
EPiC Series in Computing

Volume 100, 2024, Pages 295–310

Proceedings of 25th Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning

Herbrand’s Theorem in Inductive Proofs

Alexander Leitsch1 and Anela Lolić2∗

1 Institute of Logic and Computation,
TU Wien, Vienna, Austria

leitsch@logic.at
2 Kurt Gödel Society,

Institute of Logic and Computation,
TU Wien, Vienna, Austria

anela@logic.at

Abstract

An inductive proof can be represented as a proof schema, i.e. as a parameterized
sequence of proofs defined in a primitive recursive way. A corresponding cut-elimination
method, called schematic CERES, can be used to analyze these proofs, and to extract
their (schematic) Herbrand sequents, even though Herbrand’s theorem in general does not
hold for proofs with induction inferences. This work focuses on the most crucial part of
the schematic cut-elimination method, which is to construct a refutation of a schematic
formula that represents the cut-structure of the original proof schema. Moreover, we show
that this new formalism allows the extraction of a structure from the refutation schema,
called a Herbrand schema, which represents its Herbrand sequent.

1 Introduction

Herbrand’s theorem [8] is one of the most important results of mathematical logic. It expresses
the fact that in a formal cut-free proof of a prenex form propositional and quantifier inferences
can be separated. In the formalism of sequent calculus this means that a so-called Herbrand
sequent can be extracted from a proof, where the propositional inferences operate above the
sequent, and the quantifier inferences below. In automated theorem proving Herbrand’s theorem
is used as a tool to prove completeness of refinements of resolution. Moreover the theorem can
yield a compact representations of proofs by abstracting away the propositional inferences.
Such compact representations play also a major role in computational proof analysis: formal
proofs obtained by cut-elimination from formalized mathematical proofs are typically very long
covering up the mathematical content of the proofs. Experiments with the system CERES
(cut-elimination by resolution, see [5] and [6]) have revealed that Herbrand forms display the
main mathematical arguments of a proof in a natural way [9].

As most interesting mathematical proofs contain applications of mathematical induction,
an extension of CERES to the analysis of inductive proofs was of major importance to turn

∗Partially supported by FWF project I-5848-N.

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 295–310



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

the method into a practically useful tool for (interactive) proof analysis. A first thorough
analysis of an inductive (schematic) CERES method can be found in [11]. The inductive proofs
investigated in this paper are those representable by a single parameter - in the formalisation
by a proof schema. Here also the first concept of a Herbrand schema was developed, which
is essentially an extension of Herbrand’s theorem from single proofs to a (recursively defined)
infinite sequence of proofs. This definition of a Herbrand schema represented the first step to
extend Herbrand’s theorem to inductive proofs (note that proofs using the induction rule do
not admit a construction of Herbrand sequents). In [12] the approach in [11] was extended to
arbitrary many induction parameters thus considerably increasing the strength of the method.

The core of CERES consists of the construction of a resolution refutation schema of a for-
mula schema which represents the derivations of the cut formulas in the original proof schema.
This refutation schema can then be combined with a so-called projection schema, which can
be obtained from the original proof schema by omitting all cut-inferences. It was shown in [12]
that for the construction of the Herbrand schema of the original proof schema, the Herbrand
schemata from the refutation schema and the projection can be combined. Hereby the most
complex task consists in the computation of the Herbrand schema of the refutation schema,
which justifies the investigation of Herbrand schemata in refutation schemata on its own. In-
deed, the Herbrand schema of a refutation schema R may reveal crucial mathematical infor-
mation contained in R. As an example the analysis of Fürstenberg’s proof of the infinitude
of primes in [4] (still not formalized but carried out on the mathematical meta-level) could be
mentioned: here the schematic Herbrand instances represent Euclid’s construction of primes.

In [7] the calculus for refuting resolution proof schemata as defined in [12] was substantially
extended by the use of point transition systems. The expressivity of the new calculus was
demonstrated on a formula schema which could not be refuted by earlier methods. However,
the construction of Herbrand schemata was not possible in [7], mainly due to a missing formalism
for handling schematic substitutions and schematic unifications.

In this paper we present a novel calculus for refuting schematic formulas, and introduce a
notion of refutation schema that considerably simplifies previous notions of proof as schema.
Moreover, we demonstrate that this new framework allows the construction of a Herbrand
schema from a resolution refutation schema, thus paving the way for proof analysis methods in
presence of induction inferences.

2 The Resolution Calculus RPL0

The basis for the schematic refutational calculus is the calculus RPL0 for quantifier-free formu-
las, as introduced in [7]. This calculus combines dynamic normalization rules à la Andrews [1]
with the resolution rule, but in contrast to [1] does not restrict the resolution rule to atomic
formulas.

The main motivation of the calculus RPL0 is that it can be extended to a schematic setting
in a straightforward way, and that it is particularly suited for the extraction of Herbrand
substitutions in the form of a Herbrand schemata of the schematic refutations.

The set of quantifier-free formulas in predicate logic will be denoted as PL0, and for simplic-
ity we omit →, but can represent it by ¬ and ∨ in the usual way. In this setting, as sequents
we consider objects of the form Γ ⊢ ∆, where Γ and ∆ are multisets of formulas in PL0.

Definition 1 (RPL0). The axioms of RPL0 are sequents ⊢ F for F ∈ PL0.

296



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

The rules are elimination rules for the connectives and the resolution rule.

Γ ⊢ ∆, A ∧B

Γ ⊢ ∆, A
∧ : r1

Γ ⊢ ∆, A ∧B

Γ ⊢ ∆, B
∧ : r2

A ∧B,Γ ⊢ ∆

A,B,Γ ⊢ ∆
∧ : l

Γ ⊢ ∆, A ∨B

Γ ⊢ ∆, A,B
∨ : r

A ∨B,Γ ⊢ ∆

A,Γ ⊢ ∆
∨ : l1

A ∨B,Γ ⊢ ∆

B,Γ ⊢ ∆
∨ : l2

Γ ⊢ ∆,¬A
A,Γ ⊢ ∆

¬ : r ¬A,Γ ⊢ ∆

Γ ⊢ ∆, A
¬ : l

The resolution rule, where σ is an m.g.u. of {A1, . . . , Ak, B1, . . . , Bl} and
V ({A1, . . . , Ak}) ∩ V ({B1, . . . , Bl}) = ∅ is

Γ ⊢ ∆, A1, . . . , Ak B1, . . . , Bm,Π ⊢ Λ

Γσ,Πσ ⊢ ∆σ,Λσ
res

An RPL0-derivation is a tree formed from axioms ⊢ Fθ by application of the rules above where
F is a formula in PL0 and θ is a variable renaming. Therefore, an RPL0-derivation is defined
relative to F . An RPL0-derivation is called regular if any two different axioms are variable-
disjoint; so if there are k different axioms in a regular RPL0-derivation they are of the form
⊢ Fθ1, . . . ,⊢ Fθk and V (Fθi) ∩ V (Fθj) = ∅ for i ̸= j. An RPL0-refutation of F is a RPL0-
derivation of ⊢ with axioms of the form ⊢ Fθi.

In [7] RPL0 is shown to be sound and refutationally complete.
In general, several resolution rules may occur in a RPL0-derivation, and hence several most

general unifiers σi need to be applied. In a regular derivation, a total unifier (or total m.g.u.)
can be obtained by considering the most general simultaneous unifier of the unification problems
given by the atoms in the premises of all resolution rules.

Definition 2 (simultaneous unifier). Let W = (A1, . . . ,An), where the Ai are nonempty sets
of atoms for i = 1, . . . , n. A substitution σ is called a simultaneous unifier of W if σ unifies all
Ai. σ is called a most general simultaneous unifier of W if σ is a simultaneous unifier of W
and σ ≤s σ

′ for all simultaneous unifiers σ′ of W .

Definition 3 (total m.g.u.). Let ρ be a regular RPL0-derivation containing n resolution infer-
ences. The unification problem of ρ is defined as W = (A1, . . . ,An), where Ai (i ∈ {1, . . . n})
is the set {Ai

1, . . . , A
i
ki
, Bi

1, . . . , B
i
mi
} in the resolution inferences

Γ ⊢ ∆, Ai
1, . . . , A

i
ki

Bi
1, . . . , B

i
mi

,Π ⊢ Λ

Γσi,Πσi ⊢ ∆σi,Λσi
res

in ρ. If σ is a most general simultaneous unifier of W , σ is called a total m.g.u. of ρ.

Note that, after application of a total m.g.u. to a regular RPL0-derivation the resolution
rules become cut rules.

3 Schematic Language

In this work we will use the many-sorted version of classical first-order logic, as introduced
in [7], and define schemata based on primitive recursion. Due to space limitations, we refer the

297



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

interested reader to [7] and to [10] for formal definitions and details, and will present here only
the most crucial notions and examples.

The first sort we consider is ω, in which every ground term normalizes to a numeral, i.e. a
term inductively constructable over the signature Σω = {0, s(·)} as N ⇒ s(N) | 0, s.t. s(N) ̸= 0
and s(N) = s(N ′)→ N = N ′. Natural numbers (N) will be denoted by lower-case Greek letters
(α, β, γ, etc), the numeral sα0, α ∈ N, will be written as ᾱ. The set of numerals is denoted by
Num.

The ω sort includes a countable set of variables N , called parameters. Parameters are de-
noted by k, l, n,m, k1, k2, . . . , l1, l2, . . . , n1, n2, . . . ,m1,m2, . . .. The set of parameters occurring
in an expression E is denoted by N (E). The set of free ω-terms, denoted by T ω

0 contains all
terms inductively constructable over Σω and N as:

• If t ∈ N or t ∈ Num, then t ∈ T ω
0 .

• If t ∈ T ω
0 , then s(t) ∈ T ω

0 .

Moreover, the ω sort allows defined function symbols, the set of which will be denoted by Σ̂ω.
These symbols will be denoted using ·̂ and have a fixed finite arity. The set of ω-terms, denoted
by Tω contains all terms inductively constructable over Σω, Σ̂ω, and N , i.e.

• If t ∈ Tω
0 , then t ∈ Tω.

• If t1, · · · tα ∈ Tω and f̂ ∈ Σ̂ω, s.t. f̂ has arity α ≥ 1 , then f̂(
−→
t α) ∈ Tω.

To every defined function symbol f̂ ∈ Σ̂ω of arity α + 1 there exists a set of two defining
equations of the form D(f̂) =

{f̂(n1, . . . , nα, 0̄) = f̂B , f̂(n1, . . . , nα, s(m+ 1)) = f̂S{ξ ← f̂(n1, . . . , nα,m)}

where N (f̂B) ⊆ {n1, . . . , nα}, N (f̂S) ⊆ {n1, . . . , nα, ξ} and f̂B , f̂S contain only defined function

symbols which are smaller than f̂ (for a precise definition of the ordering see [7]).

Example 1. For p̂ ∈ Σω, D(p̂) = {p̂(0̄) = 0̄, p̂(s(m)) = m}, p̂B = 0̄, p̂S = m.

Let f̂ , ĝ ∈ Σω s.t. f̂ is smaller than ĝ. We define D(f̂) as

f̂(n, 0̄) = f̂B , f̂(n, s(m)) = f̂S{ξ ← f̂(n,m)}

for f̂B = n and f̂S = s(ξ). Then, obviously, f̂ defines +. Now we define D(ĝ) as

ĝ(n, 0̄) = ĝB , ĝ(n, s(m)) = ĝS{ξ ← ĝ(n,m)}

where ĝB = 0̄ and ĝS = f̂(n, ξ). Then ĝ defines ∗. In both cases ξ is any fresh parameter in

N . We say that the corresponding theory is
(
{p̂, f̂ , ĝ}, {ĝ}, D(p̂) ∪D(f̂) ∪D(ĝ)

)
(for a formal

definition see [10], page 5, Definition 2.12).

The second sort, the ι-sort for individuals, also has two associated signatures, the set of
free function symbols, Σι, and the set of defined function symbols, Σ̂ι. Besides parameters we
also have the sets of individual variables V . The set of ι-terms, denoted by T ι is inductively
constructed from Σι, Σ̂ι, and V as:

• V ⊆ T ι.

298



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

• If f ∈ Σι, f has arity α and t1, . . . , tα ∈ T ι then f(t1, . . . , tα) ∈ T ι.

• If s1, · · · , sα ∈ T ι, t1, · · · , tβ + 1 ∈ Tω, f̂ ∈ Σ̂ι, s.t. f̂ has arity α + β + 1 for α, β ≥ 0,
then f̂(s1, · · · , sα, t1, · · · , tβ + 1) ∈ T ι.

Like for Tω there is a set of two defining equations for every symbol f̂ ∈ T ω; for details we
refer to [7] and [10]. As an example consider

Example 2. Let f ∈ Σι, f̂ ∈ Σ̂ι and x ∈ V . We define D(f̂) as

f̂(x, 0̄) = x, f̂(x,m+ 1) = f(f̂(X,m)).

Considering f̂B , f̂S like for Tω, we get f̂B = x, f̂S = f(ξ). E.g. f̂(x, 3̄) rewrites to the term
f(f(f(x))).

The third and final sort we consider is that of formulas which will be denoted by o. Formulas
are constructed using the signature Σo = {¬,∧,∨}, a countably infinite set of predicate symbols
P with fixed and finite arity, and a countably infinite set of formula variables V F . The set of
formulas, denoted by T o

V is constructed inductively as:

• If t ∈ V F , then t ∈ T o
V .

• If t1, . . . , tα ∈ T ι and P ∈ P s.t. P has arity α ≥ 0, then P (
−→
tα) ∈ T o

V .

• If t ∈ T o
V , then ¬t ∈ T o

V .

• If t1, t2 ∈ T o
V and ⋆ ∈ {∨,∧}, then t1 ⋆ t2 ∈ T o

V .

The set of formulas in T o
V which do not contain formula variables is denoted by T o

0 .

For defining formula schemata we extend the concept of individual variables to so-called
global variables: Variables which take numeric arguments, i.e. X(

−→
t α), where

−→
t α ∈ Tω for

α ≥ 0 (note that α is fixed and finite). The set of all global variables will be denoted by V G,

and terms of the form X(
−→
t α) will be referred to as V-terms over X. The set of V -terms

whose arguments are numerals (from Num) will be denoted by V ι. Such terms are referred
to as individual variables. We will often denote the set of individual variables contained in
some object T by V ι(T), e.g. a substitution, an ι term, a set of ι terms, etc. Note that
global variables could be interpreted as second-order variables, but they are never quantified
nor are they subject to second-order substitutions - they are in some sense passive second-order
variables.

Formula schemata are constructed using formula terms by allowing defined predicate symbols
to occur. Similarly as in the previous cases, defined symbols will be denoted by ·̂ and have a
fixed finite arity. The set of defined predicate symbols is denoted by P̂. The set of formula
schemata is denoted by To(Σo,P, V F , V G,N , P̂) and is constructed inductively as:

• If t ∈ T o
V , then t ∈ T o.

• If t1, · · · , tα ∈ T o, P̂ ∈ P̂,
−→
Xβ ∈ V G, and −−−→nα+1 ∈ N s.t. P̂ has arity α+β+1 for α, β ≥ 0,

then P̂ (
−→
Xβ ,
−−−→nα+1) ∈ T o.

• If t ∈ T o, then ¬t ∈ T o.

• If t1, t2 ∈ T o and ⋆ ∈ {∨,∧}, then t1 ⋆ t2 ∈ T o.

299



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

For every defined symbol p̂ ∈ Σ̂o there exists a set of defining equations D(p̂) which expresses
a primitive recursive definition of p̂.

Definition 4 (defining equations). Let p̂ ∈ σ̂o. We define a set D(p̂) consisting of two equa-
tions:

p̂(
−→
Xα,
−→n β , 0) = p̂B , p̂(

−→
Xα,
−→n β , s(m)) = p̂S{ξ ← p̂(

−→
Xα,
−→n β ,m)}, where

1) If p̂ is minimal (there is no smaller q̂ ∈ Σ̂o):

a) p̂B ∈ T o
0 , p̂S ∈ T o

V .

b) |V F (p̂S)| ≤ 1.

2) If p̂ is non-minimal: p̂B , p̂S ∈ T o where p̂B , p̂S may contain only defined function symbols
smaller than p̂. Moreover, |V F (p̂S)| ≤ 1 and |V F (p̂B)| = 0.

Additionally, N (p̂B) ⊆ {n1, . . . , nβ}, N (p̂S) ⊆ {n1, . . . , nβ} ∪ {m, ξ} and the only global vari-

ables occurring in p̂B and p̂S are
−→
Xα. We define Do =

⋃
{D(p̂) | p̂ ∈ Σ̂o}.

It is easy to see that, given any parameter assignment, all terms in Tω evaluate to numerals.
The defined symbols in our language introduce an equational theory and without restrictions
on the use of these equalities the word problem is undecidable. Furthermore, the evaluation of
equations can be nonterminating if we omit condition 2 of the definition above. However, in
this work the equations can be oriented to terminating and confluent rewrite systems and thus
termination of the evaluation procedure is easily verified [7].

Definition 5 (parameter assignment). A function σ : N → Num is called a parameter assign-
ment. σ is extended to T ω homomorphically:

• σ(β̄)↓= β̄ for numerals β̄.

• σ(s(t))↓= s(σ(t)↓)

• σ(f̂(
−→
tα))↓= f̂(σ(

−→
tα)↓)↓ for f̂ ∈ Σω and

−→
tα ∈ Tω.

The set of all parameter assignments is denoted by S.

Note that parameter assignments can be extended to ι and o terms in an obvious way.
While numeric terms evaluate to numerals under parameter assignments, terms in T ι evaluate
to terms in T ι

0 , i.e. to ordinary first-order terms, and terms in T o evaluate to terms in T o
0 , i.e.

Boolean expressions. Evaluations are denoted by↓, e.g. for F ∈ T o σ(F )↓ is a formula in T o
0 .

The last point we would like to make concerning terms T o is that we designed the lan-
guage to finitely express infinite sequences of quantifier-free first-order formulas. In particular,
we are interested in infinite sequences of unsatisfiable formulas whose refutations are finitely
describable using the resolution calculus introduced later in this paper.

Definition 6 (unsatisfiable schemata). Let F ∈ T o. Then F is called unsatisfiable if for all
σ ∈ S the formula σ(F )↓ is unsatisfiable (see [7], page 607, Definition 7).

Example 3. Let a ∈ Σι, P ∈ Σo, f̂ as in Example 2, p̂, q̂ ∈ Σ̂o s.t. p̂ is smaller than Q̂. We
consider the theory ({p̂, q̂, f̂}, q̂, {D(p̂), D(q̂), D(f̂)}). The defining equations for p̂ and q̂ are:

p̂(X, 0̄) = ¬P (X(0̄), f̂(a, 0)), p̂(X, s(n)) = p̂(X,n) ∨ ¬P (X(s(n)), f̂(a, s(n))),

q̂(X,Y, n, 0̄) = P (f̂(Y (0̄), 0̄), Y (1̄)) ∧ p̂(X,n) and

300



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

q̂(X,Y, n, s(m)) = P (f̂(Y (0̄), s(m)), Y (1̄)) ∧ p̂(X,n).

It is easy to see that the schema q̂(X,Y, n,m) is unsatisfiable. Let us consider σ(q̂(X,Y, n,m))↓
for σ with σ(m) = 2̄, σ(n) = 3̄:

σ(q̂(X,Y, n,m))↓= q̂(X,Y, 3̄, 2̄) = P (f̂(Y (0̄), 2̄), Y (1̄)) ∧ p̂(X, 3)↓=
.......................................................... =
P (f(f(Y (0̄))), Y (1̄))∧
(¬P (X(0̄), a) ∨ ¬P (X(1̄), f(a)) ∨ ¬P (X(2̄), f(f(a))) ∨ ¬P (X(3̄), f(f(f(a))))).

Note that for σ(n) = ᾱ the number of different variables in σ(q̂(X,Y, n,m))↓ is α + 2, so the
number of variables increases with the increase of σ(n).

4 Refutation Schemata

In this section we will extend RPL0 by rules handling schematic formula definitions. In inductive
proofs the use of lemmas is vital, i.e. an ordinary refutational calculus, which has just a weak
capacity of lemma generation, may fail to derive the desired invariant. Therefore, we will add
introduction rules for the connectives, giving us the potential to derive more complex formulas.
Furthermore, we have to ensure that the formulas on which the resolution rule is applied have
pairwise disjoint variables. We need a corresponding concept of disjointness for the schematic
case.

Definition 7. Let A,B be finite sets of schematic variables. A and B are called essentially
disjoint if for all σ ∈ S σ(A)↓ ∩σ(B)↓= ∅.

Definition 8 (RPLΨ
0 ). Let Ψ: (P, q̂, D(P)) be a theory, then for all schematic predicate symbols

p̂ ∈ P for D(p̂)(Y⃗ , n⃗, 0) = p̂B , and D(p̂)(Y⃗ , n⃗, s(m)) = p̂S{ξ ← p̂(Y⃗ , n⃗, p(m))}, we define the
elimination of defined symbols

Γ ⊢ ∆, p̂(Y⃗ , n⃗, 0)

Γ ⊢ ∆, p̂B
Bp̂r

Γ ⊢ ∆, p̂(Y⃗ , n⃗, s(m))

Γ ⊢ ∆, p̂S{ξ ← p̂(Y⃗ , n⃗,m)}
Sp̂r

p̂(Y⃗ , n⃗, 0),Γ ⊢ ∆

p̂B ,Γ ⊢ ∆
Bp̂l

p̂(Y⃗ , n⃗, s(m)),Γ ⊢ ∆

p̂S{ξ ← p̂(Y⃗ , n⃗,m)},Γ ⊢ ∆
Sp̂l

and the introduction of defined symbols

Γ ⊢ ∆, p̂B

Γ ⊢ ∆, p̂(Y⃗ , n⃗, 0)
Bp̂r+

Γ ⊢ ∆, p̂S{ξ ← p̂(Y⃗ , n⃗,m)}
Γ ⊢ ∆, p̂(Y⃗ , n⃗, s(m))

Sp̂r+

p̂B ,Γ ⊢ ∆

p̂(Y⃗ , n⃗, 0),Γ ⊢ ∆
Bp̂l+

p̂S{ξ ← p̂(Y⃗ , n⃗,m)},Γ ⊢ ∆

p̂(Y⃗ , n⃗, s(m)),Γ ⊢ ∆
SP̂ l+

As the theory Ψ contains the theory for schematic terms T ′ and, due to the defining equations
for schematic term symbols, T ′ is an equational theory we also need inference rules within
schematic formulas. Let t be a term in T ′ of the form (1) : ŝ(s1, . . . , si, t1, . . . , tj−1, s(w)) or of
the form (2) : ŝ(s1, . . . , si, t1, . . . , tj−1, 0̄) where D(ŝ) =

{ŝ(x1, . . . , xi, n1, . . . , nj−1, s(nj)) = ŝS{z ← ŝ(x1, . . . , xi, n1, . . . , nj−1, nj)},
ŝ(x1, . . . , xi, n1, . . . , nj−1, 0̄) = ŝB}

301



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

Then, in case (1) we define t ∼T ′ t′ for

t′ = ŝSθ{z ← ŝ(s1, . . . , si, t1, . . . , tj−1, w)},

where θ = {x1 ← s1, . . . , xi ← si, n1 ← t1, . . . , nj−1 ← tj−1, nj ← w}.
In case (2) we define t ∼T ′ t′ for

t′ = ŝB{x1 ← s1, . . . , xi ← si, n1 ← t1, . . . , nj−1 ← tj−1}.

We also define ∼T ′ as the reflexive and symmetric closure of the relation defined above. Now
let F be a schematic formula occurring in Ψ such that t occurs at position λ in F and t ∼T ′ t′.
Then F [t′]λ is called a T ′-variant of F . Now let S : F1, . . . , Fi ⊢ G1, . . . , Gj be a sequent, the
F ′
α be T ′-variants of Fα and the G′

β be T ′-variants of Gβ. Then we define the inference

F1, . . . , Fi ⊢ G1, . . . , Gj

F ′
1, . . . , F

′
i ⊢ G′

1, . . . , G
′
j
T ′

We also adapt the resolution rule to the schematic case:
Let T ι

V ({A1, . . . , Aα}), T ι
V ({B1, . . . , Bβ}) be essentially disjoint sets of schematic variables and

Θ be an s-unifier of {A1, . . . , Aα, B1, . . . , Bβ}. Then the resolution rule is defined as

Γ ⊢ ∆, A1, . . . , Aα B1, . . . , Bβ ,Π ⊢ Λ

ΓΘ,ΠΘ ⊢ ∆Θ,ΛΘ
res{Θ}

In the definition above we use the notion of s-substitution, which stands for schematic
substitution (for a formal definition see [10], page 7, Definition 3.1). Note that for two term
schemata to be unifiable, they have to be unifiable for all possible parameter assignments. A
unification algorithm is given in [10], page 27 (note that unification is not only undecidable, but
necessarily incomplete). Here the use of global variables plays a vital role. Although there are
unifiable term schemata that are defined without global variables, allowing this kind of indexed
variables in the construction of term schemata simplifies the formalism, as described in [7]. The
refutational completeness of RPLΨ

0 is not an issue as already RPL0 is refutationally complete
for PL0 formulas [3,11]. Note that this is not the case anymore if parameters occur in formulas.
Indeed, due to the usual theoretical limitations, the logic is not semi-decidable for schematic
formulas [2]. RPLΨ

0 is sound.

Proposition 1. Let the sequent S be derivable in RPLΨ
0 for Ψ: (P, q̂, D(P)). Then D(P) |= S.

Proof. The introduction and elimination rules for defined predicate symbols are sound (we
have to consider the equations D(P)), as are the T ′ rules; also the resolution rule (involving
s-unification ) is sound.

Before giving a formal definition of refutation schemata let us have a look at the following
example. The formula schema below is a characteristic formula schema of a proof schema Φ
defined in [12]; thus its refutation is a key step in the analysis of Φ via the schematic CERES
method.

Example 4. We define a refutation schema for the theory

Ψ : ((q̂,P, D(P)), Y⃗ , <), T ′, T ′′),

302



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

P : {p̂, q̂, f̂}, where Y⃗ = (X,Y, Z) and

D(p̂) = {p̂(X, s(n)) = p̂(X,n) ∨ ¬P (X(s(n)), f̂(a, s(n))),

p̂(X, 0) = ¬P (X(0), f̂(a, 0))}

D(q̂) = {q̂(X,Y, Z, n,m) = P (f̂(Y (n),m), Z(n)) ∧ p̂(X,n)}.
We extend the calculus RPLΨ

0 by two rules involving link-variables. We create link variables
Vp̂(X, r) corresponding to the formulas p̂(X, r) for r ∈ {0̄, n, p(n)} and add rules for the elimi-
nation and the introduction of the variable Vp̂(X, r):

Vp̂(X, r)

⊢ p̂(X, r)
Vp̂E

⊢ p̂(X, r)

Vp̂(X, r)
Vp̂I

The idea is to use the link variables to define recursive proofs. We start with a proof which is
defined for n > 0̄ as ρ(X,Y, Z, n,m, Vp̂(X,n)) =

Vp̂(X,n)

⊢ p̂(X,n)
Vp̂E

⊢ p̂(X, p(n)) ∨ ¬P (X(n), f̂(a, n))

⊢ p̂(X, p(n)),¬P (X(n), f̂(a, n))

P (X(n), f̂(a, n)) ⊢ p̂(X, p(n)) ⊢ P (f̂(Y (n),m), Z(n))

⊢ p̂(X, p(n))
R(Θ(n,m))

Vp̂(X, p(n))
Vp̂I

where Θ(n,m) = {X(n) ← f̂(Y (n),m), Z(n) ← f̂(a, n)} is an s-substitution. The idea is now
to append the proof above to itself until we arrive at the sequent ⊢ p̂(X, 0̄). We achieve this by
the following recursive definition (where ρ̂ is a recursive proof symbol).

ρ̂(X,Y, Z, n,m, Vp̂(X,n)) = if n = 0̄ then ⊢ p̂(X, 0̄)
else ρ(X,Y, Z, n,m, Vp̂(X,n)) ◦ ρ̂(X,Y, Z, p(n),m, Vp̂(X, p(n))).

In carrying out the composition ρ(X,Y, Z, n,m, Vp̂(X,n)) ◦ ρ̂(X,Y, Z, p(n),m, Vp̂(X, p(n))) we
identify the last sequent of ρ(X,Y, Z, n,m, Vp̂(X,n)) with the uppermost leaf ⊢ Vp̂(X, p(n)) in
ρ̂(X,Y, Z, p(n),m, Vp̂(X, p(n))) provided p(n) > 0̄, otherwise we end up with the end-sequent
⊢ p̂(X, 0̄). Still we do not have a proof with the right axioms, as - for n > 0̄ one axiom in
ρ̂(X,Y, Z, n,m, Vp̂(X,n)) is ⊢ Vp̂(X,n). We only have to apply the substitution {Vp̂(X,n)← ⊢
p̂(X,n) to achieve the proof

ρ̂(X,Y, Z, n,m, p̂(X,n))

which is a proof of ⊢ p̂(X, 0̄) from the axioms ⊢ p̂(X,n) and ⊢ P (f̂(Y (k),m), Z(k)) for

k ≤ n. As both ⊢ p̂(X,n) and the sequents ⊢ P (f̂(Y (k),m), Z(k)) are derivable from
⊢ q̂(X,Y, Z, n,m) (we also use variable renaming) the following derivation below is a refutation
of ⊢ q̂(X,Y, Z, n,m): ρ0(X,Y, Z, n,m) =

ρ̂(X,Y, Z, n,m, p̂(X,n))
⊢ p̂(X, 0̄)

⊢ ¬P (X(0̄), f̂(a, 0̄))

P (X(0̄), f(a, 0̄)) ⊢ ⊢ P (f̂(Y (0),m), Z(0))

⊢ R(Θ(0̄,m))

303



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

where Θ(0̄,m) = {X(0̄) ← f̂(Y (0),m), Z(0) ← f̂(a, 0̄)} is an s-substitution. We can also
explicitly insert the missing proofs from ⊢ q̂(X,Y, Z, n,m):

To obtain a derivation of the leaf ⊢ p̂(X,n) we just define

ρ̂(X,Y, Z, n,m, Vp̂(X,n)){Vp̂(X,n)← ρ′}

for ρ′ =

⊢ q̂(X,Y, Z, n,m)

⊢ P (f̂(Y (n),m), Z(n)) ∧ p̂(X,n)

⊢ p̂(X,n)

Vp̂(X,n)

The other proof is just

⊢ q̂(X,Y, Z, n,m)

⊢ P (f̂(Y (0),m), Z(0)) ∧ p̂(X,n)

⊢ P (f̂(Y (0),m), Z(0))

Definition 9 (link-variables). Let p̂ be a schematic predicate symbol. To p̂ we assign an
infinite set of link variables V (p̂) = {Vi | i ∈ IN}; for different schematic predicate symbols

the link variables are disjoint. If V ∈ V (p̂) we also say that V is of type p̂. Let p̂(X⃗, r⃗) be a

schematic atom defined via p̂. Then, for every V ∈ V (p̂), the expression V (X⃗, r⃗) is called a

link expression corresponding to p̂; we also write Vp̂(X⃗, r⃗) for this link expression to emphasize

that V is in V (p̂). Two link expressions Vp̂(X⃗, r⃗) and Uq̂(Y⃗ , s⃗) are defined as equal if U = V ,

X⃗ = Y⃗ and r⃗ = s⃗.

Link variables V serve the purpose to define locations in a proof where V can be replaced
by a proof; these locations can be either the leaves of a proof or the root. In order to place into
or to remove variables from proofs we extend the RPLΨ

0 -calculus by variable elimination rules
and variable introduction rules.

Definition 10 (RPLΨ
0 V ). The calculus RPLΨ

0 V contains the rules of RPLΨ
0 with two additional

rules. Let V be a variable of type p̂ then we define the rules

⊢ p̂(X⃗, r⃗)

V (X⃗, r⃗)
VI

V (X⃗, r⃗)

⊢ p̂(X⃗, r⃗)
VE

Elimination rules can only be applied to leaves in an RPLΨ
0 V -derivation (if the leaf is a link

expression) and introduction rules to root nodes which are labeled by a sequent of the form

⊢ p̂(X⃗, r⃗). Or expressed in another way: any RPLΨ
0 V -derivation can be obtained from an

RPLΨ
0 - derivation ρ by appending variable elimination rules on some leaves of ρ and (possibly)

a variable introduction rule on the root (provided the sequents on the nodes are of an appropriate
form).

Example 5. The proof ρ(X,Y, Z, n,m, Vp̂(X,n)) for n > 0̄ in Example 4 is a RPLΨ
0 V -

derivation.

The link variables in an RPLΨ
0 V -derivation can be replaced by other RPLΨ

0 V -derivations:

304



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

Definition 11 (proof composition). Let ρ1 be a RPLΨ
0 V -derivation with a root node Vp̂(X⃗, r⃗)

and let ρ2 be a RPLΨ
0 V -derivation with (possibly several) leaf nodes Vp̂(X⃗, r⃗) appearing at the

set of positions Λ. Then the composition of ρ1 and ρ2, denoted as ρ1 ◦ ρ2, is defined as ρ2[ρ
′
1]Λ

where ρ′1 is the derivation of ⊢ p̂(X⃗, r⃗), the premise of Vp̂(X⃗, r⃗) (note that the last rule in ρ1 is

the variable introduction rule for Vp̂(X⃗, r⃗)). ρ1 and ρ2 are called composable if there exists a
proof variable V which is the root node of ρ1 and a leaf node of ρ2.

We did not write ρ2{Vp̂(X⃗, r⃗)← ρ′1} for ρ1 ◦ ρ2 because we do not exclude that Vp̂(X⃗, r⃗) is
also the root node of ρ2.

Example 6. Let ρ2 be the proof

Vp̂(X,n)

⊢ p̂(X,n)
Vp̂E

⊢ p̂(X, p(n)) ∨ ¬P (X(n), f̂(a, n))

⊢ p̂(X, p(n)),¬P (X(n), f̂(a, n))

P (X(n), f̂(a, n)) ⊢ p̂(X, p(n)) ⊢ P (f̂(Y (n),m), Z(n))

p̂(X, p(n))
R(Θ(n,m))

Vp̂(X, p(n))
Vp̂I

and ρ1 be
⊢ q̂(X,Y, Z, n,m)

⊢ P (f̂(Y (n),m), Z(n)) ∧ p̂(X,n)

⊢ p̂(X,n)

Vp̂(X,n)

Then ρ1 ◦ ρ2 =

⊢ q̂(X,Y, Z, n,m)

⊢ P (f̂(Y (n),m), Z(n)) ∧ p̂(X,n)

⊢ p̂(X,n)

⊢ p̂(X, p(n)) ∨ ¬P (X(n), f̂(a, n))

⊢ p̂(X, p(n)),¬P (X(n), f̂(a, n))

P (X(n), f̂(a, n)) ⊢ p̂(X, p(n)) ⊢ P (f̂(Y (n),m), Z(n))

p̂(X, p(n))
R(Θ(n,m))

Vp̂(X, p(n))
Vp̂I

Definition 12 (proof recursion). Let ρ(X̄, n⃗, Vp̂(Y⃗ , m⃗, k)) be a proof with one or several leaves

Vp̂(Y⃗ , m⃗, k) and with the root Vp̂(Y⃗ , m⃗, p(k)), where Y⃗ is a subvector of X⃗ and (m⃗, k) of n⃗ (if

this is the case we say that ρ admits proof recursion). We abbreviate Vp̂(Y⃗ , m⃗, k) by V (k) and
define

if k = 0̄ then ρ̂((X̄, n⃗, V (k)) = V (0̄)

else ρ̂((X̄, n⃗, V (k)) = ρ(X̄, n⃗, V (k)) ◦ ρ̂((X̄, n⃗{k ← p(k)}, V (p(k)))).

Note that from V (0̄) we can finally derive p̂(Y⃗ , m⃗, 0̄). We say that ρ̂ is the inductive closure of
ρ.

305



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

Example 7. Take ρ(X,Y, Z, n,m, Vp̂(X,n)) and ρ̂(X,Y, Z, n,m, Vp̂(X,n)) from Example 4.
Then ρ̂ is the inductive closure of ρ.

Note that ρ̂ is obtained from ρ by a kind of primitive recursion on proofs.

Definition 13 (proof schema). We define proof schema inductively:

• Any RPLΨ
0 V -derivation is a proof schema.

• If ρ1 and ρ2 are proof schemata and ρ1, ρ2 are composable then ρ1 ◦ ρ2 is a proof schema.

• If ρ is a proof schema which admits proof recursion then the inductive closure of ρ is a
proof schema.

• Let ρ1(X⃗1, n⃗), . . . , ρα(X⃗α, n⃗) (for α > 0) be proof schemata over the parameter tuple n⃗
and let {C1, . . . , Cα} be conditions on the parameters in n⃗ which define a partition then

if C1 then ρ1(X⃗1, n⃗) else

if C2 then ρ2(X⃗2, n⃗) else
. . .

if Cα−1 then ρα−1( ⃗Xα−1, n⃗) else ρα(X⃗α, n⃗)

is a proof schema.

Example 8. Consider the proofs ρ, ρ̂ and ρ0 in Example 4. All of them are proof schemata;
the proof schema ρ0 is also a refutation schema of q̂(X,Y, Z, n,m), a concept which will be
formally defined below.

Our schematic proofs are proofs from sequents of the form ⊢ F , which we call schematic
F -proofs. A schematic F -proof of ⊢ is called a refutation schema of F .

Definition 14 (schematic F -proofs). Let F : q̂(X⃗, n⃗) be the main schematic atom in a schematic
definition Ψ. We define schematic F -proofs below. The RPLΨ

0 V -proof

⊢ q̂(X⃗, n⃗)

is a schematic F -proof.

• If ρ1 and ρ2 are schematic F -proofs of S1 and S2 from ⊢ q̂(X⃗, n⃗) and ρ =

(ρ1)
S1

(ρ2)
S2

S
ξ

for a binary rule ξ then ρ is a schematic F -proof of S.

• If ρ′ is a schematic F -proof of S′ and ρ =

(ρ′)
S′

S
ξ

for a unary rule ξ then ρ is a schematic F -proof of S.

306



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

• Let ρ1 be a schematic F -proof of S where S is of the form Vp̂(Z⃗, k⃗). Let ρ2 be a proof

schema with one or several leaves λ : Vp̂(Z⃗, k⃗) such that for all other leaves λ of ρ2 there
are schematic F -proofs of seq(λ). Then ρ1 ◦ ρ2 is a schematic F -proof of the end-sequent
of S2.

• Let ρ(X̄, n⃗, Vp̂(Y⃗ , m⃗, k)) be a proof schema with a leaf Vp̂(Y⃗ , m⃗, k) and with the root

Vp̂(Y⃗ , m⃗, p(k)), where Y⃗ is a subvector of X⃗ and (m⃗, k) of n⃗ and assume that ρ admits

proof recursion, i.e. it is a proof schema of Vp̂(Y⃗ , m⃗, p(k)) from Vp̂(Y⃗ , m⃗, p(k)). Assume

further that ρ̂ is defined as (V (k) stands for Vp̂(Y⃗ , m⃗, k))

if k = 0̄ then ρ̂((X̄, n⃗, V (k)) = V (0̄)

else ρ̂((X̄, n⃗, V (k)) = ρ(X̄, n⃗, V (k)) ◦ ρ̂((X̄, n⃗{k ← p(k)}, V (p(k)))).

If, for l ≤ k, the proof schema ρ(X̄, n⃗{k ← l}, Vp̂(Y⃗ , m⃗, l)) is a schematic F -proof (of its
end-sequent) then ρ̂((X̄, n⃗, V (k)) is a schematic F -proof of V (0̄).

• Let ρ1(X⃗1, n⃗), ρ2(X⃗2, n⃗) be schematic F -proofs over the parameter tuple n⃗ and let C be a

condition on the parameters in n⃗; let ρ(X⃗1, X⃗2, n⃗) =

if C then ρ1(X⃗1, n⃗) else ρ2(X⃗2, n⃗)

Then ρ(X⃗1, X⃗2, n⃗) is a schematic F -proof of S.

Example 9. The proof schema ρ0 in Example 4 is a refutation schema of q̂(X,Y, Z, n,m).

When the parameters in a refutation schema are instantiated with numerals, we obtain a
RPLΨ

0 V refutation.

Theorem 1. Let ρ be a refutation schema of a schematic atom q̂(X⃗, n1, . . . , nα). Then, for
all numerals ν1, . . . , να, the evaluation of ρ{n1 ← ν1, . . . , nα ← να} is a RPLΨ

0 V refutation of

q̂(X⃗, ν1, . . . , να).

Proof. Instantiate all parameters in ρ, and replace proof recursions by the corresponding deriva-
tions, according to the parameter instantiations. Proof recursions are defined in a primitive
recursive way, and eventually reach a base case. What is left, is a derivation from instances of
⊢ q̂(X⃗, n1, . . . , nα) of the empty sequent in RPLΨ

0 V . RPLΨ
0 V is trivially sound.

Using the above formalism for refutation schemata, it is possible to extract a schematic
structure representing the Herbrand sequent of the refutation.

Example 10. Consider the refutation schema ρ0, as defined in Example 4. ρ0 defines the
s-substitution

Θ(0̄,m) = {X(0̄)← f̂(Y (0),m), Z(0)← f̂(a, 0̄)}.

Moreover, as ρ0 contains the recursive proof symbol ρ̂ as axiom, we have to take the substi-
tutions coming from ρ̂ into account as well! In fact, Θ(0̄,m) will be applied to all the other
s-substitutions coming from the rule applications “above”, i.e. to all the substitutions in deriva-
tions corresponding to the proof variables in the leaves. ρ̂ is recursively defined over the deriva-
tion ρ, which defines the s-substitution

Θ(n,m) = {X(n)← f̂(Y (0),m), Z(0)← f̂(a, n)}.

307



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

By construction, as ρ̂ is recursive, Θ(p(n),m) is applied to Θ(n,m); to the result we apply
Θ(p(p(n)),m) and so on. Intuitively, Θ∗(n,m) is is the sequence

Θ(n,m)Θ(p(n),m)Θ(p(p(n)),m) · · ·Θ(0̄,m).

Hence, we obtain the Herbrand schema

Θ∗(n,m) = {Θ(0,m) : n = 0, Θ(n,m)Θ∗(p(n),m) : n > 0}.

Notice that the variables in the s-substitutions Θ(n,m),Θ(n−1,m), . . . are different, and there-
fore the application of Θ(0̄,m) to Θ(1̄,m), and so on, results in the union of the substitutions.

Definition 15 (Herbrand schema). The Herbrand schema of a refutation schema is defined
inductively as:

• For ⊢ F the Herbrand schema is {∅}, the set containing the identical substitution.

• Let ρ be a schematic F -proof of the form

(ρ1)
S1

(ρ2)
S2

S
ξ

and assume the Herbrand schema of ρ1 and ρ2 are Θ1 and Θ2. If ξ is a binary rule
different to the resolution rule, then the Herbrand schema of ρ is the global s-unifier of
Θ1 ∪Θ2, which can be computed after regularization of the proof. If ξ is a resolution rule
of the form R(Θ), then prior regularization is mandatory and the Herbrand schema is
(Θ1 ∪Θ2) ◦Θ.

• Let ρ be a schematic F -proof of the form

(ρ′)
S′

S
ξ

and assume that the Herbrand schema of ρ′ is Θ, then the Herbrand schema of ρ is Θ.

• Let ρ be of the form ρ1 ◦ ρ2, then the Herbrand schema of ρ is Θ1 ◦ Θ2, where Θ1 is the
Herbrand schema of ρ1, and Θ2 is the Herbrand schema of ρ2,

• Let ρ(X̄, n⃗, Vp̂(Y⃗ , m⃗, k)) be a proof schema of Vp̂(Y⃗ , m⃗, p(k)) from Vp̂(Y⃗ , m⃗, k), let Θ(n⃗) be

the global s-unifier of the derivation, and let ρ̂ be defined as (V (k) stands for Vp̂(Y⃗ , m⃗, k))

if k = 0̄ then ρ̂((X̄, n⃗, V (k)) = V (0̄)

else ρ̂((X̄, n⃗, V (k)) = ρ(X̄, n⃗, V (k)) ◦ ρ̂((X̄, n⃗{k ← p(k)}, V (p(k)))).

To ensure that ρ̂ is regular we must ensure that all variable expressions in ρ contain the
parameter n. If this is not the case the variables need to be renamed. Then the Herbrand
schema of ρ is defined as

if k = 0̄ then Θ∗(n⃗) = Θ(n⃗)

else Θ∗(n⃗) = Θ(n⃗) ◦Θ∗(n⃗{k ← p(k)}).

308



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

• Let ρ(X⃗1, X⃗2, n⃗) =

if C then ρ1(X⃗1, n⃗) else ρ2(X⃗2, n⃗).

be a schematic F -proof, and assume that the Herband schema of ρ1, ρ2 are Θ1,Θ2. Then
the Herbrand schema of ρ is

if C then Θ1 else Θ2.

Example 11. Consider the Herbrand schema from Example 10 and the fixed parameters n = 1
and m = 0. Then,

Θ∗(1, 0) = Θ(1, 0)Θ∗(p(1), 0)

= {{X(1)← f̂(Y (1), 0), Z(1)← f̂(a, 1)}}{{X(0)← f̂(Y (0), 0), Z(0)← f̂(a, 0)}}
= {{X(1)← Y (1), Z(1)← f(a), X(0)← Y (0), Z(0)← a}}.

Applying Θ∗(1, 0) to the initial sequents results in an unsatisfiable set of sequents.

Theorem 2. Let Θ be a Herbrand schema of a refutation schema ρ of q̂(X⃗, n1, . . . , nα). Then,
for all numerals ν1, . . . , να, the set of sequents

{⊢ q̂(X⃗, n1, . . . , nα)Θ}{n1 ← ν1, . . . , nα ← να}

is unsatisfiable.

Proof. For all numerals, first apply the s-substitutions defined in Θ to ρ. The initial sequents
are then instances of ⊢ q̂(X⃗, n1, . . . , nα), and the resolution rules turn into applications of cut
rules. The thus obtained derivation is in RPLΨ

0 , where the resolution rules are cut rules. As
this calculus is sound the set of sequents

{⊢ q̂(X⃗, n1, . . . , nα)Θ}{n1 ← ν1, . . . , nα ← να}

occurring at the leaves is unsatisfiable.

The formalism for schematic proofs presented in this paper is more powerful than that
defined in [12] and in [7] as these former approaches missed the inductive closure of proofs as a
syntactic proof object. In fact inductive closures could only be computed for given parameter
assignments, a representation on the syntax was missing. As a consequence there was no way to
define Herbrand schemata in a general way. Moreover, the proof recursion defines new schematic
proofs which can be called from others and thus considerably extends the expressivity of the
former approaches.

5 Conclusion

We introduced the calculus RPLΨ
0 V for the construction of a schematic refutation of a quantifier-

free formula schema. This formula schema originates from the proof analysis method CERES,
where it defines the derivations of the cut formulas in the original proof. We have shown that
from the refutation schema of this formula schema, a Herbrand schema can be constructed,
which can be used to compute the Herbrand schema of the original proof schema containing cuts.
The formalism for proof schemata as presented in this work is new, extends the expressivity,
and simplifies existing notions of proof as schema.

309



Herbrand’s Theorem in Inductive Proofs Leitsch, Lolić

References

[1] Peter B. Andrews. Resolution in type theory. J. Symb. Log., 36(3):414–432, 1971.

[2] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Decidability and undecidability results
for propositional schemata. J. Artif. Intell. Res., 40:599–656, 2011.

[3] Vincent Aravantinos, Mnacho Echenim, and Nicolas Peltier. A resolution calculus for first-order
schemata. Fundam. Informaticae, 125(2):101–133, 2013.

[4] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr. Ceres: An
analysis of Fürstenberg’s proof of the infinity of primes. Theoretical Computer Science, 403(2-
3):160–175, 2008.

[5] Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by resolution.
Journal of Symbolic Computation, 29(2):149–177, 2000.

[6] Matthias Baaz and Alexander Leitsch. Methods of Cut-elimination, volume 34. Springer Science
& Business Media, 2011.

[7] David M. Cerna, Alexander Leitsch, and Anela Lolic. Schematic refutations of formula schemata.
J. Autom. Reason., 65(5):599–645, 2021.

[8] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis, Université de Paris,
1930.

[9] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel Paleo. Herbrand sequent
extraction. In AISC/MKM/Calculemus, volume 5144 of Lecture Notes in Computer Science, pages
462–477. Springer, 2008.

[10] Alexander Leitsch and Anela Lolic. Herbrand’s theorem in refutation schemata. arXiv preprint
arXiv:2402.13905, 2024.

[11] Alexander Leitsch, Nicolas Peltier, and Daniel Weller. CERES for first-order schemata. J. Log.
Comput., 27(7):1897–1954, 2017.

[12] Anela Lolic. Automated Proof Analysis by CERES. PhD thesis, Technical University of Vienna,
2020.

310


	1 Introduction
	2 The Resolution Calculus RPL0
	3 Schematic Language
	4 Refutation Schemata
	5 Conclusion
	References

