles
In [18], abstracting unifiers are computed using an abstraction predicate, denoted as canAbstract,
allowing to only introduce a constraint C whenever two terms s, t unify in the background theory
T . We now refine this approach of [18] by using an abstraction oracle instead of an abstraction
predicate. Our abstraction oracle acts as a tailored theory solver that either (i) solves the uni-
fication problem in simple cases or (ii) introduces constraints C if it fails to solve the problem
or there is more than one mgu.

39

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

fn uwa(s,t)
unproc← {s ∼ t}; σ ← ∅; C ← ∅;
while unproc 6= ∅

s′ ∼ t′ ← unproc.pop()σ;
if s′ ∼ t′ ∈ {x ∼ u, u ∼ x} for x ∈ V, !occurs(x, u)

σ ← σ ∪ {x 7→ u};
else

match abstr(s′, t′)
case ⊥: return ⊥;
case 〈unif, constr〉:
C.push(constr);
unproc.push(unif);

case undefined:
if s′ = f(s1 . . . sn), t

′ = f(t1 . . . tn)
unproc.push({s1 ∼ t1 . . . sn ∼ tn})

else
return ⊥

return abstracting unifier 〈σ, (C 6≈)σ〉;
Algorithm 1: Refined UWA with the abstraction oracle abstr over terms s, t

Definition 3 (Abstraction Oracle). An abstraction oracle is a partial function abstr that maps
terms to either ⊥ or to a pair 〈unif, constr〉, where both unif and constr are sets of pairs of terms.
For pairs 〈s, t〉 ∈ unif ∪ constr we also write s ∼ t.

Alg. 1 summarizes our refined UWA algorithm using an abstraction oracle abstr to compute
an abstracting unifier. Alg. 1 modifies standard unification algorithms [24], as follows. Upon
failing to bind a variable x to a term, Alg. 1 queries the abstraction oracle abstr to proceed
with the unification of s′, t′. If abstr(s, t) is undefined, Alg. 1 proceeds as in [24]. Otherwise,
Alg. 1 either returns early failing unification, or uses further information on which subterms
to continue unification with (by adding unif to unproc) and which constraints to introduce (by
adding constr to C). We note that Alg. 1 computes the so-called triangle form [15] of the actual
unifier σ, which means that the union in the first branch is equivalent to composition, but can
be implemented as a constant-time operation. The following properties allow us to ensure in
Lem. 2 that Alg. 1 computes an abstracting unifier fulfilling the properties in Def. 2.

Definition 4. Let abstr be an abstraction oracle and s, t ∈ T not trivially unifiable. Consider
a T -compatible clause ordering ≺, a literal L and an arbitrary ground substitution θ. We define
abstr to be

• T -sound iff
{

abstr(s, t) = 〈unif, constr〉 ⇒ T |= (unif ∪ constr)≈ → (s ≈ t)
abstr(s, t) = ⊥ ⇒ ∀θ.T 6|= (s ≈ t)θ

• T -minimal iff abstr(s, t) = 〈unif, constr〉 ⇒ ∀θ.
(
sθ ≡T tθ ⇒ T |= (constr ∪ unif)≈θ

)
• ≺-founded iff abstr(s, t) = 〈unif, constr〉 ⇒ ∀θ.

(
sθ ≡T tθ ⇒ (unif ∪ constr) 6≈ θ � (s 6≈ t)θ

)
• terminating iff there is a well-founded relation �abstr such that for all s, t we have(

abstr(s, t) = 〈unif, constr〉
& s′ ∼ t′ ∈ unif

)
⇒

(
s′ ∼ t′ �abstr s ∼ t, abstr(s′, t′) is undefined

or s′ and t′ are trivally unifiable

)
40

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

• captures T iff whenever abstr(s, t) is undefined, then either csuT (s, t) = ∅ or sym(s) =
sym(t) is uninterpreted.

We remark that the property of ≺-founded ensures that Alg. 1 does not introduce constraints
that are bigger than the initial terms s, t, implying that the computed abstracting unifier is
subterm-founded. Termination of abstr is necessary for Alg. 1 to terminate; otherwise, for
example, we may define define abstr(s, t) = 〈{s−1 ∼ t+1}, ∅〉, which in turn yields an infinite
loop in Alg. 1. Further, abstr needs to capture T so that the abstration oracle handles all
terms that cannot be treated uninterpreted.

Let us now show that given an abstraction oracle fulfilling all the properties for Def. 5, the
abstracting unifier computed by Alg. 1 will fulfil all the desired properties from Def. 2 needed
to lift a compatible inference system. In order to do this we first will need a set of invariants
our algorithm fulfils, given the relevant properties of the abstraction oracle. The invariants will
then entail the desired properties of the computed abstracting unifier. Figure 1 illustrates how
the properties of the abstraction oracle, the invariants of the algorithm and the properties of
the abstracting unifier are related.

Lemma 1. Consider the following invariants.

(I1) T |= (unproc ∪ C)≈σ → (s ≈ t)σ

(I2) ∀θ.
(
sσθ ≡T tσθ ⇒ (unproc ∪ C) 6≈ σθ � (s 6≈ t)σθ

)
(I3) ∀θ.

(
sσθ ≡T tσθ ⇒ T |= (unproc ∪ C)≈σθ

)
(I4) ∀θ.(sθ ≡T tθ ⇒ ∃ρ.θ ≡T σρ)

If abstr is sound, the loop in Algorithm 1 fulfils the invariant (I1), it ≺-founded (I2) is fulfilled,
and if is T -minimal and captures T , the invariants (I3), and (I4) hold.

Proof. It can easily be seen that all invariants hold at the start of the loop. Note that for none
of the invariants we have to check the case where abstr(s′, t′) = ⊥, or the else branch after the
case where abstr(s′, t′) is undefined, as both of these branches end with an early return, hence
the end of the loop is not reached.

(I1) After the first if branch the invariant holds as x ≈ u→ φ[x] is equivalent to φ[u] for any
first-order formula φ.
After the case branch where abstr(s′, t′) = 〈unif, constr〉, the invariant is holds, as abstr
is sound, which means that unif, and constr together imply s′ ≈ t′, which was in unprocσ
at the start of the loop. When abstr(s′, t′) is undefined, and sym(s′) = sym(t′) = f ,
the invariant holds due to function congruence.

(I2) In the case-branch where abstr(s′, t′) = 〈unif, constr〉, as abstr is ≺-founded, the invariant
will by definition hold after the loop. In all other cases, it is obvious to see that the
invariant holds at the end of the loop.

(I3) Let’s first consider the first if-branch. Let θ be arbitrary, such that T |= (s ≈ t)σθ. As
the invariant holds at the start of the loop, we know that T |= (x ≈ u)θ. Further, again
due to the invariant we know that T |= (unproc ∪ C)≈σθ at the end of the branch, from
which we can conclude T |= (unproc ∪ C)≈σ{x 7→ u}θ holds, which means the invariant
holds after the branch.

41

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

abstr Algorithm uwa

≺-founded (I2) subterm-founded

(I4) T -general

T -minimal (I3) T -minimal

captures T T -complete

T -sound (I1) T -sound

Figure 1: Implication structure between properties of canAbstract, and the abstracting unifier
computed by Algorithm 1.

In the case branch where 〈unif, constr〉 = abstr(s′, t′), the invariant obviously holds due
to T -minimality of abstr.
In the case where abstr(s′, t′) is undefined, and sym(s′) = sym(t′) = f , we know that as
abstr captures T , that either t is uninterpreted, or s′, and t′ do not unify. In case they
are uninterpreted, this means by definition of uninterpreted functions that the invariant
will hold after the loop iteration. In case s′ and t′ do not unify, this further means by
using the invariant contrapositively, that s, and t do not unify, which means that there is
no θ such that T |= sθ ≈ tθ, hence the property will hold after the loop iteration as well.

(I4) Let θ be arbitrary such that T |= (s ≈ t)σθ Again we consider the if-branch first. Due
to invariant (I3), we know that T |= (x ≈ u)θ. This further means that {x 7→ u}θ ≡T θ,
hence the invariant must hold after this branch. In all other branhes σ does not change
which means that the invariant is preserved.

Lemma 2 (Soundness & Completeness). Let abstr be an abstraction oracle and uwa an
abstracting unifier computed by Alg. 1. Let ≺ be a T -compatible clause ordering. If abstr is
T -sound then uwa is sound. Further, if abstr is T -sound, T -minimal, ≺-founded, terminating
and captures T , then uwa is subterm-founded, minimal, general and complete.

Proof. Note that if the algorithm returns 〈σ, C〉, then unproc is empty. Therefore it is easy
to see that (I1) implies, T -soundness, (I2) and (I4) together imply subterm-foundedness, (I3)
implies T -minimality, and (I4) implies generality.

Further let’s consider the cases where the algorithm returns ⊥. In the first early return,
where abstr(s′, t′) = ⊥, we know by soundness of abstr that csuT (s

′, t′) = ∅, which means
by (I3) that csuT (s, t) must be empty as well. In the second early return we know as abstr
captures T , that csuT (s

′, t′) is empty, which again means due to (I3) that csuT (s, t) is empty
as well.

42

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

Similarly to [18], Lem. 2 implies that Alg. 1 can be used to lift a uwa-compatible calculi
in a sound and complete way whenever the abstraction oracle abstr satisfies the properties of
Def. 4. In Sect. 3.3 we give a concrete instance of such an abstr oracle (Def. 5), used further
in our experiments (Sect. 4).

3.3 An Abstraction Oracle for Refined UWA in Q
We now present a concrete instance of Alg. 1 for the theory Q of linear rational arithmetic.
For this theory, the Alasca calculus of [18] proposes unification modulo AQ

eq, using a partial
axiomatisation of arithmetic equalities and the Qkbo ordering. Our abstraction oracle abstrQ
for this calculus is given in Def. 5.

Definition 5. Let l, r ∈ T. If sym(l) = sym(r) is interpreted, abstrQ(l, r) is undefined. If l
and r are not of rational sort, abstrQ is only defined if 〈x, u〉 ∈ {〈l, r〉, 〈r, l〉} such that x ∈ V,
x / u, and x does not occur in an uninterpreted positions of u; then, abstrQ(x, t[x]) = 〈∅, x ∼
t[x]〉. Otherwise, let t =

∑
kiti be a Q-normalized form of l − r and abstrQ(l, r) = abstrQ(t)

where

abstrQ(t) =



〈{x ∼ 1
k t

′}, ∅〉 if there is an x ∈ V s.t. t = kx+ t′, (α1)
and t′ does not contain x

⊥ else if there is an x ∈ V, s.t. t = kx+ t′[x], (α2)
and t′ contains x in an uninterpreted position

〈∅, {x ∼ 1
k t

′}〉 else if there is an x ∈ V such that t = kx+ t′[x] (α3)

⊥ else if ⊥ = abstrQ(splitf (t)) for some f ∈ F (β1)

〈
⋃

f∈F

uniff ,
⋃

f∈F

constrf 〉 else where 〈uniff , constrf 〉 = abstrQ(splitf (t)). (β2)

⊥ else if
∑

ki 6= 0, and t =
∑

kiti. (γ1)

〈{t1 ∼ t2}, ∅〉 else if t = kt1 +−kt2 for atomic t1, t2 (γ2)

〈∅, {t ∼ 0}〉 else (ω)

with splitf (
∑

kiti) =
∑

sym(ti)=f

kiti

Let us discuss the various cases of Def. 5. As noted in [21], constraints introduced by
UWA during proof search are often of the form kx + s 6≈ t, where x 6E s or x 6E t; for these
constraints there is one unique most general solution, as defined in case α1 of Def. 5. There
are however cases in AQ

eq where x / t but still x, t can unify. An example for this are the terms
x and f(f(0) − x), which unify with {x 7→ f(0)}. As computing all such constraints of AQ

eq is
challenging, in α3 we introduce a constraint in cases where x may be cancelled out. For cases
when x cannot be cancelled out, x, t cannot be equal in Q; hence, returning ⊥ in α2 is sound.

After cases α1, α2, α3, we are left with unifying terms without top level variables. An
example of such terms is given by f(x)+ g(t) and g(y)+ f(y). Unifying such and similar terms

43

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

is guided (split) by the top level symbols of the respective terms, as different uninterpreted
functions cannot be unified. This is handled by splitf in the cases β1 − β2.

Going further, unifying terms that are sums with the same top symbol is handled in γ1−γ2
of Def. 5. Consider for example 2f(a) and f(y), which cannot unify as the respective interpreted
coefficients are not equal. This case is handled more generally in γ1. Case γ2 handles the
special unification setting of two atomic summands, making sure we continue unifying instead
of introducing a constraint. Finally, if all afore discussed cases of Def. 5 fail, a constraint is
introduced in case ω.

We conclude this section by noting that, as argued above abstrQ is clearly AQ
eq-sound. In

order to see that abstrQ is minimal, we need have a look at all cases where we do not return ⊥.
All of them, except for β2 we have 〈unif, constr〉 = abstrQ(l, r) with unif ∪ constr = {l′ ∼ r′},
where l ≈ r is equivalent to l′ ≈ r′ modulo AQ

eq; hence in these cases minimality holds. As
argued above distinct uninterpreted funcitons cannot be unified, hence the splitting in β2 also
preserves minimality. Moreover, abstrQ is terminating, as for all s ∼ t introduced in unif we
have that abstrQ is undefined or s, t are trivially unifiable. In addition, abstrQ captures AQ

eq,
as abstrQ is defined for variables and interpreted functions. Finally, abstrQ is ≺Qkbo-founded,
as literals in (unif ∪ constr) 6≈ are either equivalent to the original literal or their summands are
subsets of the summands of the original terms (and hence smaller). Hence, Alg. 1 with abstrQ
computes an abstracting unifier, fulfilling all properties form Def. 2. By Lem. 2, Alg. 1 replaces
unification modulo T in a complete way.

4 Implementation and Experiments
We implemented our refined UWA approach for the theory Q of linear rational arithmetic in
Vampire [19]. We used Alg. 1 with the abstraction oracle abstrQ to extend the Alasca
reasoning of [18] in Vampire1.
Implementation Details. Note that efficiency of Alg. 1 depends on the order how terms in unproc
are processed. We identified three classes of constraints C we want to avoid introducing, which
are illustrated in Figure 2 and discussed next.
(i) >-constraints. These constraints are over terms s, t that are equal in Q; hence, >-constraints
are redundant and can be dropped during unproc.
(ii) ⊥-constraints. These constraints express s 6≈ t for terms s, t that are not unifiable in Q.
Introducing such constraints over-approximates the set of ground unifiers, which is sound but
inefficient. Unlike >-constraints, ⊥-constraints cannot be simplified during saturation.
(iii) weak substitutions. We avoid introducing constraints s 6≈ t for which there is a unique
mgu µ modulo T that can be cheaply computed, as such constraints may result in deriving
more consequences of unified clauses than necessary.

We post-process every abstracting unifier 〈σ, C〉, by fixed-point iterating the computation
of uwa as long as there is a change in the result; that is until either uwa(s, t) = ⊥ or 〈σ, C〉 =
uwa(s, t) and, for all constraints s 6≈ t ∈ C, we have that 〈σ, C〉 ≡T uwa(s, t). As abstrQ is
≺-founded, such fixed-point iteration terminates for well-founded ≺.
Experimental Setup. We revisit the setup of [18] and use the following benchmarks: (i) LRA,
NRA and UFLRA, consiting of all SMT-LIB examples [5] that include real arithmetic, but no
other theories; (ii) SH, containing the benchmarks of [10], with selecting only those involving
real arithmetic and no other theories; (iii) Triangular and Limit, representing mathematical

1our implementation is publicly available at https://github.com/vprover/vampire/tree/alasca-new-uwa

44

https://github.com/vprover/vampire/tree/alasca-new-uwa

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

Issue Example left-to-right right-to-left

>-constraints
g(f(y) + f(x), x, y)

g(f(a) + f(b), a, b)

σ = {x 7→ a, y 7→ b}
C = {f(a) + f(b) 6≈ f(b) + f(a)}

σ = {x 7→ a, y 7→ b}
C = ∅

⊥-constraints
g(f(x) + f(y), x, y)

g(f(a) + f(b), a, c)

σ = {x 7→ a, y 7→ c}
C = {f(a) + f(b) 6≈ f(a) + f(c)}

⊥

weak substitutions
g(f(x) + f(y), x)

g(f(b) + f(a), a)

σ = {x 7→ a}
C = {f(a) + f(y) 6≈ f(b) + f(a)}

σ = {x 7→ a, y 7→ b}
C = ∅

Figure 2: Different results obtained by Alg. 1 depending on the traversal order of arguments.
The second column gives example terms being unified, the last two columns show different
results depending on the traversal order.

Benchmarks (#) Alasca∗
2 Alasca Cvc5 Vampire Yices UltElim SmtInt veriT solved

total (6374) 5753 5744 5626 5585 5531 5218 828 465 5988
LRA (1722) 1581 1572 1401 1396 1722 1469 623 89 1722
NRA (3814) 3800 3800 3804 3803 3809 3669 0 0 3812
UFLRA (10) 10 10 10 10 0 0 10 10 10
Triangular (34) 24 24 10 13 0 0 0 6 25
Limit (280) 100 100 90 81 0 80 0 90 100
SH (514) 238 238 311 282 0 0 195 270 319

Figure 3: Overall experimental results.

properties from [18]. As in SMT-COMP 2022, our experiments were carried out on the StarExec
Iowa cluster, with a timeout of 20 minutes and 4 cores2.
Experimental Results. We compared our work to all solvers from the arithmetic division of
SMT-COMP 2022, namely: Cvc5 [3], Vampire [23], Yices [14], UltElim [6], SmtInt [16],
and veriT [1]. We also compared our work against Alasca [18]. Figure 3 summarizes our
results, showing that our new and optimized implementation (Alasca+

2) performs overall best.
We also tested our refined UWA implementation with different options. The first setting is

Alasca+
0 , where we use an abstraction oracle abstr0 that behaves like a simple canAbstract

predicate from [22]; that is, abstr0(s, t) = 〈∅, 〈s, t〉〉 if either sym(s), or sym(t) is interpreted or
one of the two terms is a variable contained in the other one that might cancel out (see Def. 5),
and is undefined otherwise. The second configuration is Alasca+

1 , which uses an abstraction
oracle that behaves like a smarter abstraction predicate, defined abstr1(s, t) = 〈∅, {s ∼ t}〉 iff
abstrQ(s, t) = 〈constr, unif〉, for some unif, constr. The third one is Alasca+

2 which uses abstrQ
straight away. For each of these configurations Alasca+

X (X ∈ {0, 1, 2}), we also considered
a respective Alasca∗

X configuration that additionally uses our fixed-point iteration described
above. Figure 4 shows that each refinement of Alg. 1 gives gradually better performances, with
the fixed-point iteration of Alg. 1 using abstrQ performing overall the best.

5 Conclusions
We refined unification with abstraction with abstraction oracles. We prove soundness, and
completeness of such unification with background theories T and experimentally demonstrate
the gains of our work within linear rational arithmetic. We plan to further expand our work to
capture function extensionality axioms by abstraction [8, 7], tackling higher-order unification.

2Results, solvers, and benchmarks can be publicly accessed on https://www.starexec.org/starexec/
secure/explore/spaces.jsp?id=536083.

45

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=536083
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=536083

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

Benchmarks (#) Alasca+
0 Alasca∗

0 Alasca+
1 Alasca∗

1 Alasca+
2 Alasca∗

2 solved
total (6374) 5739 5739 5746 5746 5752 5753 5755
LRA (1722) 1575 1576 1580 1580 1581 1581 1581
NRA (3814) 3799 3799 3799 3799 3800 3800 3800
UFLRA (10) 10 10 10 10 10 10 10
Triangular (34) 22 22 23 24 24 24 24
Limit (280) 100 100 100 100 100 100 100
SH (514) 233 232 234 233 237 238 240

Figure 4: Experimental results comparing various configurations of Alg. 1.

102 103 104 105 106 107
5,000

5,200

5,400

5,600

5,800

Time [ms]

C
um

ul
at

iv
e

N
um

be
r

of
So

lv
ed

Pr
ob

le
m

s

Alasca∗
2

Alasca+
0

Alasca
Vampire
UltElim

Cvc5
Yices

Figure 5: Cumulative number of solved problems by time, for each solvers. The lines stop at
the last problem solved by each solver

Acknowledgements. This work was partially supported by the ERC Consolidator Grant
ARTIST 101002685, the EPSRC grant EP/V000497/1, the TU Wien Doctoral College SecInt,
and the FWF special research project SFB SpyCoDe F8504.

References
[1] Bruno Andreotti, Haniel Barbosa, Pascal Fontaine, and Hans-Jörg Schurr. veriT at SMT-COMP

2022. https://smt-comp.github.io/2022/system-descriptions/veriT.pdf, 2022.
[2] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In Handbook of Automated

Reasoning (in 2 volumes), pages 19–99. Elsevier and MIT Press, 2001.
[3] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Abdalrhman

Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner,
Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. CVC5 at the SMT Competition
2022. https://smt-comp.github.io/2022/system-descriptions/cvc5.pdf, 2022.

[4] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-
ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A Versatile and
Industrial-Strength SMT Solver. In TACAS, pages 415–442, 2022.

46

https://smt-comp.github.io/2022/system-descriptions/veriT.pdf
https://smt-comp.github.io/2022/system-descriptions/cvc5.pdf

Refining Unification with Abstraction Bhayat, Korovin, Kovács, and Schoisswohl

[5] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[6] Max Barth, Daniel Dietsch, Matthias Heizmann, and Andreas Podelski. Ultimate Elim-
inator at SMT-COMP 2022. https://smt-comp.github.io/2022/system-descriptions/
UltimateEliminator%2BMathSAT.pdf, 2022.

[7] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović, and Uwe Waldmann.
Superposition with Lambdas. Journal of Automated Reasoning, 65(7):893–940, 2021.

[8] Ahmed Bhayat and Giles Reger. A Combinator-Based Superposition Calculus for Higher-Order
Logic. In IJCAR, pages 278–296, 2020.

[9] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An Efficient SMT Solver. In TACAS,
pages 337–340, 2008.

[10] Martin Desharnais, Petar Vukmirovic, Jasmin Blanchette, and Makarius Wenzel. Seventeen
Provers Under the Hammer. In ITP, pages 8:1–8:18, 2022.

[11] Eric Domenjoud. A Technical Note on AC-Unification. The Number of Minimal Unifiers of the
Equation αx1+ · · ·+αxp

.
=AC βy1+ · · ·+βyq. Journal of Automated Reasoning, 8(1):39–44, 1992.

[12] André Duarte and Konstantin Korovin. Implementing Superposition in iProver (System Descrip-
tion). In IJCAR, pages 388–397, 2020.

[13] Bruno Dutertre. Yices 2.2. In CAV, pages 737–744, 2014.
[14] Stéphane Graham-Lengrand. Yices-QS 2022, an Extension of Yices for Quantified Satisfiability.

https://smt-comp.github.io/2022/system-descriptions/YicesQS.pdf, 2022.
[15] Krystof Hoder and Andrei Voronkov. Comparing Unification Algorithms in First-Order Theorem

Proving. In KI, pages 435–443, 2009.
[16] Jochen Hoenicke and Tanja Schindler. SMTInterpol with Resolution Proofs. https://smt-comp.

github.io/2022/system-descriptions/smtinterpol.pdf, 2022.
[17] Gérard P. Huet. A Unification Algorithm for Typed λ-calculus. Theoretical Computer Science,

1(1):27–57, 1975.
[18] Konstantin Korovin, Laura Kovacs, Giles Reger, Johannes Schoisswohl, and Andrei Voronkov.

ALASCA: Reasoning in Quantified Linear Arithmetic. In TACAS, 2023. To appear.
[19] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In CAV, pages

1–35, 2013.
[20] Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem Proving. In Handbook of

Automated Reasoning (in 2 volumes), pages 371–443. Elsevier and MIT Press, 2001.
[21] Giles Reger, Johannes Schoisswohl, and Andrei Voronkov. Making Theory Reasoning Simpler. In

TACAS, pages 164–180, 2021.
[22] Giles Reger, Martin Suda, and Andrei Voronkov. Unification with Abstraction and Theory In-

stantiation in Saturation-Based Reasoning. In TACAS, pages 3–22. Springer, 2018.
[23] Giles Reger, Martin Suda, Andrei Voronkov, Laura Kovács, Ahmed Bhayat, Bernhard Gleiss,

Marton Hajdu, Petra Hozzova, Jakob Rath Evgeny Kotelnikov, Michael Rawson, Martin Riener,
Simon Robillard, and Johannes Schoisswohl. Vampire 4.7-SMT System Description. https://
smt-comp.github.io/2022/system-descriptions/Vampire.pdf, 2022.

[24] John Alan Robinson. A Machine-Oriented Logic based on the Resolution Principle. Journal of
the ACM, 12(1):23–41, 1965.

[25] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, Higher, Stronger: E 2.3. In CADE,
pages 495–507.

[26] Uwe Waldmann. Superposition for Divisible Torsion-Free Abelian Groups. In CADE, pages
144–159, 1998.

[27] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick
Wischnewski. SPASS Version 3.5. In CADE, pages 140–145, 2009.

47

https://smt-comp.github.io/2022/system-descriptions/UltimateEliminator%2BMathSAT.pdf
https://smt-comp.github.io/2022/system-descriptions/UltimateEliminator%2BMathSAT.pdf
https://smt-comp.github.io/2022/system-descriptions/YicesQS.pdf
https://smt-comp.github.io/2022/system-descriptions/smtinterpol.pdf
https://smt-comp.github.io/2022/system-descriptions/smtinterpol.pdf
https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf
https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf

	Introduction
	Preliminaries
	Refined Unification with Abstraction
	Abstacting Unifiers
	UWA with Abstraction Oracles
	An Abstraction Oracle for Refined UWA in Q

	Implementation and Experiments
	Conclusions

